
www.manaraa.com

Maurice H. ter Beek
Alessandro Fantechi
Laura Semini (Eds.)

From Software Engineering
to Formal Methods and Tools,
and Back

Fe
st

sc
hr

ift
LN

CS
 1

18
65

Essays Dedicated to Stefania Gnesi
on the Occasion of Her 65th Birthday

www.manaraa.com

Lecture Notes in Computer Science 11865

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

www.manaraa.com

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

www.manaraa.com

Maurice H. ter Beek • Alessandro Fantechi •

Laura Semini (Eds.)

From Software Engineering
to Formal Methods and Tools,
and Back
Essays Dedicated to Stefania Gnesi
on the Occasion of Her 65th Birthday

123

www.manaraa.com

Editors
Maurice H. ter Beek
Consiglio Nazionale delle Ricerche
Pisa, Italy

Alessandro Fantechi
Università degli Studi di Firenze
Florence, Italy

Laura Semini
Università di Pisa
Pisa, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-30984-8 ISBN 978-3-030-30985-5 (eBook)
https://doi.org/10.1007/978-3-030-30985-5

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: The cover illustration is the work of Eleonora Fantechi, Italy. Used with permission.
Photograph on p. V: The photograph of the honoree was taken by Nico Plat, The Netherlands. Used with
permission.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2930-6367
https://orcid.org/0000-0002-4648-4667
https://orcid.org/0000-0001-8774-2346
https://doi.org/10.1007/978-3-030-30985-5

www.manaraa.com

Stefania Gnesi

www.manaraa.com

Preface

This Festschrift contains 32 contributions by collaborators, colleagues, and friends of
Stefania Gnesi to celebrate her 65th birthday.

The Festschrift consists of eight sections, seven of which reflect the main research
areas to which Stefania has contributed. Following a survey of Stefania’s legacy in
research and a homage by her thesis supervisor, these seven sections are ordered
according to Stefania’s life cycle in research, from software engineering to formal
methods and tools, and back:

– Software Engineering
– Formal Methods and Tools
– Requirements Engineering
– Natural Language Processing
– Software Product Lines
– Formal Verification
– Applications

Each contribution was carefully reviewed by two readers. We would like to thank
these colleagues, listed on the following page, for their assistance.

The Festschrift was presented to Stefania on October 8, 2019, during a one-day
colloquium held in Porto, Portugal, preceding the 23rd Symposium on Formal Methods
(FM 2019), as part of the 3rd World Congress on Formal Methods. We would like to
thank José N. Oliveira, general chair of FM 2019, and his team for the organization of
this colloquium, internally known as secret project ‘X’.

Finally, we would like to thank Springer, and in particular Alfred Hofmann, for
agreeing to publish this Festschrift and we acknowledge the support from EasyChair
for assisting us in managing the complete process from submissions to this volume.

21 July 2019 Maurice H. ter Beek
Alessandro Fantechi

Laura Semini

www.manaraa.com

Organization

Reviewers

Davide Basile
Maurice ter Beek
Cinzia Bernardeschi
Antonia Bertolino
Tommaso Bolognesi
Antonio Bucchiarone
Silvano Chiaradonna
Vincenzo Ciancia
Rocco De Nicola
Pierpaolo Degano
Felicita Di Giandomenico
Alessandro Fantechi
Alessio Ferrari
Gian Luigi Ferrari
José Fiadeiro
John Fitzgerald
Mario Fusani
Gabriele Lenzini
Letterio Galletta
Vincenzo Gervasi
Carlo Ghezzi
Patrick Heymans
Paola Inverardi
Giuseppe Lami
Cosimo Laneve

Diego Latella
Axel Legay
Antónia Lopes
Dino Mandrioli
Tiziana Margaria
Mieke Massink
Radu Mateescu
Franco Mazzanti
Pedro Merino
Luisa Mich
Marinella Petrocchi
Andrea Polini
Rosario Pugliese
Barbara Re
Matteo Rossi
Klaus Schmid
Laura Semini
Giorgio Spagnolo
Paola Spoletini
Bernhard Steffen
Francesco Tiezzi
Gianluca Trentanni
Andrea Vandin
Erik de Vink
Martin Wirsing

www.manaraa.com

Contents

The Legacy of Stefania Gnesi: From Software Engineering to Formal
Methods and Tools, and Back . 1

Maurice H. ter Beek, Alessandro Fantechi, and Laura Semini

From Dynamic Programming to Programming Science: Some
Recollections in Honour of Stefania Gnesi . 12

Ugo Montanari

Software Engineering

Ten Years of Self-adaptive Systems: From Dynamic Ensembles
to Collective Adaptive Systems. 19

Antonio Bucchiarone and Marina Mongiello

Multi-modelling and Co-simulation in the Engineering of Cyber-Physical
Systems: Towards the Digital Twin . 40

John Fitzgerald, Peter Gorm Larsen, and Ken Pierce

Changing Software in a Changing World: How to Test in Presence
of Variability, Adaptation and Evolution?. 56

Antonia Bertolino and Paola Inverardi

Improving Software Engineering Research Through
Experimentation Workbenches . 67

Klaus Schmid, Sascha El-Sharkawy, and Christian Kröher

Formal Methods and Tools

Innovating Medical Image Analysis via Spatial Logics. 85
Gina Belmonte, Vincenzo Ciancia, Diego Latella, and Mieke Massink

Formal Methods in Designing Critical Cyber-Physical Systems. 110
Mehrnoosh Askarpour, Carlo Ghezzi, Dino Mandrioli, Matteo Rossi,
and Christos Tsigkanos

Automata-Based Behavioural Contracts with Action Correlation 131
Davide Basile, Rosario Pugliese, Francesco Tiezzi, Pierpaolo Degano,
and Gian-Luigi Ferrari

Logical Support for Bike-Sharing System Design . 152
Ionuţ Ţuţu, Claudia Elena Chiriţă, Antónia Lopes,
and José Luiz Fiadeiro

www.manaraa.com

A Generic Dynamic Logic with Applications to Interaction-Based Systems. . . . 172
Rolf Hennicker and Martin Wirsing

Requirements Engineering

Ambiguity in Requirements Engineering: Towards a Unifying Framework . . . 191
Vincenzo Gervasi, Alessio Ferrari, Didar Zowghi, and Paola Spoletini

QuARS: A Pioneer Tool for NL Requirement Analysis 211
Giuseppe Lami, Mario Fusani, and Gianluca Trentanni

Detecting Feature Interactions in FORML Models . 220
Sandy Beidu and Joanne M. Atlee

Natural Language Processing

Comparing Results of Natural Language Disambiguation Tools
with Reports of Manual Reviews of Safety-Related Standards. 239

Isabella Biscoglio, Attilio Ciancabilla, Mario Fusani, Giuseppe Lami,
and Gianluca Trentanni

Looking Inside the Black Box: Core Semantics Towards Accountability
of Artificial Intelligence . 250

Roberto Garigliano and Luisa Mich

QuOD: An NLP Tool to Improve the Quality of Business
Process Descriptions . 267

Alessio Ferrari, Giorgio O. Spagnolo, Antonella Fiscella,
and Guido Parente

Software Product Lines

A Decade of Featured Transition Systems . 285
Maxime Cordy, Xavier Devroey, Axel Legay, Gilles Perrouin,
Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens,
and Jean-François Raskin

Product Line Verification via Modal Meta Model Checking 313
Tim Tegeler, Alnis Murtovi, Markus Frohme, and Bernhard Steffen

Towards Model Checking Product Lines in the Digital Humanities:
An Application to Historical Data . 338

Ciara Breathnach, Najhan M. Ibrahim, Stuart Clancy,
and Tiziana Margaria

Variability Modelling and Analysis During 30 Years 365
David Benavides

xii Contents

www.manaraa.com

Formal Verification

A Systematic Approach to Programming and Verifying Attribute-Based
Communication Systems . 377

Rocco De Nicola, Tan Duong, Omar Inverso, and Franco Mazzanti

On the Prediction of Smart Contracts’ Behaviours . 397
Cosimo Laneve, Claudio Sacerdoti Coen, and Adele Veschetti

Hunting Superfluous Locks with Model Checking. 416
Viet-Anh Nguyen, Wendelin Serwe, Radu Mateescu, and Eric Jenn

Formal Verification of Railway Timetables - Using the UPPAAL
Model Checker . 433

Anne E. Haxthausen and Kristian Hede

An Axiomatization of Strong Distribution Bisimulation for a Language
with a Parallel Operator and Probabilistic Choice . 449

Jan Friso Groote and Erik P. de Vink

Applications

Enabling Auditing of Smart Contracts Through Process Mining 467
Flavio Corradini, Fausto Marcantoni, Andrea Morichetta,
Andrea Polini, Barbara Re, and Massimiliano Sampaolo

A Refined Framework for Model-Based Assessment of Energy
Consumption in the Railway Sector. 481

Silvano Chiaradonna, Felicita Di Giandomenico, Giulio Masetti,
and Davide Basile

Modelling of Railway Signalling System Requirements by Controlled
Natural Languages: A Case Study . 502

Gabriele Lenzini and Marinella Petrocchi

Single-Step and Asymptotic Mutual Information in Bipartite Boolean Nets. . . 519
Tommaso Bolognesi

Application of Model Checking to Fault Tolerance Analysis. 531
Cinzia Bernardeschi and Andrea Domenici

How Formal Methods Can Contribute to 5G Networks 548
María-del-Mar Gallardo, Francisco Luque-Schempp,
Pedro Merino-Gómez, and Laura Panizo

Author Index . 573

Contents xiii

www.manaraa.com

The Legacy of Stefania Gnesi

From Software Engineering to Formal Methods
and Tools, and Back

Maurice H. ter Beek1(B) , Alessandro Fantechi2 , and Laura Semini3

1 ISTI–CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it

2 University of Florence, Florence, Italy
alessandro.fantechi@unifi.it
3 University of Pisa, Pisa, Italy

laura.semini@unipi.it

1 The Early Years

Stefania Gnesi was born in Livorno in 1954. She studied Computer Science at
the University of Pisa, where she graduated summa cum laude in 1978.

During her studies at ISI, which was the University of Pisa’s Institute for
Computer Science, a young discipline at that time, Stefania became interested
in the continuing challenge associated with the production of software, namely
to demonstrate that the developed software is actually doing what is expected
to do, a challenge made harder in many cases by the fact that the expectations
themselves are not precisely expressed. This has kept her busy ever since.

To face this challenge her very first steps in research, towards the end of
her university studies, of purely theoretical nature, proved very valuable. In a
publication in the Journal of the ACM [63] (not bad for a first journal paper!),
resulting from her thesis under the supervision of Prof. Ugo Montanari, it is
shown that finding the solution of a dynamic programming problem in the form
of polyadic functional equations is equivalent to searching a minimal cost path
in an and/or graph with monotone cost functions. An important computational
application of this result is that the solution of a system of functional equations
can always be reduced to the problem of searching a minimal cost solution tree
in an and/or graph.

2 Software Engineering

After short periods as consultant in industry and teaching Mathematics and
Computer Science in a secondary school, Stefania joined the Distributed Systems
group of Norma Lijtmaer at the Istituto di Elaborazione dell’Informazione (IEI),
a predecessor of the Istituto di Scienza e Tecnologia dell’Informazione (ISTI) of
the Italian National Research Council (CNR). There she first became interested

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 1–11, 2019.
https://doi.org/10.1007/978-3-030-30985-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_1&domain=pdf
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0002-4648-4667
http://orcid.org/0000-0001-8774-2346
https://doi.org/10.1007/978-3-030-30985-5_1

www.manaraa.com

2 M. H. ter Beek et al.

in bridging theory and practice in Software Engineering. Her participation in
the European project The Draft Formal Definition of ANSI/MIL-STD-1815A
Ada was centered around executing the Ada language’s operational semantics
by means of a logic programming approach, which resulted in a publication in
the very first European Software Engineering Conference (ESEC 1987) [35].

In this context, it is worthwhile to recall that for over a decade, starting from
the mid-nineties, Stefania taught Software Engineering courses at the Universi-
ties of Siena and Florence.

3 Formal Methods and Tools

Towards the end of the eighties, Stefania initiated her career-long involvement in
Formal Methods and Tools. By participating in the EU project LOTOSPHERE,
Stefania developed an increasing interest in temporal logic, and especially in the
newly developed formal verification technique of model checking, the research
area to which Stefania has contributed the most. First and foremost the study
of the relations between process algebras and adequate (action-based) temporal
logics, resulting in publications in the 2nd International Conference on Formal
Description Techniques for Distributed Systems and Communication Protocols
(FORTE 1989) [37] and in the 3rd International Workshop (now a Conference)
on Computer Aided Verification (CAV 1991) [29], as well as in the 4th volume
of the international journal on Formal Methods in System Design [40].

Again, her interest in bringing together theory and practice pushed her to
co-organize, at the IEI–CNR in Pisa, in December 1992, an ERCIM Workshop
on Theory and Practice in Verification, gathering several prominent researchers
in the field from Europe and overseas. Also the first toolkit to which Stefania
contributed, namely JACK (Just Another Concurrency Kit) [22], was developed
during these years, resulting in a publication in the 1st International Workshop
(now a Conference) on Tools and Algorithms for Construction and Analysis of
Systems (TACAS 1995) [28]. A few years later, she was involved in one of the
first applications of model checking to railway control systems in the context
of an industrial collaboration, resulting in a publication in the International
Conference on Dependable Systems and Networks (DSN 2000) [59], succeeded
by other related experiences inside the EU project GUARDS [20], and by several
other projects in the railway domain as well as in other domains, for example
addressing mobile and service-oriented architectures and computing in the EU
projects AGILE [1,48] and SENSORIA [10,38] that ran from 2002 to 2010.

Many of these and subsequent projects led to the introduction of a number of
tailored model-checking tools. In fact, JACK was followed by toolsets like HAL,
resulting in a publication in the 10th International Conference on Computer
Aided Verification (CAV 1998) [49], SAM, witnessed by a publication in the
International Workshop on Current Trends in Applied Formal Methods (FM-
Trends 1998) [39], and the KandISTI family members FMC, CMC, UMC and
VMC, resulting in publications in the ACM Transactions on Software Engineer-
ing and Methodology [38,48] and in the international journal Science of Computer
Programming [9], among others.

www.manaraa.com

The Legacy of Stefania Gnesi 3

4 Requirements Engineering/Natural Language
Processing

In parallel to her interest in Formal Methods and Tools, and still closely look-
ing at the early stages of software development, Stefania became interested in
Requirements Engineering and in particular in the formalization of software
requirements written in natural language. This triggered pioneering work on the
automatic translation of behavioural requirements into her favourite temporal
logic ACTL, by means of Natural Language Processing (NLP) techniques, at
that time still in their infancy, as well as the application of such NLP tech-
niques to support the semantic analysis of requirements specified as Use Cases.
This research led to publications in the 4th International Workshop (now Work-
ing Conference) on Requirements Engineering: Foundation for Software Quality
(REFSQ 1998) [30] and in the 10th Anniversary IEEE Joint International Con-
ference on Requirements Engineering (RE 2002) [36].

In the end, this turned out to be a prolific line of research, in particular
when steered in the direction of using NLP techniques to evaluate the quality of
requirements documents, in terms of absence of ambiguous requirements, vague
requirements, underspecification, etc., as witnessed by yearly publications in the
International Requirements Engineering Conference since 2015 [46] and in the
international journals Requirements Engineering [47], IEEE Software [43] and
Empirical Software Engineering [45]. The QuARS tool developed at ISTI–CNR,
first presented in a special issue on Automated Tools for Requirements Engi-
neering of the international journal on Computer Systems Science & Engineer-
ing [65] and in the 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2008) [23], was also used for this purpose inside
the EU projects MODTRAIN/MODCONTROL [24]. QuARS continues to be
in use, as witnessed by recent tool demos during the 2nd Workshop on Natural
Language Processing for Requirements Engineering (NLP4RE 2019) [64] and
the 23rd International Systems and Software Product Line Conference (SPLC
2019) [41].

5 Software Product Lines

A more recent scientific community to which Stefania has made several impor-
tant contributions is that of Software Product Line Engineering (SPLE), a field
of research that she joined through her involvement in the EUREKA project
CAFÉ. Also in this area, she applied her knowledge and skills on formal mod-
elling and analysis, this time to so-called product families. It all started with a
contribution on testing in the 5th International Workshop on Software Product-
Family Engineering (PFE 2003) [21], a predecessor of the annual Software Prod-
uct Line Conference (SPLC), in which Stefania has published a paper almost
every year this decade. She has been a member of the Steering Committee of
SPLC from 2014 to 2018.

www.manaraa.com

4 M. H. ter Beek et al.

However, her main contributions to SPLE concern Modal Transition Sys-
tems with variability constraints to serve as behavioural variability models [4],
with associated action-based and variability-aware temporal logics [2] and model-
checking algorithms and tools [3], which culminated in a publication in the Jour-
nal of Logical and Algebraic Methods in Programming [13], followed recently by
a study of the model’s expressiveness in the international journal Science of
Computer Programming [12]. Curiously, one of her most cited SPLC contribu-
tions is the toy example of a family of coffee machines, published in the 12th
International Software Product Line Conference (SPLC 2008) [33], which was
reused in numerous subsequent papers in the field. In Fig. 1, we reproduce the
coffee vending machine example.

(a) Vending machines family (b) A vending machine for the EU

Fig. 1. Classical coffee vending machine example reproduced from [33]

6 Formal Verification and Applications

As head of the Formal Methods and Tools (FMT) laboratory of ISTI–CNR for
almost two decades, from December 2002 until July 2019, Stefania also touched
upon other research streams that have been pursued by members of the lab.
These were typically characterised by Formal Verification and analysis as well
as Applications to system designs made precise by formal modelling.

Example research streams include: Stochastic modelling and analysis, result-
ing in publications ranging from the 5th IEEE International Symposium on
High-Assurance Systems Engineering (HASE 2000) [60] to the Journal of Rail

www.manaraa.com

The Legacy of Stefania Gnesi 5

Transport Planning & Management [7]; Groupware, resulting in publications in
the 27th International Conference on Software Engineering (ICSE 2005) [19] and
in the Journal of Logic and Algebraic Programming [11]; Security, witnessed by
publications in the 7th International Conference on Formal Methods for Open
Object-Based Distributed Systems (FMOODS 2005) [25] and in the Proceed-
ings of the MEFISTO project on Formal Methods for Security and Time [61];
Web Services, witnessed by a publication in the 4th IEEE European Confer-
ence on Web Services (ECOWS 2006) [17]; Telecommunications, witnessed by
a publication in the 10th International Conference on Feature Interactions in
Telecommunications and Software Systems (ICFI 2009) [18]; Collective Adap-
tive Systems and Smart Cities, in particular smart transportation in the form
of bike-sharing systems, resulting in various publications, even touching upon
Machine Learning [5,8,16], in the context of the EU project QUANTICOL;
Business Process Modelling, witnessed by publications in the Demo Track of the
15th International Conference on Business Process Modeling (BPM 2017) [51]
and in the journal of Data & Knowledge Engineering [26] in the context of the
EU project Learn PAd.

The recent participation of the FMT lab in the Shift2Rail EU project AST-
Rail can be seen as a recognition of the vast experience of the lab in Formal
Methods, Formal Verification and Tools, and in particular in Applications to
the Railway domain. A specific workstream of ASTRail was concerned with an
assessment of the suitability of formal methods in supporting the transition to
the next generation of ERTMS/ETCS railway signalling systems, triggered by
the fact that the Shift2Rail initiative considers formal methods to be funda-
mental to the provision of safe and reliable technological advances to increase
the competitiveness of the railway industry. Indeed, Stefania and her colleagues
from the FMT lab have co-authored numerous authoritative papers on the sub-
ject throughout the last decade [6,15,31,32,34,42,44]. Moreover, due to several
strong links to railway signalling industries, Stefania was chosen as CNR rep-
resentative in the Italian railway technology district DITECFER, from 2011 to
date.

7 Conclusions

The international attitude of Stefania’s professional activity may also be con-
cluded, besides her participation in the above mentioned European projects,
from her participation in international bodies. To begin with, we recall her long-
standing activities in the ERCIM working group on Formal Methods for Indus-
trial Critical Systems (FMICS). After the success of the aforementioned ERCIM
Workshop on Theory and Practice in Verification held in Pisa in December 1992,
Stefania co-founded FMICS, making it the oldest active ERCIM working group.
Stefania is an FMICS board member ever since and she chaired the board from
2002 to 2005. Initiated in 1996, next year the annual FMICS conference will cel-
ebrate its 25th edition. Stefania co-edited a book that surveys over a decade of
award-winning collaborative work within the FMICS working group, presenting

www.manaraa.com

6 M. H. ter Beek et al.

a number of mainstream formal methods used for designing industrial critical
systems [62]. Also, at FMICS 2003, she was invited to present an overview of
current research on formal methods in her research group [53].

Furthermore, Stefania has been a member of the board of the association
Formal Methods Europe (FME) for over 15 years now and deputy chair since
2004. Currently, she is responsible for overseeing FME’s flagship conference series
on Formal Methods, which this year was organised as the 3rd World Congress on
Formal Methods, featuring a colloquium in honour of Stefania’s 65th birthday
in which many of the contributors to this Festschrift participated.

The experience of Stefania in organising workshops and conferences was
exercised many times in events hosted in Pisa and in Florence under her guid-
ance, including FM 2003, SEFM 2010, IFM & ABZ 2012, VaMoS 2013, SPLC
2014, FMICS-AVoCS 2016, and the upcoming REFSQ 2020. She also chaired
the Program Committee of leading workshops and conferences in her fields of
research, such as FMICS, SEFM, VaMoS, SPLC, FASE, FMSPLE, AVoCS and—
of course—FM, resulting in several co-editorships of special issues of renowned
journals [14,15,27,32,50,52,54–58], among which Formal Aspects of Computing
and the International Journal on Software Tools for Technology Transfer , of
which she is an editorial board member.

Last but not least, since 2013, Stefania co-organises the FormaliSE confer-
ence series affiliated with the International Conference on Software Engineering
(ICSE). FormaliSE is an annual conference on Formal Methods in Software Engi-
neering and as such yet another expression of Stefania’s constant attention to
inject formality into Software Engineering, thus returning to where she started:
from Software Engineering to Formal Methods and Tools, and Back.

Acknowledgements. The three of us are very honoured to have had the opportunity
to collaborate for a long time with lady Stefania (for more than 35, 20 and 15 years,
respectively) and especially to be close friends.

Alessandro, Laura and Maurice

References

1. Andrade, L., et al.: AGILE: software architecture for mobility. In: Wirsing, M., Pat-
tinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 1–33. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40020-2 1

2. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A logical framework to deal
with variability. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp.
43–58. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16265-7 5

3. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A model-checking tool for
families of services. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE -2011. LNCS,
vol. 6722, pp. 44–58. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21461-5 3

4. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: Formal description of variability
in product families. In: Proceedings of the 15th International Software Product
Line Conference (SPLC 2011), pp. 130–139. IEEE (2011). https://doi.org/10.1109/
SPLC.2011.34

https://doi.org/10.1007/978-3-540-40020-2_1
https://doi.org/10.1007/978-3-642-16265-7_5
https://doi.org/10.1007/978-3-642-21461-5_3
https://doi.org/10.1007/978-3-642-21461-5_3
https://doi.org/10.1109/SPLC.2011.34
https://doi.org/10.1109/SPLC.2011.34

www.manaraa.com

The Legacy of Stefania Gnesi 7

5. Bacciu, D., Carta, A., Gnesi, S., Semini, L.: An experience in using machine learn-
ing for short-term predictions in smart transportation systems. J. Logical Algebraic
Methods Program. 87, 52–66 (2017). https://doi.org/10.1016/j.jlamp.2016.11.002

6. Basile, D., et al.: On the industrial uptake of formal methods in the railway domain.
In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 20–29. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98938-9 2

7. Basile, D., Chiaradonna, S., Di Giandomenico, F., Gnesi, S.: A stochastic model-
based approach to analyse reliable energy-saving rail road switch heating systems.
J. Rail Transp. Plann. Manag. 6(2), 163–181 (2016). https://doi.org/10.1016/j.
jrtpm.2016.03.003

8. ter Beek, M.H., et al.: A quantitative approach to the design and analysis
of collective adaptive systems for smart cities. ERCIM News 98, 32 (2014).
http://ercim-news.ercim.eu/en98/special/a-quantitative-approach-to-the-design-
and-analysis-of-collective-adaptive-systems-for-smart-cities

9. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011). https://doi.org/10.1016/j.scico.2010.07.002

10. ter Beek, M.H., Gnesi, S., Koch, N., Mazzanti, F.: Formal verification of an auto-
motive scenario in service-oriented computing. In: Proceedings of the 30th Interna-
tional Conference on Software Engineering (ICSE 2008), pp. 613–622. ACM (2008).
https://doi.org/10.1145/1368088.1368173

11. ter Beek, M.H., Gnesi, S., Latella, D., Massink, M., Sebastianis, M., Trentanni, G.:
Assisting the design of a groupware system. J. Logic Algebraic Program. 78(4),
191–232 (2009). https://doi.org/10.1016/j.jlap.2008.11.004

12. ter Beek, M.H., Damiani, F., Gnesi, S., Mazzanti, F., Paolini, L.: On the expres-
siveness of modal transition systems with variability constraints. Sci. Comput.
Program. 169, 1–17 (2019). https://doi.org/10.1016/j.scico.2018.09.006

13. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing vari-
ability in product families: model checking of modal transition systems with vari-
ability constraints. J. Logical Algebraic Methods Program. 85(2), 287–315 (2016).
https://doi.org/10.1016/j.jlamp.2015.11.006

14. ter Beek, M.H., Gnesi, S., Knapp, A.: Formal methods and automated verification.
Int. J. Softw. Tools Technol. Transfer 20(4), 355–358 (2018). https://doi.org/10.
1007/s10009-018-0494-5

15. ter Beek, M.H., Gnesi, S., Knapp, A.: Formal methods for transport systems. Int.
J. Softw. Tools Technol. Transfer 20(2), 237–241 (2018). https://doi.org/10.1007/
s10009-018-0487-4

16. ter Beek, M.H., Gnesi, S., Latella, D., Massink, M.: Towards automatic decision
support for bike-sharing system design. In: Bianculli, D., Calinescu, R., Rumpe,
B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 266–280. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-49224-6 22

17. ter Beek, M.H., Gnesi, S., Mazzanti, F., Moiso, C.: Formal modelling and verifi-
cation of an asynchronous extension of SOAP. In: Proceedings of the 4th IEEE
European Conference on Web Services (ECOWS 2006), pp. 287–296. IEEE (2006).
https://doi.org/10.1109/ECOWS.2006.22

18. ter Beek, M.H., Gnesi, S., Montangero, C., Semini, L.: Detecting policy conflicts by
model checking UML state machines. In: Nakamura, M., Reiff-Marganiec, S. (eds.)
Proceedings of Feature Interactions in Software and Communication Systems X
(ICFI 2009), pp. 59–74. IOS Press (2009). https://doi.org/10.3233/978-1-60750-
014-8-59

https://doi.org/10.1016/j.jlamp.2016.11.002
https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1016/j.jrtpm.2016.03.003
https://doi.org/10.1016/j.jrtpm.2016.03.003
http://ercim-news.ercim.eu/en98/special/a-quantitative-approach-to-the-design-and-analysis-of-collective-adaptive-systems-for-smart-cities
http://ercim-news.ercim.eu/en98/special/a-quantitative-approach-to-the-design-and-analysis-of-collective-adaptive-systems-for-smart-cities
https://doi.org/10.1016/j.scico.2010.07.002
https://doi.org/10.1145/1368088.1368173
https://doi.org/10.1016/j.jlap.2008.11.004
https://doi.org/10.1016/j.scico.2018.09.006
https://doi.org/10.1016/j.jlamp.2015.11.006
https://doi.org/10.1007/s10009-018-0494-5
https://doi.org/10.1007/s10009-018-0494-5
https://doi.org/10.1007/s10009-018-0487-4
https://doi.org/10.1007/s10009-018-0487-4
https://doi.org/10.1007/978-3-662-49224-6_22
https://doi.org/10.1109/ECOWS.2006.22
https://doi.org/10.3233/978-1-60750-014-8-59
https://doi.org/10.3233/978-1-60750-014-8-59

www.manaraa.com

8 M. H. ter Beek et al.

19. ter Beek, M.H., Massink, M., Latella, D., Gnesi, S., Forghieri, A., Sebastianis, M.: A
case study on the automated verification of groupware protocols. In: Proceedings
of the 27th International Conference on Software Engineering (ICSE 2005), pp.
596–603. ACM (2005). https://doi.org/10.1145/1062455.1062560

20. Bernardeschi, C., Fantechi, A., Gnesi, S.: Formal validation of fault-tolerance mech-
anisms inside GUARDS. Reliab. Eng. Sys. Saf. 71(3), 261–270 (2001). https://doi.
org/10.1016/S0951-8320(00)00078-8

21. Bertolino, A., Gnesi, S.: PLUTO: a test methodology for product families. In:
van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 181–197. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24667-1 14

22. Bouali, A., Gnesi, S., Larosa, S.: JACK: just another concurrency kit - the inte-
gration project. Bull. EATCS 54, 207–223 (1994)

23. Bucchiarone, A., Gnesi, S., Lami, G., Trentanni, G., Fantechi, A.: QuARS express
- a tool demonstration. In: Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2008), pp. 473–474. IEEE
(2008). https://doi.org/10.1109/ASE.2008.77

24. Bucchiarone, A., Gnesi, S., Trentanni, G., Fantechi, A.: Evaluation of natural
language requirements in the MODCONTROL project. ERCIM News 75, 52–53
(2008). http://ercim-news.ercim.eu/evaluation-of-natural-language-requirements-
in-the-modcontrol-project

25. Corin, R., Di Caprio, G., Etalle, S., Gnesi, S., Lenzini, G., Moiso, C.: A formal
security analysis of an OSA/Parlay authentication interface. In: Steffen, M., Zavat-
taro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 131–146. Springer, Heidelberg
(2005). https://doi.org/10.1007/11494881 9

26. Corradini, F., et al.: A guidelines framework for understandable BPMN models.
Data Knowl. Eng. 113, 129–154 (2018). https://doi.org/10.1016/j.datak.2017.11.
003

27. Cuéllar, J., Gnesi, S., Latella, D.: Foreword. Sci. Comput. Program. 36(1), 1–3
(2000). https://doi.org/10.1016/S0167-6423(99)00014-3

28. De Francesco, N., Fantechi, A., Gnesi, S., Inverardi, P.: Model checking of non-
finite state processes by finite approximations. In: Brinksma, E., Cleaveland, W.R.,
Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
195–215. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0 10

29. De Nicola, R., Fantechi, A., Gnesi, S., Ristori, G.: An action based framework
for verifying logical and behavioural properties of concurrent systems. In: Larsen,
K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 37–47. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55179-4 5

30. Fabbrini, F., Fusani, M., Gervasi, V., Gnesi, S., Ruggieri, S.: On linguistic quality of
natural language requirements. In: Dubois, E., Opdahl, A.L., Pohl, K. (eds.) Pro-
ceedings of the 4th International Workshop on Requirements Engineering: Foun-
dation for Software Quality (REFSQ 1998), pp. 57–62. Presses Universitaires de
Namur (1998)

31. Fantechi, A., Ferrari, A., Gnesi, S.: Formal methods and safety certification: chal-
lenges in the railways domain. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016.
LNCS, vol. 9953, pp. 261–265. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47169-3 18

32. Fantechi, A., Flammini, F., Gnesi, S.: Formal methods for railway control systems.
Int. J. Softw. Tools Technol. Transfer 16(6), 643–646 (2014). https://doi.org/10.
1007/s10009-014-0342-1

https://doi.org/10.1145/1062455.1062560
https://doi.org/10.1016/S0951-8320(00)00078-8
https://doi.org/10.1016/S0951-8320(00)00078-8
https://doi.org/10.1007/978-3-540-24667-1_14
https://doi.org/10.1109/ASE.2008.77
http://ercim-news.ercim.eu/evaluation-of-natural-language-requirements-in-the-modcontrol-project
http://ercim-news.ercim.eu/evaluation-of-natural-language-requirements-in-the-modcontrol-project
https://doi.org/10.1007/11494881_9
https://doi.org/10.1016/j.datak.2017.11.003
https://doi.org/10.1016/j.datak.2017.11.003
https://doi.org/10.1016/S0167-6423(99)00014-3
https://doi.org/10.1007/3-540-60630-0_10
https://doi.org/10.1007/3-540-55179-4_5
https://doi.org/10.1007/978-3-319-47169-3_18
https://doi.org/10.1007/978-3-319-47169-3_18
https://doi.org/10.1007/s10009-014-0342-1
https://doi.org/10.1007/s10009-014-0342-1

www.manaraa.com

The Legacy of Stefania Gnesi 9

33. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In: Pro-
ceedings of the 12th International Software Product Line Conference (SPLC 2008),
pp. 193–202. IEEE (2008). https://doi.org/10.1109/SPLC.2008.45

34. Fantechi, A., Gnesi, S.: On the adoption of model checking in safety-related soft-
ware industry. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP
2011. LNCS, vol. 6894, pp. 383–396. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24270-0 28

35. Fantechi, A., Gnesi, S., Inverardi, P., Montanari, U.: An execution environment
for the formal definition of Ada. In: Nichols, H., Simpson, D. (eds.) ESEC 1987.
LNCS, vol. 289, pp. 327–335. Springer, Heidelberg (1987). https://doi.org/10.1007/
BFb0022125

36. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Application of linguistic techniques
for use case analysis. In: Proceedings of the 10th Anniversary IEEE Joint Inter-
national Conference on Requirements Engineering (RE 2002), pp. 157–164. IEEE
(2002). https://doi.org/10.1109/ICRE.2002.1048518

37. Fantechi, A., Gnesi, S., Laneve, C.: An expressive temporal logic for basic LOTOS.
In: Vuong, S.T. (ed.) Proceedings of the IFIP TC/WG6.1 2nd International Con-
ference on Formal Description Techniques for Distributed Systems and Communi-
cation Protocols (FORTE 1989), pp. 261–276. North-Holland (1989)

38. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.:
A logical verification methodology for service-oriented computing. ACM Trans.
Softw. Eng. Methodol. 21(3), 16:1–16:46 (2012). https://doi.org/10.1145/2211616.
2211619

39. Fantechi, A., Gnesi, S., Mazzanti, F., Pugliese, R., Tronci, E.: A symbolic model
checker for ACTL. In: Hutter, D., Stephan, W., Traverso, P., Ullmann, M. (eds.)
FM-Trends 1998. LNCS, vol. 1641, pp. 228–242. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48257-1 14

40. Fantechi, A., Gnesi, S., Ristori, G.: Model checking for action-based logics. Formal
Methods Sys. Des. 4(2), 187–203 (1994). https://doi.org/10.1007/BF01384084

41. Fantechi, A., Gnesi, S., Semini, L.: Applying the QuARS tool to detect variability.
In: Proceedings of the 23rd International Systems and Software Product Line Con-
ference (SPLC 2019), pp. 29–32. ACM (2019). https://doi.org/10.1145/3307630.
3342388

42. Ferrari, A., et al.: Survey on formal methods and tools in railways: the ASTRail
approach. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail
2019. LNCS, vol. 11495, pp. 226–241. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-18744-6 15

43. Ferrari, A., Dell’Orletta, F., Esuli, A., Gervasi, V., Gnesi, S.: Natural language
requirements processing: a 4D vision. IEEE Softw. 34(6), 28–35 (2017). https://
doi.org/10.1109/MS.2017.4121207

44. Ferrari, A., Fantechi, A., Gnesi, S., Magnani, G.: Model-based development and
formal methods in the railway industry. IEEE Softw. 30(3), 28–34 (2013). https://
doi.org/10.1109/MS.2013.44

45. Ferrari, A., et al.: Detecting requirements defects with NLP patterns: an industrial
experience. Empirical Softw. Eng. 23(6), 3684–3733 (2018). https://doi.org/10.
1007/s10664-018-9596-7

46. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity as a resource to disclose tacit knowl-
edge. In: Proceedings of the 23rd IEEE International Requirements Engineering
Conference (RE 2015), pp. 26–35. IEEE (2015). https://doi.org/10.1109/RE.2015.
7320405

https://doi.org/10.1109/SPLC.2008.45
https://doi.org/10.1007/978-3-642-24270-0_28
https://doi.org/10.1007/978-3-642-24270-0_28
https://doi.org/10.1007/BFb0022125
https://doi.org/10.1007/BFb0022125
https://doi.org/10.1109/ICRE.2002.1048518
https://doi.org/10.1145/2211616.2211619
https://doi.org/10.1145/2211616.2211619
https://doi.org/10.1007/3-540-48257-1_14
https://doi.org/10.1007/BF01384084
https://doi.org/10.1145/3307630.3342388
https://doi.org/10.1145/3307630.3342388
https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.1109/MS.2017.4121207
https://doi.org/10.1109/MS.2017.4121207
https://doi.org/10.1109/MS.2013.44
https://doi.org/10.1109/MS.2013.44
https://doi.org/10.1007/s10664-018-9596-7
https://doi.org/10.1007/s10664-018-9596-7
https://doi.org/10.1109/RE.2015.7320405
https://doi.org/10.1109/RE.2015.7320405

www.manaraa.com

10 M. H. ter Beek et al.

47. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity and tacit knowledge in requirements.
Requirements Eng. 21(3), 333–355 (2016). https://doi.org/10.1007/s00766-016-
0249-3

48. Ferrari, G.L., Gnesi, S., Montanari, U., Pistore, M.: A model-checking verification
environment for mobile processes. ACM Trans. Softw. Eng. Methodol. 12(4), 440–
473 (2003). https://doi.org/10.1145/990010.990013

49. Ferrari, G., Gnesi, S., Montanari, U., Pistore, M., Ristori, G.: Verifying mobile
processes in the HAL environment. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998.
LNCS, vol. 1427, pp. 511–515. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0028772

50. Fitzgerald, J.S., Gnesi, S., Mandrioli, D.: The industrialization of formal methods.
Int. J. Softw. Tools Technol. Transfer 8(4–5), 301–302 (2006). https://doi.org/10.
1007/s10009-005-0208-7

51. Fornari, F., Gnesi, S., La Rosa, M., Polini, A., Re, B., Spagnolo, G.O.: Checking
business process modeling guidelines in apromore. In: Clarisó, R., et al. (eds.)
Proceedings of the 15th International Conference on Business Process Modeling
(BPM 2017) Demo Track. CEUR Workshop Proceedings, vol. 1920. CEUR-WS.org
(2017). http://ceur-ws.org/Vol-1920/BPM 2017 paper 204.pdf

52. Garavel, H., Gnesi, S., Schieferdecker, I.: Special issue on the fifth international
workshop of the ERCIM working group on formal methods for industrial critical
systems. Sci. Comput. Program. 46(3), 195–196 (2003). https://doi.org/10.1016/
S0167-6423(02)00091-6

53. Gnesi, S.: Formal specification and verification of complex systems. Electron.
Notes Theoret. Comput. Sci. 80, 294–298 (2003). https://doi.org/10.1016/S1571-
0661(04)80829-6

54. Gnesi, S., Cavalcanti, A., Fitzgerald, J., Heitmeyer, C.: Editorial. Formal Aspects
Comput. 31(2), 131–132 (2019). https://doi.org/10.1007/s00165-019-00481-4

55. Gnesi, S., Jarzabek, S.: Special section on the 17th international software product.
Int. J. Softw. Tools Technol. Transfer 17(5), 555–557 (2015). https://doi.org/10.
1007/s10009-015-0386-x

56. Gnesi, S., Latella, D.: Editorial. Formal Aspects Comput. 10(4), 311–312 (1998).
https://doi.org/10.1007/s001650050019

57. Gnesi, S., Latella, D.: Special issue on the first international workshop of
the ERCIM working group on formal methods for industrial critical systems.
Formal Methods Sys. Des. 12(2), 123–124 (1998). https://doi.org/10.1023/A:
1008669025349

58. Gnesi, S., Latella, D.: Introduction: special issue on the fourth international work-
shop of the ERCIM working group on formal methods for industrial critical sys-
tems. Formal Methods Syst. Des. 19(2), 119–120 (2001). https://doi.org/10.1023/
A:1011279615774

59. Gnesi, S., Latella, D., Lenzini, G., Abbaneo, C., Amendola, A.M., Marmo, P.: An
automatic SPIN validation of a safety critical railway control system. In: Proceed-
ings of the International Conference on Dependable Systems and Networks (DSN
2000), pp. 119–124. IEEE (2000). https://doi.org/10.1109/ICDSN.2000.857524

60. Gnesi, S., Latella, D., Massink, M.: A stochastic extension of a behavioural subset
of UML statechart diagrams. In: Proceedings of the 5th IEEE International Sym-
posium on High-Assurance Systems Engineering (HASE 2000), pp. 55–64. IEEE
(2000). https://doi.org/10.1109/HASE.2000.895442

61. Gnesi, S., Lenzini, G., Martinelli, F.: Applying generalized non deducibility on com-
positions (GNDC) approach in dependability. Electron. Notes Theoret. Comput.
Sci. 99, 111–126 (2004). https://doi.org/10.1016/j.entcs.2004.02.005

https://doi.org/10.1007/s00766-016-0249-3
https://doi.org/10.1007/s00766-016-0249-3
https://doi.org/10.1145/990010.990013
https://doi.org/10.1007/BFb0028772
https://doi.org/10.1007/BFb0028772
https://doi.org/10.1007/s10009-005-0208-7
https://doi.org/10.1007/s10009-005-0208-7
http://ceur-ws.org/Vol-1920/BPM_2017_paper_204.pdf
https://doi.org/10.1016/S0167-6423(02)00091-6
https://doi.org/10.1016/S0167-6423(02)00091-6
https://doi.org/10.1016/S1571-0661(04)80829-6
https://doi.org/10.1016/S1571-0661(04)80829-6
https://doi.org/10.1007/s00165-019-00481-4
https://doi.org/10.1007/s10009-015-0386-x
https://doi.org/10.1007/s10009-015-0386-x
https://doi.org/10.1007/s001650050019
https://doi.org/10.1023/A:1008669025349
https://doi.org/10.1023/A:1008669025349
https://doi.org/10.1023/A:1011279615774
https://doi.org/10.1023/A:1011279615774
https://doi.org/10.1109/ICDSN.2000.857524
https://doi.org/10.1109/HASE.2000.895442
https://doi.org/10.1016/j.entcs.2004.02.005

www.manaraa.com

The Legacy of Stefania Gnesi 11

62. Gnesi, S., Margaria, T. (eds.): Formal Methods for Industrial Critical Systems: A
Survey of Applications. Wiley, Hoboken (2013)

63. Gnesi, S., Montanari, U., Martelli, A.: Dynamic programming as graph searching:
an algebraic approach. J. ACM 28(4), 737–751 (1981). https://doi.org/10.1145/
322276.322285

64. Gnesi, S., Trentanni, G.: QuARS: a NLP tool for requirements analysis. In: Spole-
tini, P., et al. (eds.) Proceedings of REFSQ-2019 2nd Workshop on Natural Lan-
guage Processing for Requirements Engineering (NLP4RE 2019). CEUR Work-
shop Proceedings, vol. 2376. CEUR-WS.org (2019). http://ceur-ws.org/Vol-2376/
NLP4RE19 paper07.pdf

65. Lami, G., Gnesi, S., Trentanni, G., Fabbrini, F., Fusani, M.: An automatic tool
for the analysis of natural language requirements. Comput. Syst. Sci. Eng. 20(1),
53–62 (2005)

https://doi.org/10.1145/322276.322285
https://doi.org/10.1145/322276.322285
http://ceur-ws.org/Vol-2376/NLP4RE19_paper07.pdf
http://ceur-ws.org/Vol-2376/NLP4RE19_paper07.pdf

www.manaraa.com

From Dynamic Programming
to Programming Science

Some Recollections in Honour of Stefania Gnesi

Ugo Montanari(B)

Dipartimento di Informatica, University of Pisa, Pisa, Italy
ugo@di.unipi.it

Scienze dell’Informazione

Stefania Gnesi graduated summa cum laude in Scienze dell’Informazione at the
University of Pisa in June 1978.

At the time, I had recently moved from the IEI–CNR Institute (Istituto di
Eleborazione dell’Informazione of the Consiglio Nazionale delle Ricerche) to the
Department (well, maybe Institute) of Scienze dell’Informazione, University of
Pisa. I was teaching the only course available there about theoretical computer
science: computability, automata and formal languages, program and program-
ming language semantics.

When Stefania came and asked for a thesis, I suggested her to focus on an
interesting area about algebras, algebra homomorphisms and initial algebras.
The subject had been developed at the same time at IBM, by the ADJ Group,
and, in Paris, by Maurice Nivat (under the name of magmas libres). I had heard
about them at a summer school at Erice in 1976. A homomorphism relating two
algebras A and B with the same signature allows to evaluate part of a (possibly
infinite) term first in A and then part in B, without changing the result. The key
contribution of Stefania’s thesis (shared with her husband Alfonso Catalano) was
to consider as a case study the functional equations of dynamic programming
(algebra B) and to solve them by searching for the shortest path (tree) in a graph
(algebra A). The correspondence of the two views, proved taking advantage of
a result by ADJ in Initial Algebra Semantics and Continuous Algebras, JACM
Jan. 1977, allows to take advantage of useful structural properties of the graph,
which are not explicit in the equations.

The contribution was very well accepted by the community, resulting in two
publications: one in a workshop at Bad Honnef (1978), which turned out to be the
first of a long series on Graph Grammars and Applications, eventually evolving
into the ICGT International Conference on Graph Transformations. The other in
the Journal of the ACM (1981), possibly the top Journal in our area.

The Formal Definition of Ada and the PFI

Another interesting occasion of collaboration materialised about the execu-
tion environment for the formal definition of Ada. In the seventies, the US
Department of Defense (DoD) supported a series of initiatives for defining and
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 12–15, 2019.
https://doi.org/10.1007/978-3-030-30985-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_2

www.manaraa.com

From Dynamic Programming to Programming Science 13

implementing the ultimate programming language, planning to replace with it
the large variety of undependable programming languages DoD software was
programmed into. A document, the Steelman, making explicit the requirements
of the language, was produced, and it was concluded in 1977 that no existent
programming language actually did fit them. Four proposals for the language
were supported by DoD and one of them, the Green proposal designed by Jean
Ichbiah was chosen, and it was given the name Ada, after Augusta Ada, Countess
of Lovelace, Charles Babbage collaborator.

The EU (or its approximation existing at the time) decided instead to focus
on two aspects, Ada formal definition, and programming environment. About the
latter issue, EU supported a large project called A Basis for Portable Common
Tool Environments (PCTE), the Olivetti research team working in Pisa actively
collaborated to. About Ada formal definition, EU supported a project called The
Draft Formal Definition of ANSI/MIL-STD 1815A Ada, with Danish Datamatic
Center (DDC), Consorzio per la Ricerca e le Applicazioni Informatiche (CRAI)
and IEI–CNR, CRAI subcontractor, as participating institutions, and consul-
tants at the Universities of Genova, Pisa and Lyngby.

In particular, Alessandro Fantechi, Stefania Gnesi, Paola Inverardi and myself
(with F. Leggio and P. Talini) worked at an execution environment for the For-
mal Definition of Ada, presented at ESEC 1987 and published in ACM SIG-
PLAN. The environment was based on a logic programming approach, that is
the translation of the formal definition itself in an executable logic program. The
use of novel techniques like metaprogramming and partial evaluation, aiming at
improving modularity and efficiency of the system, was also explored.

As a related activity, I co-edited with Nico Habermann (Carnegie-Mellon Uni-
versity) a Springer LNCS book on System Development and Ada. For all these
initiatives the technical and managing contribution of Stefania was essential.

The contribution of Stefania’s IEI research group to Ada subsequent develop-
ment was long lasting. In particular, Franco Mazzanti was very active on it. He
studied, and contributed to, several aspects of Ada programming, e.g. recently
about multicore programming.

In the period 1979–1985, Italian CNR supported the large and important
project Progetto Finalizzato Informatica, PFI. It consisted of three parts, dedi-
cated to: (i) national manufacturers (I was the coordinator); (ii) public admin-
istration; and (iii) industrial automation. Stefania’s IEI group contributed in
several forms to the project Cnet, the largest of the first part, concerning the
design and prototypical implementation of (parts of) a campus net equipped
with suggestive applications.

The project leader of Cnet was Norma Lijtmaer, also at IEI. She had a very
significant experience in computer science research, teaching and actual sys-
tem design. In particular, she designed the operating system of the Laben 70
computer built by Montedison’s Laben branch for process control applications.
The activity of Stefania and Norma within PFI was the beginning of a long
lasting collaboration and friendship, which materialised e.g. in the workshop

www.manaraa.com

14 U. Montanari

organised by Stefania in honour of Norma for her retirement, Dai Sistemi Dis-
tribuiti a Internet: Giornata di Incontro e Discussione in Onore di Norma Lijt-
maer, July 1, 2002.

JACK and HAL

At the beginning of the nineties, Stefania started to focus her research interests
on the subject she has contributed the most to, i.e. formal methods for proving
properties of concurrent systems. Together with Rocco De Nicola, Alessandro
Fantechi and Gioia Ristori (CAV 1991) she developed a framework consisting of
an action based branching time logic called ACTL and of tools for manipulating
process algebra terms and for checking validity of ACTL formulas. In particular,
she developed the tool environment JACK (standing for Just Another Concur-
rency Kit), which turned out to be very useful, together with its expansions, for
supporting experimental activity on formal methods at IEI and at the University
of Pisa.

One such expansion, the HD Automata Laboratory (HAL), gave me a pre-
cious occasion for collaborating with Stefania directly. History Dependent (HD)
automata, introduced in the PhD thesis of Marco Pistore at Pisa, are composed,
as ordinary automata, of states and of transitions between states. However, states
and transitions of HD-automata are enriched with sets of local names. In par-
ticular, each transition can refer to the names associated to its source state
but can also introduce new names, which can then appear in the destination
state. In addition, in a transition some names may disappear, thus resulting in a
garbage collection step. Hence, names are not global and static entities but they
are explicitly represented within states and transitions and can be dynamically
created and deleted.

A number of history dependent models of computation (namely models where
links to previous states can be stored and passed) can be conveniently mapped
to HD-automata, yielding corresponding notions of bisimulation. Typical exam-
ples are process algebras (e.g. CCS) with causal dependencies or Petri nets with
history preserving bisimilarity. Even more interesting is the case of pi-calculus
agents (without matching) with early/late bisimilarity. Moreover, it is possi-
ble to unfold (finite) HD-automata into (finite) ordinary automata. The com-
bination of these results allowed Stefania and collaborators (Gianluigi Ferrari,
Gianluigi Ferro, Marco Pistore, Gioia Ristori and myself) to significantly extend
JACK/HAL capabilities to handle nontrivial pi-calculus case studies (CAV’98,
TOSEM 2003).

SENSORIA et al.

More recent occasions of collaboration with Stefania Gnesi materialised when
we both were participating in national and European projects. I can mention
the Italian FIRB project TOCAI.IT (Tecnologie Orientate alla Conoscenza per
Aggregazioni di Imprese in Internet) and the European projects PROFUNDIS

www.manaraa.com

From Dynamic Programming to Programming Science 15

(Proofs of Functionality for Mobile Distributed Systems) and AGILE (Software
Architecture for Mobility).

In the latter project, our convergent contributions took advantage of
architecture-based approaches based on graph-oriented techniques as means of
controlling the complexity of system construction and evolution, where mobility
aspects were particularly relevant.

Similar topics were also carried on within project SENSORIA (Software Engi-
neering for Service-Oriented Overlay Computers, an Integrated Project of the
European Union’s Sixth Framework Programme). In SENSORIA, Stefania Gnesi
had the important role of responsible for the work package on Case Studies,
whose aim was to provide a context of realistic case studies for developing intu-
itions that could feed and steer the research process according to the expectations
of society and its economy.

In particular, in the paper coauthored by Stefania and by several researchers
in her and my group—published in the book for my 65th birthday—she outlines
and compares our approaches to the themes of SENSORIA.

Programming Science

Programming science is a key component in today’s world structure and evolu-
tion. To connect the mathematical foundations in theoretical computer science
with the empirical components of programming methodology is to bridge a wide
gap. Still, when it happens, as in the case of program typing and modularity,
or of program verification via model checking or other systematic means, the
progress in both theory and practice is invaluable.

Stefania Gnesi has been very successful in her role of leader in the science
of programming area at Pisa, in particular about theoretical and experimental
innovation activities. Very relevant are her collaborations with industry, e.g. with
Alstom, Intecs Sistemi, FIAT Auto and Ansaldo Trasporti.

Furthermore, Stefania’s scientific role has been widely recognised in the inter-
national community, both in terms of publications and of prestigious positions,
e.g. deputy chair of the association FME (Formal Methods Europe) and member
of IFIP WG 1.3 on Foundation of Systems Specification.

www.manaraa.com

Software Engineering

www.manaraa.com

Ten Years of Self-adaptive Systems: From
Dynamic Ensembles to Collective

Adaptive Systems

Antonio Bucchiarone1(B) and Marina Mongiello2

1 Fondazione Bruno Kessler (FBK), Via Sommarive 18, Trento, Italy
bucchiarone@fbk.eu

2 Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari,
Via E. Orabona n. 4, Bari, Italy
marina.mongiello@poliba.it

Abstract. Self-adaptive systems have been introduced to manage situa-
tions where software systems operate under continuous perturbations due
to the unpredicted behaviors of their clients and the occurrence of exoge-
nous changes in the environment in which they operate. Adaptation is
triggered by the run-time occurrence of an extraordinary circumstance,
and it is handled by an adaptation process that involves components
affected by the issue, and is able to handle the run-time modification of
the structure and behavior of a running system. In this paper we report
our experience gained in the last 10 years on models, techniques and
applications in the field of self-adaptation. We present the various steps
taken by means of a formal framework introduced to characterize the dif-
ferent aspects of an ensemble-based software engineering approach. We
present (i) how to model dynamic ensembles using typed graph gram-
mars, (ii) how to specialize and re-configure ensembles and, (ii) how to
manage collective adaptations in an ensemble. All these aspects have
been part of our research on self-adaptation and have been used to spec-
ify and deploy concrete solutions in different application domains.

Keywords: Self-adaptive systems · Ensembles ·
Collective Adaptive Systems

1 Introduction and Paper Positioning

Contemporary and future software systems are composed of large-scale ensem-
bles of widely distributed, largely autonomous and heterogeneous entities situ-
ated in both the physical world and in back-end computer systems. The term
ensemble has been used for a few years in the literature to denote this class of
very large scale systems of systems, which may present substantial socio-technical
embedding [1,2]. The ensembles do not only denote the special complexity they
present to designers, engineers and system administrators; they also suggests
how much of that complexity comes from bringing together and combining in
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 19–39, 2019.
https://doi.org/10.1007/978-3-030-30985-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_3

www.manaraa.com

20 A. Bucchiarone and M. Mongiello

the same operating environment many heterogeneous and autonomous compo-
nents, systems, users, with the related concerns. Those ensembles are often open-
boundary and multi-ownership, resulting in the lack of a viable central point of
command and control [3–5]. Moreover, human interaction via ubiquitous com-
puting devices is often deeply embedded and must be considered an integral part
of these kind of systems [6]. These systems can be effectively managed only via
decentralized adaptation. Such adaptation must be itself collective, that is, mul-
tiple entities must adapt simultaneously in a way that, on the one hand, properly
addresses a critical runtime condition, while, on the other hand, does not break
the working consistency of the ensemble, but rather preserves the collaboration
and its benefits.

There have been many recent theoretical and methodological solutions in the
field of software adaptation which can deal with large-scale distributed and het-
erogeneous software systems [7–9]. At the same time, the study of both individual
and collective adaptation mechanisms has a long history, e.g., in the area of agent-
based and multi-agent systems [10] and in the area of autonomic systems [11]. For
collective adaptation, the idea of dynamically adapting the behavior of a set of
interacting software components in order to meet new or unexpected requirements
or contingencies has been a very hot research topic over the last ten years for sev-
eral research communities [12,13]. Yet, also in this case, it is widely recognized that
the number of open issues in the area is still significant [14]. Most of the proposed
solutions work under an architectural model in which the knowledge necessary to
adapt a system is logically centralized and the control of adaptation is exerted cen-
trally. There is still a lack of understanding on how to engineer Collective Adaptive
Systems (CAS), in which a central control is not possible [15].

In our view, an ensemble is a specification that defines how a certain type
of collaboration occurs between several entities [16]. An ensemble introduces
a set of cells, i.e. roles that can be taken by participating entities, and a set of
rules (adaptors) regulating the operation of participating cells in the scope of the
ensemble. The life-cycle of the ensemble is depicted in Fig. 1 and can be described
as follows. The ensemble is created by some cell (creator) whenever a need for
collaboration emerges. The creator must have a way to specify the rules that
govern that ensemble, including criteria for entering or exiting. After creation,
cells may dynamically join the ensemble (entities that take specified roles). Even
once they have entered the ensemble, participants remain autonomous, that
is, largely preserve their freedom of action, and continue operation within the
ensemble, trying to achieve their objectives. However, they must do so while
respecting the ensemble rules. In particular, when any one ensemble participant
needs to adapt its behaviour, the adaptation is performed collectively to remain
in compliance with ensemble rules, which may trigger adaptation in multiple
other participants. Cells exit the ensemble instance when their objectives are
achieved or when the participation in the ensemble is not anymore beneficial;
additional rules may be used to regulate such sudden withdrawals. The ensemble
instance is terminated when certain conditions are achieved (e.g., all participants
have exited the ensemble).

www.manaraa.com

Ten Years of Self-adaptive Systems 21

Fig. 1. Ensemble life cycle

A holistic ensemble developement life cycle (EDLC) was proposed in 2013
by Bures et al. in [17,18] inside the EU project ASCENS. The life cycle they
propose is a framework which covers the full development process and addresses
design and development for adaptation, self-awareness, self-optimization, and
continuous system evolution. Their life cycle acts as a cycle between runtime
and design development of self-adaptive systems relating the main phases of
a system development both at runtime and design time. With respect to that
model the life cycle we propose is the cycle of an ensemble, starting with the
creation of cells till their termination.

The goal of this paper is to report our experience gained in the last 10 years in
the field of collective adaptive systems that saw its birth as a result of research led
by Stefania Gnesi in the years 2005–2008, where her research group at CNR-ISTI
started to promote the use of graphs and graphs transformations as a framework
for the modelling, execution and adaptation of self-adaptive systems [19,20].

We present the various steps taken by means of a formal framework intro-
duced to characterize the different phases of an ensemble-based software engi-
neering life-cycle, as the one depicted in Fig. 1. In the following sections, we start
formalizing an ensemble as a graph grammar and we describe its different forms
of adaptation (in Sect. 2). In Sect. 3, we present how each cell of an ensemble

www.manaraa.com

22 A. Bucchiarone and M. Mongiello

can specialize and adapt its behavior during the ensemble execution. We con-
clude by presenting how multiple ensembles can compose a collective adaptive
system (CAS) and how adaptations can be solved involving multiple cells in an
ensemble.

2 Dynamic Ensembles Using Typed Graph Grammars

To give a uniform formal presentation of an ensemble, that is abstract enough,
we have been inspired by our previous works in dynamic software architectures
[19–21], selecting graph grammars as a formal framework. In particular we select
graph grammars as a formal framework for mapping the different elements of an
ensemble because (i) they provide both a formal basis and a graphical represen-
tation that is in line with the usual way self-adaptive systems are represented,
(ii) they allow for a natural way of describing models and configurations, and
(iii) they have been largely used for specifying adaptive systems.

An ensemble is formed by a set of cells and adaptors, which are modelled
as hyperedges, and the fragments (i.e., functionalities they provide) to which
the hyperedges are attached, which are modelled as nodes. Figure 2 depicts an
hypergraph containing two nodes Fragment1 and Fragment2, the hyperedge cell
(an entity that exposes two different functionalities as process fragments [22]),
the hyperedge Adaptor (a software component that has two tentacles to the
fragment Fragment1 and one to the fragment Fragment2). Note that cell edges
are drawn as square boxes and adaptor edges as rounded boxes. Moreover, we
show the ordering of tentacles by labeling the corresponding arrows with natural
numbers (in some cases we use suitable names instead of numbers as labels to
make it easier to read).

Fig. 2. A hypergraph describing an ensemble

Definition 1 (Hypergraph). A (hyper)graph is a triple H = (NH , EH , φH),
where NH is the set of nodes, EH is the set of (hyper)edges, and φH : EH → N+

H

describes the connections of the graph, where N+
H stands for the set of non-empty

strings of elements of NH . We call |φH(e)| the rank of e, with |φH(e)| > 0 for
any e ∈ EH .

www.manaraa.com

Ten Years of Self-adaptive Systems 23

The connection function φH associates each hyperedge e with the ordered,
non empty sequence of nodes e is attached to. An ensemble is just a hypergraph
T that describes only the types of fragments, adaptors, cells and the allowed
connections. A configuration compliant with such ensemble is then described by
the notion of a Typed hypergraph.

Definition 2 (Typed Hypergraph). Given a hypergraph T (called the ensem-
ble), a T-typed hypergraph or configuration is a pair < |G|, τG >, where |G| is
the underlying graph and τG : |G| → T is the total hypergraph morphism.

The graph |G| defines the configuration of an ensemble while τG defines
the (static) typing of the resources. Consider the ensemble T in Fig. 2: there is
one unique type cell of cells exposing two fragments of different types, and
one Adaptor attached to two fragments of type Fragment1 and one fragment
of type Fragment2. Then, a possible T-typed hypergraph (or configuration of
the ensemble T) is in Fig. 3: it has two different cells with their corresponding
fragments, and one adaptor. The typing morphism is implicitly defined by the
name of the elements in the configuration, which consist of the type name plus a
subindex identifying the particular instance (e.g., fragment Fragment1A has type
Fragment1). We remark that the typing morphism requires cells to have exactly
one fragment of type Fragment1 and one of type Fragment2. Similarly, the only
connections valid for an adaptor are those that attach its first two tentacles to
fragments of type Fragment1 and the third one to a fragment of type Fragment2.
All such constraints are enforced by the existence of a typing morphism.

Fig. 3. A hypergraph describing a configuration for the ensemble in Fig. 2

The adaptation of the ensemble is described by a set of rewriting productions.
A production p is a partial, injective morphism of T-typed graphs, i.e., it has
the following shape: p : L → R where L and R are T-typed hypergraphs, called
the left-hand and the right-hand side of the production, respectively. Given a
T-typed Graph G and a production p, a rewriting of G using p can be informally
described as follow: (1) find a (type preserving) match of the left-hand-side L
in G, i.e., identify a subgraph of G that corresponds with L; (2) remove from
the graph G all the items corresponding to the left-hand-side that are not in the
right-hand-side; (3) add all the items of the right-hand-side that are not in the
left-hand-side; (4) the elements that are both in L and R are preserved by the
rewrite. Finally, an ensemble is described by a T-typed graph grammar.

www.manaraa.com

24 A. Bucchiarone and M. Mongiello

Definition 3 (T-Typed Graph Grammar). A T-typed graph grammar G is
a tuple < T,Gin, P > where Gin is the initial (T-typed) graph and P is a set of
productions.

Adaptation in an ensemble, can be managed using different approaches [23].
Programmed Adaptation assumes that all the adaptation types are specified at
design time and triggered by the ensemble itself. For this reason we can define
a Programmed Ensemble as a graph grammar GA =< T,Gin, P >, where T
stands for the style of the ensemble, Gin is the initial configuration, and the set
of productions P gives the evolution of the ensemble. The grammar fixes the
types of all the elements (cells, fragments, adaptors) in the ensemble and their
possible connections, where the productions state the possible ways in which a
configuration may change.

Self-repairing ensembles are equipped with a mechanism that monitors the
ensemble behavior to determine whether it behaves within fixed parameters.
If a deviation occurs, then the ensemble itself is in charge of adapting the
configuration. We can define a self-repairing ensemble as a graph grammar
GA = <T,Gin, P> in which the set of productions is partitioned into three
different sets, i.e., P = Ppgm ∪ Penv ∪ Prpr. Rules in Ppgm describe the nor-
mal, ideal behavior of an ensemble, and rules in Penv model the environment
or, in other words, the ways in which the behavior of the ensemble may deviate
from the expected one. Rules in Prpr indicate the way in which an undesirable
configuration can be repaired in order to become a valid one.

Open Ensembles are ensembles able to evolve freely by adding and removing
cells and adaptors without any restrictions. The typed grammar corresponding to
open ensembles should therefore exploit a fully general type graph that contains
an infinite number of hyperarcs celli and adaptori, one for every natural i, j ∈ N .
Any hyperarc celli stands for the type of all cells that exposes exactly i fragments.
Similarly, the set of productions is infinite as it must allow for adding/removing
any kind of cells.

3 Ensemble Specialization and Reconfiguration

The dynamism of the environment in which the ensembles introduced above must
operate make their deployment and maintenance a hard task to accomplish in
a really efficient way. The situation in which they operate may be different or
may change during their life. Application end-users may change their preferences
and emergent requirements can arise. In this context, the only way an ensemble
can manage such changes is at run-time, since environment conditions, available
functionalities and users’ need are not known a priori.

In our approach (as depicted in Fig. 1), the functionalities provided by differ-
ent entities are represented by Cells. Implementing a functionality may involve
interacting with other cells through pre-defined protocols (e.g., the adaptor intro-
duced in Fig. 2). Moreover, a cell is defined in terms of its behavior and its
protocol (functionalities/fragments that it provides) and can be created either

www.manaraa.com

Ten Years of Self-adaptive Systems 25

by instantiating cell archetypes or by other cells through the process of spe-
cialization. At the same time, due to the high dynamism of the environment
in which each cell operates, a cell must be able to re-configure its behavior at
run-time in order to satisfy new users’ requirements and to fit new situations
(i.e., unexpected context changes).

Behaviours and cell functionalities are represented by sets of tasks that have
to be carried out in a certain order (i.e., process and process fragment), but
while the first is used to describe how a cell evolves (i.e., behaves), the latter
represent the capabilities that a cell exposes to the system and that can be used
by other cells to perform their tasks. At the same time each cell provides a set
of context properties that describe particular aspects of the system domain (i.e.,
current location of a user, status of the network, temperature detected, etc.)
that it takes into account during its execution.

A system model for ensembles that allows to express requirements using a
wide variety of logics and fitness criteria over arbitrary preorders is proposed by
Holz and Wirsing in the paper [24]. Using this system model they give a pre-
cise definition of black-box adaptation and show how this naturally leads to a
preorder of adaptability on ensembles, the model they propose can integrate dif-
ferent models, logics and objectives. With respect to that system model we model
the ensembles starting from the life cycle previously described by means of cells,
and considering their evolution from the creation, when the need of collabora-
tion emerges, through other steps of collaboration till their termination. Starting
from a preliminary result [25], in the following we propose a conceptual frame-
work to characterize the ensemble life-cycle. We represent the ensemble behavior
as a composition of three components: execution, context and adaptation, and
we give a formal definition of all their concepts, defining their corresponding
semantics and pointing out the interactions among them.

Definition 4 (Context Property). A context property c is a triplet c =
〈V, ν, t〉 where V is the set of possible values that the property can assume belong-
ing to a certain domain , ν is the actual value of the property and t : V → V is
the function regulating how the property value ν changes.

Each cell is autonomous in the sense that it evolves according to its own
behaviour. We denote by P the set of all possible behaviours P and by F the
set of functionalities. We then define the semantics of a behaviour through a
labelled transition system (LTS) as follows:

Definition 5 (Behaviour Evolution). Behaviour evolution is defined via a
labelled transition system L = (P, A, ↪−→), where A is the alphabet of task labels
α and ↪−→⊆ P × A × P is the transition relation.

Formally a cell is defined as:

Definition 6 (Cell). A cell e is a triplet e = 〈P, ρ, φ〉 where P is the cell
behaviour, ρ is a set of context properties that a cell uses and φ is a set of
functionalities provided by the cell.

www.manaraa.com

26 A. Bucchiarone and M. Mongiello

We denote by Pe, ρe and φe the corresponding elements of an cell e.
We define the system context (sometimes shortened as context) through the

set of all context properties provided by the different cells that are part of an
ensemble at a certain execution time. Formally we define a system context as:

Definition 7 (System Context). Let E the set of all the cells part of an
ensemble at a certain execution time. We then characterize the context C as the
union of all context properties:

C =
⊎

e∈E

ρe

We denote by C the set of contexts C. The successful completion of a cell task
may depend on some assumptions on the context. To this aim, we assume the
existence of a set of assumptions g on (some properties of) the context, written in
a suitable logic G. We then assume the existence of a predicate C � g indicating
the fact that the context satisfies the assumption g, and C 	� g when C does not
satisfy g.

Context evolution does not depend directly on the system execution. To this
end we assume that there exists a reduction semantics regulating how the context
evolves, that is:

Definition 8 (Context Evolution). Context Evolution is defined via a reduc-
tion relation ��� over configuration, that is ���⊆ C × C.

A cell behaviour is context-aware if its execution depends on a particular
configuration of the context.

Assumption on the context made by a cell behaviour should be matched
against the context configuration. Hence, at cell level, if the execution of a par-
ticular task implies some assumptions on the context, these have to be satisfied
by the context in order to proceed with the normal execution. We now have all
the ingredients to define the semantics of a cell context-aware behaviour.

Definition 9 (Context-aware Evolution). Context-aware behaviour evolu-
tion is defined via a labelled transition system L = (Q,A,−→), where Q is a set
of states C × P, A is the alphabet of task labels α and −→⊆ Q × A × Q is the
transition relation.

In order to support adaptation a system should be able to generate adapta-
tion problems. To clearly distinguish an adaptation need from the other tasks of
a cell behaviour we use the special symbol �.

Definition 10 (Adaptiveness). A cell e is able to trigger adaptation if the
alphabet A of the LTS regulating its context-aware evolution contains the adap-
tation need, that is � ∈ A.

www.manaraa.com

Ten Years of Self-adaptive Systems 27

Definition 11 (Context Awareness). A cell e is said to be context-aware if
it is adaptive and the transition relation of its context-aware evolution is closed
under the following rules:

(C.Ok)
P

γ(g)
↪−−→ P ′ C � g

(C,P)
γ−→ (C,P ′)

(C.No)
P

γ(g)
↪−−→ P ′ C 	� g P ′′ = Θ(P ′)

(C,P) �−→ (C,P ′′)

where γ(g) indicates the fact that the task γ can be executed only if the context
assumption g holds and Θ : P → P is an annotation function used to annotate
some information about the violation that lead P to P ′.

Let us note that whenever an assumption does not hold in the current context,
then the adaptation need � is triggered and it is used to execute a cell adaptation
with the goal to solve a precise adaptation problem. Moreover we have that −→
exploits the relation ↪−→.

Definition 12 (System Execution). System Execution is defined via a reduc-
tion relation
→ over context configurations and sets of cells, that is
→: C×E →
C × E.

One property that a CAS should enjoy is openness: it should allow for
entrance and exit of cells. This improves the dynamicity of the system, allowing
for example to let cells with better or new functionalities get into the system or
to let cells that have completed their tasks exit the system. For example in a
P2P system openness allows new peers to join the network and to discover new
neighbours.

We can now define this property formally:

Definition 13 (Openness). A system is open if its reduction relation is closed
under the following rules:

(In)
e = 〈Pe, ρe, φe〉 Φ(e)
(C,E)
→ (C � ρe,E � e)

(Out)
e = 〈Pe, ρe, φe〉 e ∈ E Ω(e)

(C,E)
→ (C \ ρe,E \ e)

where Φ(·) and Ω(·) are some predicates regulating when a cell has to enter or
exit the system.

Rules for openness are straightforward: rule In allows a new cell e to get
into the system; as a side effect, the system context is enriched with its context
properties. Rule Out allows a cell to get out of the system; as a side effect, its
properties are taken away from the context. When these two rules are instanti-
ated with predicates that are always true, then entry and exit of cells becomes
non deterministic.

When an adaptation need is triggered by a cell behaviour, this means
that some assumptions on the context do not hold. This implies that the cell
behaviour has a wrong view of the context, or that the context has changed due

www.manaraa.com

28 A. Bucchiarone and M. Mongiello

to some exogenous events. In such a case an adaptable system should be able to
change the cell behaviour in order to satisfy the new context. We now formally
define an adaptation problem:

Definition 14 (Adaptation Problem). An adaptation problem a is a triplet
a = 〈C, g, F 〉 where g is the goal on some context properties that adaptation
should achieve, C is the system context at the moment that the need is trig-
gered and, F is a set of functionalities of the cells present in the system at the
moment that the need is triggered. These functionalities will be used to build the
adaptation solution.

We now define the semantics of the system adaptation component using an
LTS as follows:

Definition 15 (System Adaptation). System Adaptation is defined via a
labelled transition system L = (Q,A,−⇁), where Q is a set of states in C×F×P,
A is the alphabet of action labels α and −⇁⊆ Q × A × Q. We require that the
alphabet A contains at least the symbols � indicating that the adaptation solution
has been found.

Property 1. (Adaptive System). A system is adaptive if its reduction relation
is closed under the following rule:

(Adapt)

(C,P) �−→ (C,P ′) (C,F, P ′) �−⇁ (C,F, P ′′)
e = (P, ρ, φ) e′′ = (P ′′, ρ, φ) F = fun(E)

〈C,E � e〉
→ 〈C,E � e′′〉
where fun(·) is a function that selects functionalities from the available cells.

The above rule is straightforward: if a cell triggers an adaptation need, then
the system adaptation component is asked to find a solution (indicated by the
symbol �) and then the system adapts the cell to the new behaviour.

Given an adaptation problem a the system adaptation component is in charge
to understand, from the behaviour P present in the problem a, what is the
goal that the adaptation should achieve. Once the goal is inferred, the system
adaptation component uses an adaptation function formally defined as follows:

Definition 16 (Adaptation Function). An adaptation function is a function
f : C × G × F → P ∪ {}.
Let us note that the adaptation function is a total function as the co-domain of the
function allows the use of the symbol in the case that a solution to the problem
does not exist. Moreover we allow the system adaptation component to return an
empty solution, indicated with the null behaviour 0, in order to deal with cases in
which there is no more need of adaptation since the context has changed.

An adaptation mechanism can be seen as a transformation function that
combines the result of the adaptation function with the original behaviour that
raised the need, in order to obtain the new adapted behaviour. Formally we
have:

www.manaraa.com

Ten Years of Self-adaptive Systems 29

Definition 17 (Adaptation Mechanism). An adaptation mechanism is a
function μ : P → P that takes in input the behaviour that raised a need, and
returns the new adapted behaviour.

Naturally an adaptation mechanism should exploit the adaptation function
in order to find a solution to the problem and then compose the solution with
the behaviour that raised the need. When different adaptation mechanisms are
combined and executed in a precise order, adaptation strategies are realized.
They are able to deal with complex adaptation needs that cannot be addressed
by applying adaptation mechanism in isolation.

4 Collective Adaptation in Ensembles

In adaptive systems with collective behavior, new approaches for adaptation
are therefore needed that allow (i) multiple cells to collectively adapt with (ii)
negotiations to decide which collective changes are best. Collective adaptation
also raises a second important challenge: which parts of the system (cells) should
be engaged in an adaptation? This is not at all trivial, since solutions for the
same problem may be generated at different levels.

Service-based system (SBS) represent one example of a CAS where the cells,
defined in our general framework, are represented by service providers and end-
users, each specifying its behaviour through a set of tasks to be executed in a
precise order (i.e., business processes) and each providing a set of functionalities
(i.e., services). The context in which SBSs must operate continuously changes at
run-time, starting from the change of the situation in which tasks are executed,
to the availability of services, the human actors interacting with the application
as well as their requirements and preferences. This means that SBSs should
operate differently for different contextual situations, deal with the fact that
involved services are not known a priori, and be able to dynamically react to
changes to better fit the new situations.

We show hereby how it is possible to model this example of CAS by exploit-
ing the formal framework introduced above. We use examples coming from a
running scenario taken from a realistic smart city e-mobility application, where
the SBS needs to deal with the variability of the actors involved, as well as of
the situations in which it must operate.

Following Definition 6 a cell is a triplet of the form e = 〈P, ρ, φ〉 with P the
cell behaviour, ρ the set of context properties and F the set of functionalities
that the cell exposes to the system. In our example, behaviours P (from now
on processes) are specified using business processes expressed in a subset of the
APFL language [26] depicted in Fig. 5, which call APLFlite.

For the sake of space, we do not define context properties ρ and fragments φ
of cells, the logic G of assumptions g in the context, and the context evolution
relation ��� (Definition 8). We just require that the logic G contains the formula
� that always holds whatever is the context, that is ∀C .C � �, and that it
allows for assumptions on the status of a context property.

www.manaraa.com

30 A. Bucchiarone and M. Mongiello

Fig. 4. Execution and Adaptation in the Smart Mobility scenario

Behaviour Evolution. The syntax of processes P is depicted in Fig. 5. A process
can be the null process 0, a task A, a compensable task A ÷ g, an abstract task
(g), an adaptation need �, a cause 〈g〉 indicating the condition g that caused an
adaptation need. Finally processes can be composed in sequence P.Q, where “.”
is the composition operator. An abstract task (g) specifies just the goal that its
execution should achieve; at runtime, this goal is used by the system adaptation,
to obtain a proper process P able to satisfy the goal g. The compensation g of a
compensable task A÷ g indicates the fact that if the task A is executed then its
compensation g has been taken into account by the system in the case in which
the adaptation strategy requires to compensate the execution of the task A. Let
us note that compensations takes the simple form of an assumption g.

A task can be either a basic task π or a scoped task [g1, π, g2]. A basic task
is either an invoke aid, indicating the invocation of the task a located at the cell
id, or a receive a. We assume the existence of the following denumerable infinite
mutually disjoint sets: the set N of cell names and the set A of tasks names.
We let id and its decorated version to range over N and a, b and their decorated
version to range over A. A scoped task is just a basic task decorated with a
precondition g1 and a postcondition g2.

For the sake of space, and without losing generality, we let our syntax (and
language) to be as small as possible without introducing all the other constructs
provided by well established languages such as BPEL.

www.manaraa.com

Ten Years of Self-adaptive Systems 31

π ::= a | aid basic tasks

A ::= [g1, π, g2] | π tasks

P ::= 0 | A | A ÷ g | (g) | � | 〈g〉 | P.P processes

g, g1, g2 ∈ G a ∈ A id ∈ N

Fig. 5. Syntax of APFLite processes

Following Definition 5 we define the semantics of a behaviour P via a LTS
L = (Q,A, ↪−→) where ↪−→ obeys to the rules depicted in Fig. 6. All the rules
are straightforward as they just transform a prefix into a label. Said otherwise,
relation ↪−→ tells us what a process can potentially do.

(P.Act)
α ∈ {a, aid, 〈g〉, �}

α.P
α

↪−→ P
(P.Cmp)

A.P
α

↪−→ P

A ÷ g.P
α÷g

↪−−→ P

(P.Sc)
π.0

α
↪−→ 0

[g1, π, g2].P
c(g1,α,g2)

↪−−−−−−→ P (P.Ref) (g).P
r(g)

↪−−→ P (P.Nil) 0.P
τ

↪−→ P

Fig. 6. Behaviour evolution

Context-Aware Behaviour Evolution. In our system, process execution is sub-
ject to context properties. Indeed the execution of scoped or abstract tasks is
subject to assumptions on the context. To this end, following the Definition 9,
we introduce a layer of rules that we call Context-aware Behaviour Evolution, in
charge of executing processes under the context. Relation −→ obeys to the rules
depicted in Fig. 7.

During the execution, a process needs to store several kinds of information
about the its execution that are useful to implement different adaptation strate-
gies. Information saved consist of: the compensations of all the executed tasks
and abstract tasks that a particular business process has executed. Hence rules
in Fig. 7 deal with elements of the form (C,P,G,R) (instead of the simple pair
(C,P) as in Definition 9), where G is a list of compensations and R is a list of
refinements already created. To this end we indicate by ε the empty list and by ::
the concatenation operator among lists. Lists are ordered and when we write
g ::G, the element g represents the head of the list and G the tail. Moreover the
operator :: obeys the following rules:

ε ::G = G � ::G = G

Compensation lists are built in a way that the first element is always the com-
pensation of the last executed compensable task as shown by rule C.Cmp.

www.manaraa.com

32 A. Bucchiarone and M. Mongiello

(C.Cond)
P

c(g1,α,g2)÷g′
↪−−−−−−−−−→ P ′ C � g1 C � g2

(C, P, G,R) α−→ (C, P ′, g′ :: G,R)

(C.Pre)
P

c(g1,α,g2)÷g′
↪−−−−−−−−−→ P ′ C � g1 C �� g2 P2 = �.〈g2〉.P ′

(C, P, G,R) α−→ (C, P2, g
′ :: G,R)

(C.Cmp)
P

α÷g
↪−−→ P ′ α �= c(, ,)

(C, P, G,R) α−→ (C, P, g :: G,R)
(C.H1)

P
c(g1,α,g2)

↪−−−−−−→ P ′ C �� g1

(C, P, G,R) �−→ (C, P, G,R)

(C.H2)
P

�
↪−→ P ′

(C, P, G,R) �−→ (C, P ′, G,R)
(C.V)

P
r(g)

↪−−→ P ′

(C, P, G,R) �−→ (C, P, G,R)

(C.Basic)
P

α
↪−→ P ′ α ∈ {a, aid, τ}

(C, P, G,R) α−→ (C, P ′, G,R)

Fig. 7. Context-aware behaviour evolution

Let us briefly comment other rules. Three rules deal with a scope [g1, π, g2],
depending on the context configuration. Rule C.Cond allows to execute the
task π when both g1, g2 are satisfied. Rule C.H1 is triggered when precondi-
tion g1 is not satisfied and then adaptation is required. Rule C.Pre is triggered
when postcondition g2 is not satisfied, in this case the task π is still executed but
then adaptation is required (by imposing P2 = �.〈g〉.P ′). Rule C.V deals with
abstract tasks, rule C.H2 deal with adaptation need and rule C.Basic deals
with basic tasks. Let us note that rules C.Cond and C.H1 are an instance of
the rules of Property 11.

System Execution. Following Definition 12 we let
→ be the smallest reduction
relation that obeys the rules depicted in Fig. 8. For the sake of brevity we slightly
differ from the Definition 12 by letting
→ operate on triplets of the form 〈C,E, F 〉
instead of simple pairs 〈C,E〉. F is the set of all the functionalities present in the
system at a certain execution time, and it is clear that it can be calculated each
time by just inspecting the cell set E. When indicating the structure of the cell we
avoid to specify its set of context properties and fragments, while focusing just
on the process and its runtime information such as the compensations list, the
refinements list and the pending messages queue. This last one is used to imple-
ment an asynchronous communication mechanism among cells. Rules S.Snd and
S.Rcv deals with asynchronous communication though message queues. Let us
note that in the rule S.Snd E′ is the cell set E in which the behaviour of the
cell id[. . .] evolved from P to P ′. Rule S.Ctx deal with context changes, while
rule S.Int deals with internal (τ) actions of cells. Rule S.Adapt is triggered
whenever a process launches an adaptation need. Note that this rules makes our

www.manaraa.com

Ten Years of Self-adaptive Systems 33

(S.Snd)
(C,P)

aid−−→ (C,P′) id[P,M] ∈ E

〈C, F,E � id[Q;N] 〈→	〉 C, F,E � id[Q;N � a]〉

(S.Rcv)
(C,P) a−→ (C,P′)

〈C, F,E � id[P;M � a] 〈→	〉 C′, F,E � id[P′;M]〉

(S.Ctx)
C ��� C′

〈C, F,E 〈→	〉 C′, F,E〉 (S.Int)
(C,P) τ−→ (C,P′)

〈C, F,E � id[P;M] 〈→	〉 C, F,E � id[P′;M]〉

(S.Adapt)
(C,P) �−→ (C,P′) (C, F,P′) �−⇁ (C, F,P′′)
〈C, F,E � id[P;M] 〈→	〉 C, F,E � id[P′′;M]〉

(S.In)
e = id[P, ρ, φ]

〈C, F,E 〈→	〉 C � ρ, F � φ,E � e〉 (S.Out)
e = id[P, ρ, φ]

〈C, F,E � e 〈→	〉 C \ ρ, F \ φ,E〉

with P,Q = P, G,R

Fig. 8. System execution

(AM.R)
P

r(g)
↪−−→ P ′ Q = ad(C, F, g) Q �= 	 R

′ = {g, P ′, G} :: R

(C, F, P, G,R) �−⇁ (C, F, Q.P ′, ε,R′)

(AM.L1)
P

c(g1,α,g2)
↪−−−−−−→ P ′ Q = ad(C,F, g1) Q �= 	

(C, F, P, G,R) �−⇁ (C, F, Q.P,R′)

(AM.L2)
P

〈g〉
↪−−→ P ′ Q = ad(C, F, g) Q �= 	

(C, F, P, G,R) �−⇁ (C, F, Q.P ′, G,R′)

Fig. 9. Adaptation mechanisms

system adaptive according to Property 1. Rules S.In and S.Out deal with the
openness property of a CAS. In these last two rules we assume the compensation
list and the refinement lists as empty.

System Adaptation. Following Definition 16 an adaptation function f is a func-
tion f : C × G × F → P. In our system we identify the function ad as being an
adaptation function. The system adaptation component is called by the system
execution component through the reduction �−⇁. This kind of reduction can be
generated by the adaptation mechanisms in Fig. 9 or by the re-refinement strat-
egy implemented of Fig. 10 (rule As.RROk). When an adaptation need is caught
by the system execution component, then it is checked whether a single mech-
anism is applicable, otherwise the system adaptation component resorts to the

www.manaraa.com

34 A. Bucchiarone and M. Mongiello

(AS.No)
P

α
↪−→ P ′ α ∈ {(g1), c(g1, π, g2), 〈g1〉} ad(C, F, g1) = 	

(C, F, P, G,R) �−⇁ (C, F, P, G,R)

(AS.RRNo)

(C, F, P, G,R) �−⇁ (C, F, P1, G1,R1)
R1 = {g, Q2, G2} :: R2 ad(C, F, G1 :: g) = 	

(C, F, P, G,R) �−⇁ (C, F, P, G1 :: G2,R2)

(AS.RROk)

(C, F, P, G,R) �−⇁ (C, F, P1, G1,R1)
R1 = {g, Q2, G2} :: R′ Q = ad(C, F, G1 :: g) Q �= 	

(C, F, P, G,R) �−⇁ (C, F, Q.Q2, G2,R
′)

Fig. 10. Re-refinement strategy

strategy. Rule AM.R implements the refinement mechanism in case the process
P is of the form P = (g).P ′. In this case a direct call to the adaptation function
is made using as goal the g of the abstract task, and if a solution is found Q 	= ,
then the adapted process returned to the system will take the form Q.P ′, that is
the process P in which the abstract task (g) has been substituted with its refine-
ment Q. Another effect of the rule AM.R is the one to save information useful for
the re-refinement strategy. Rules AM.L1 and AM.L2 implement local adapta-
tion mechanisms. When mechanisms are not directly applicable then a strategy
is taken into account. The presented strategy tries to re-refine the last refined
task taking into account also the compensations of the tasks that has been exe-
cuted since the last refinement. If a solution is not found then recursively past
refinements are tried. This is why the list R of refinement closures {g, P ′, G} is
kept. The meaning of the closure is to save the goal g of the last refined task
along with the current list of compensations and the rest of the process to be
executed once the refined process as been executed. Hence, each time a refine-
ment is executed (rule AM.R) a new closure is created and put on the top of the
list. Then the refined process is given an empty ε compensations list and a new
refinements list. Rules in Fig. 10 unroll the refinements list that implement the
re-refinement strategy, unrolling the refinements list until a solution is found.

5 Implementation

The life-cycle presented in this paper and its formal representation, has been
used in the last years to guide the realization of a software framework for the
definition and management of Collective Adaptive Systems. Other approaches
are emerging in the literature. For example, Bures et al. in [27] address this issue
by identifying a new class of component-based systems—Ensemble-Based Com-
ponent Systems (EBCS)—specifically tailored for designing Resilient Distributed
Systems (RDS). The paper also presents the Distributed Emergent Ensembles of

www.manaraa.com

Ten Years of Self-adaptive Systems 35

Components Resilient Distributed Systems (RDS) that respond to and influence
activities in the real world are engineered using component model as instanti-
ation of EBCS. With respect to the component-based approach they propose,
we use a service-based approach. Our method is open to the use of new services
(i.e., cells) at runtime making the approach more dynamic in terms of extension
to the inclusion of new runtime features. Besides, we guarantee both intra- and
inter-ensemble adaptations, i.e. adaptations inside and between the ensembles.

To realize our solution, we have applied an incremental software development
approach that led to the realization of an overall framework able to support all
ensemble’s phases introduced in this paper. A Collective Adaptation Engine
(CAE), has been first released as a standalone component1 and subsequently
used as a component, in the DeMOCAS framework [28]2. It has been imple-
mented by using Java as programming language (to be executed, Java 8 is
required).

DeMOCAS is a framework for the modeling and execution of service-based
CASs. It includes tools to model dynamic ensembles (as described in Sect. 2),
and mechanisms for ensembles specialization and adaptation (as introduced in
Sects. 3 and 4). DeMOCAS is built around three main aspects: (i) dynamic set-
tings: each CAS is a collection of autonomous agents entering and exiting the
system dynamically; (ii) collaborative nature of systems: agents can collaborate
in groups (i.e., ensembles) for their mutual benefit; (iii) collective adaptation:
multiple agents must adapt their behavior in concert to respond to critical run-
time impediments.

In this framework, collective adaptation is performed by exploiting the formal
framework (partially) described in Sect. 4, and by associating a MAPE (Monitor,
Analyze, Plan, Execute) loop with each agent. In Fig. 11 we show the Collective
Adaptation Viewer of DeMOCAS. The viewer reports an example of an issue
resolution result in the urban mobility domain (i.e., the issue Intense Traffic
triggered by a Flexibus Driver, during its route execution). In the left side, all
the agents involved in the issue resolution process are listed. The issue resolution
tree of an agent (i.e., the Route Manager) that executes its own instance of
the collective adaptation algorithm to solve the triggered issue is shown in the
right side.

DeMOCAS has been used in different projects realizing collective adaptive
systems in different application domains. ATLAS [29], a World-Wide travel assis-
tant where mobility service providers need to collaborate to meet citizens’ needs,
CARPooL [30], where passengers with similar needs are grouped and managed in
an automatic, distributed, and adaptive carpooling system, and finally Adjust
Light [31] where smart devices and things (i.e., sensors and actuators) cooperate
to achieve automatically the right light level in a room. All these concrete appli-
cations have demonstrated both the domain independent nature of the approach,
and its feasibility for realizing adaptive applications.

1 For the interested reader, the prototype is available in its entirety on a GitHub
repository https://github.com/das-fbk/CollectiveAdaptationEngine.

2 https://github.com/das-fbk/DeMOCAS.

https://github.com/das-fbk/CollectiveAdaptationEngine
https://github.com/das-fbk/DeMOCAS

www.manaraa.com

36 A. Bucchiarone and M. Mongiello

Fig. 11. Collective Adaptation Viewer.

6 Conclusion and Future Directions

The paper aims to report our research experience on self-adaptive systems, in
particular adaptive systems composed by distributed and heterogeneous ensem-
bles. Through a formal framework we have introduced a life-cycle for collective
adaptive systems that we have designed, implemented and experimented in the
last ten years. This research has drawn out important directions hereby summa-
rized. While the solutions proposed in these years have as primary objective the
development of techniques for runtime adaptation, we would like to extend the
framework supporting CAS developers with a user-friendly modeling tool. Initial
work in this direction has been proposed in [32] where we propose CAStlE [33],
a DSL made-up of three main views: one devoted to adaptive systems design;
one addressing ensembles definition; and one tackling the collective adaptation.

Managing concurrency and conflict resolution are two very important aspects
ofCASand they deserve the right attention. For thiswe have started a new research
path whose objective is to extend our framework with algorithms based on concur-
rent planning [34], able to manage conflicting goals between cells. Moreover, in the
situation where collective adaptation solutions are not possible, our intention is to
take inspiration from a preliminary work presented in [35] and extend the frame-
work introducing game theoretic techniques. Finally, we would like to introduce
quality analysis and learning techniques, to retrieve an study emerging phenom-
ena when dealing with dynamic and open collective adaptive systems.

References

1. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive sys-
tems: state of the art and research challenges. In: Wirsing, M., Banâtre, J.-P.,
Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Comput-
ing Paradigms. LNCS, vol. 5380, pp. 1–44. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89437-7 1

https://doi.org/10.1007/978-3-540-89437-7_1
https://doi.org/10.1007/978-3-540-89437-7_1

www.manaraa.com

Ten Years of Self-adaptive Systems 37

2. Zambonelli, F., Bicocchi, N., Cabri, G., Leonardi, L., Puviani, M.: On self-
adaptation, self-expression, and self-awareness in autonomic service component
ensembles. In: SASOW, pp. 108–113. IEEE Computer Society (2011)

3. Preda, M.D., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Developing
correct, distributed, adaptive software. Sci. Comput. Program. 97, 41–46 (2015)

4. Hennicker, R., Klarl, A.: Foundations for ensemble modeling–the Helena app-
roach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Soft-
ware. LNCS, vol. 8373, pp. 359–381. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54624-2 18

5. Bonnet, J., Gleizes, M.P., Kaddoum, E., Rainjonneau, S., Flandin, G.: Multi-
satellite mission planning using a self-adaptive multi-agent system. In: 2015 IEEE
9th International Conference on Self-Adaptive and Self-Organizing Systems, Cam-
bridge, MA, USA, 21–25 September 2015, pp. 11–20. IEEE Computer Society
(2015)

6. Zambonelli, F., et al.: Self-aware pervasive service ecosystems. Procedia Comput.
Sci. 7, 197–199 (2011). Proceedings of the 2nd European Future Technologies Con-
ference and Exhibition 2011 (FET 2011)

7. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.)
Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5 1

8. Krupitzer, C., Breitbach, M., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.:
A survey on engineering approaches for self-adaptive systems (extended version)
(2018)

9. Weyns, D., Andersson, J.: On the challenges of self-adaptation in systems of sys-
tems. In: Proceedings of the First International Workshop on Software Engineering
for Systems-of-Systems, pp. 47–51. ACM (2013)

10. Jennings, N.R.: An agent-based approach for building complex software systems.
Commun. ACM 44(4), 35–41 (2001)

11. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

12. Tinnemeier, N.A.M., Dastani, M., Meyer, J.-J.C.: Roles and norms for program-
ming agent organizations. In: 8th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary, 10–15 May
2009, vol. 1, pp. 121–128 (2009)

13. Andersson, J., De Lemos, R., Malek, S., Weyns, D.: Reflecting on self-adaptive
software systems. In 2009 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, pp. 38–47. IEEE (2009)

14. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research
roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9 1

15. FOCAS Partners: FoCAS manifesto - a roadmap to the future of collective adaptive
systems (2016). http://www.focas.eu/focas-manifesto.pdf

16. Bucchiarone, A., Mezzina, C.A., Pistore, M., Raik, H., Valetto, G.: Collective adap-
tation in process-based systems. In: SASO 2014, pp. 151–156. IEEE Computer
Society (2014)

17. Bures, T., et al.: A life cycle for the development of autonomic systems: the
e-mobility showcase. In: 2013 IEEE 7th International Conference on Self-
Adaptation and Self-Organizing Systems Workshops, pp. 71–76. IEEE (2013)

https://doi.org/10.1007/978-3-642-54624-2_18
https://doi.org/10.1007/978-3-642-54624-2_18
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1007/978-3-642-02161-9_1
http://www.focas.eu/focas-manifesto.pdf

www.manaraa.com

38 A. Bucchiarone and M. Mongiello

18. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-16310-9

19. Bucchiarone, A., Dennis, G., Gnesi, S.: A graph-based design framework for global
computing systems. Electr. Notes Theor. Comput. Sci. 236, 117–130 (2009)

20. Bruni, R., Bucchiarone, A., Gnesi, S., Melgratti, H.: Modelling dynamic software
architectures using typed graph grammars. Electron. Notes Theoret. Comput. Sci.
213(1), 39–53 (2008)

21. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Dynamic software architecture develop-
ment: towards an automated process. In: 35th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2009, Proceedings, Patras, Greece,
27–29 August 2009, pp. 105–108 (2009)

22. Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: A context-aware framework for
dynamic composition of process fragments in the Internet of Services. J. Internet
Serv. Appl. 8(1), 601–623 (2017)

23. Bucchiarone, A., Ehrig, H., Ermel, C., Pelliccione, P., Runge, O.: Rule-based mod-
eling and static analysis of self-adaptive systems by graph transformation. In: Soft-
ware, Services, and Systems - Essays Dedicated to Martin Wirsing on the Occasion
of His Retirement from the Chair of Programming and Software Engineering, pp.
582–601 (2015)

24. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-24933-4 12

25. Bucchiarone, A., Marconi, A., Mezzina, C.A., Pistore, M.: A conceptual framework
for collective adaptive systems. In: Proceedings of the 28th Annual ACM Sympo-
sium on Applied Computing, SAC 2013, Coimbra, Portugal, 18–22 March 2013,
pp. 1935–1936 (2013)

26. Bucchiarone, A., Lluch-Lafuente, A., Marconi, A., Pistore, M.: A formalisation of
adaptable pervasive flows. In: 6th International Workshop, Web Services and For-
mal Methods, WS-FM 2009, Bologna, Italy, 4–5 September 2009, Revised Selected
Papers, pp. 61–75 (2009)

27. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.:
DEECO: an ensemble-based component system. In: Proceedings of the 16th Inter-
national ACM SIGSOFT Symposium on Component-Based Software Engineering,
pp. 81–90. ACM (2013)

28. Bucchiarone, A., De Sanctis, M., Marconi, A., Martinelli, A.: DeMOCAS: domain
objects for service-based collective adaptive systems. In: Drira, K., et al. (eds.)
ICSOC 2016. LNCS, vol. 10380, pp. 174–178. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68136-8 19

29. Bucchiarone, A., De Sanctis, M., Marconi, A.: ATLAS: a world-wide travel assis-
tant exploiting service-based adaptive technologies. In: Maximilien, M., Vallecillo,
A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 561–570.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 41

30. Furelos-Blanco, D., Bucchiarone, A., Jonsson, A.: CARPooL: collective adaptation
using concurrent planning. In: Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden,
10–15 July 2018, pp. 1815–1817. International Foundation for Autonomous Agents
and Multiagent Systems Richland, SC, USA/ACM (2018)

https://doi.org/10.1007/978-3-319-16310-9
https://doi.org/10.1007/978-3-319-16310-9
https://doi.org/10.1007/978-3-642-24933-4_12
https://doi.org/10.1007/978-3-642-24933-4_12
https://doi.org/10.1007/978-3-319-68136-8_19
https://doi.org/10.1007/978-3-319-68136-8_19
https://doi.org/10.1007/978-3-319-69035-3_41

www.manaraa.com

Ten Years of Self-adaptive Systems 39

31. Alkhabbas, F., De Sanctis, M., Spalazzese, R., Bucchiarone, A., Davidsson, P.,
Marconi, A.: Enacting emergent configurations in the iot through domain objects.
In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp.
279–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9 19

32. Bucchiarone, A., Cicchetti, A., De Sanctis, M.: Towards a domain specific language
for engineering collective adaptive systems. In: 2nd IEEE International Workshops
on Foundations and Applications of Self* Systems, FAS*W@SASO/ICCAC 2017,
Tucson, AZ, USA, 18–22 September 2017, pp. 19–26. IEEE Computer Society
(2017)

33. Bucchiarone, A., Cicchetti, A., De Sanctis, M.: CAStlE: a tool for collective adap-
tive systems engineering. In: 2nd IEEE International Workshops on Foundations
and Applications of Self* Systems, FAS*W@SASO/ICCAC 2017, Tucson, AZ,
USA, 18–22 September 2017, pp. 385–386. IEEE Computer Society (2017)

34. Bucchiarone, A., Furelos-Blanco, D., Jonsson, A., Khandokar, F., Mourshed, M.M.:
Collective adaptation through concurrent planning: the case of sustainable urban
mobility. In: Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden, 10–15 July
2018, pp. 1880–1882. International Foundation for Autonomous Agents and Mul-
tiagent Systems Richland, SC, USA/ACM (2018)

35. Andrikopoulos, V., et al.: A game theoretic approach for managing multi-modal
urban mobility systems. In: Ahram, T., Karwowski, W., Marek, T. (eds.) Pro-
ceedings of the 5th International Conference on Applied Human Factors and
Ergonomics AHFE 2014, Krakow, Poland, 19–23 July 2014, pp. 5716–5725 (2014)

https://doi.org/10.1007/978-3-030-03596-9_19

www.manaraa.com

Multi-modelling and Co-simulation
in the Engineering of Cyber-Physical
Systems: Towards the Digital Twin

John Fitzgerald1(B), Peter Gorm Larsen2, and Ken Pierce1

1 School of Computing, Newcastle University, Newcastle upon Tyne, UK
{john.fitzgerald,kenneth.pierce}@ncl.ac.uk

2 DIGIT, Department of Engineering, Aarhus University, Aarhus, Denmark
pgl@eng.au.dk

Abstract. Ensuring the dependability of Cyber-Physical Systems
(CPSs) poses challenges for model-based engineering, stemming from
the semantic heterogeneity of the models of computational, physical
and human processes, and from the range of stakeholders involved. We
argue that delivering such dependability requires a marriage of multi-
disciplinary models developed during design with models derived from
real operational data. Assets developed during design thus become the
basis of a learning digital twin, able to support decision making both
in redesign and in responsive operation. Starting from an open inte-
grated toolchain leveraging formal models for CPS design, we consider
the extension of this concept towards digital twins. A small example
inspired by agricultural robotics illustrates some of the opportunities for
research and innovation in delivering digital twins that contribute to
dependability.

1 Introduction

Cyber-Physical Systems (CPSs) which integrate networking, sensor and compu-
tational technology with data science and artificial intelligence, offer significant
potential benefits to the quality of life and the sustainability of businesses [9].
However, their developers and operators face significant challenges in maintaining
global properties such as reliability and security [8]. First, CPS development and
operation involves a wide variety of stakeholders, models, analytic methods and
tools. Multi-disciplinary federations of diverse design-time models, called multi-
models, enable machine-assisted analytics to identify defects and evaluate over-
all properties such as security that span the cyber/physical boundary. Second,
multi-models provide a basis for exploring design alternatives before commitments
are made to implementation. However, such multi-models describe systems ‘as
designed’, are not normally available in operation, and over time diverge from the
system ‘as built’, as the latter, its environment, and its users evolve.

Dependable operation of CPSs requires both the ability to address the con-
sequences of evolving system components, and the ability to explore and identify
optimal changes that do not unduly compromise overall dependability. This combi-
nation of prediction and response alongside support for informed decision-making
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 40–55, 2019.
https://doi.org/10.1007/978-3-030-30985-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_4

www.manaraa.com

Multi-Modelling and Co-simulation in the Engineering of CPSs 41

and redesign by humans requires both the data derived from operations and the
models developed in design. Tackling the challenges of CPS design thus requires a
marriage of both descriptive multi-models of the type that might be developed in a
design process, and inductive models derived from data acquired during operation.
This combination of models, cutting across formalisms as well as across design and
operation, has the potential to form a learning digital twin for a CPS, enabling off-
line and on-line decision-making. The goal of our work is to enable the well-founded
engineering of such learning digital twins for dependable CPSs.

In this paper, we outline steps towards the model-based engineering of digital
twins that link descriptive and inductive models. We first review aspects of the
state of the art (Sect. 2), and then propose core elements of a learning digital
twin (Sect. 3). We illustrate the challenges of prototyping such a twin by con-
sidering a small example inspired by agricultural robotics (Sect. 4). We finally
draw conclusions regarding the future directions for this work (Sect. 5).

2 Challenges in Engineering Cyber-Physical Systems

Our goal is to enable the well-founded model-based engineering of learning digital
twins for CPSs. This entails the linkage of models of both computational and
physical processes, as well as the linkage of descriptive models with operational
data. In this section, we first consider a small motivating scenario, and then
review the capabilities of current technology.

2.1 A Future CPS at Scale

Imagine an arable farm in Denmark in 2030. More organic and diverse than a
decade earlier, it needs a wide variety of efficient, reliable and high-precision
processes such as weeding. To reduce the risk of soil compaction and erosion,
field operations are done by fleets of small autonomous robots that are provided
as a service by companies whose operators remotely monitor their fleets, dealing
with their interactions with other systems provided by other suppliers, such as
weather forecasting and produce storage, managing the reliability of their diverse
fleets as a whole, and dealing with interactions with the few remaining machines
that the farmer actually owns.

Operation adjustment: One hot day, one of the weeding robots slows down.
The cause is a battery protection routine in the software that was updated
three weeks earlier. Back then, an artificial intelligence monitoring the (cloud)
data gathered from all the machines, noticed degrading battery life in robots
that operate in extremely warm conditions. The protection routine was updated
to make the robot run at a speed that avoids overheating. Such a speed was
computed for each robot as a function of its wear level and temperature, through
multiple simulations. A day later, the robot is weeding at full power.

Operational prediction: Back at the robot supplier’s data centre, a full system
simulation monitors the whole fleet, looking ahead 24 h, and taking into account
the farm’s requirements, weather, and other data. A problem is discovered and

www.manaraa.com

42 J. Fitzgerald et al.

an alarm is raised and sent to an operator, who takes a close look. Using her
VR headset, she is immersed in a 3D view of the farm. She fast-forwards 15 h
and sees a robot traffic jam at the charging station. They are all expected to
reach the station at the same time, resulting in a congestion. Routines at the
data centre have, in the meantime, suggested changes in the energy management
plan so that the charging is more organised. The operator accepts this solution
and it is sent to the farmer for approval.

This scenario illustrates some of the potential of CPSs, but realising this
vision requires capabilities in at least four areas. First, the ability to integrate
diverse design models. Second, the capacity to correlate such models with data
observed from the CPS in operation, creating an accessible ‘digital twin’ of the
CPS as it works in its real operating environment. Third, the ability to inte-
grate and even learn from data gathered in operation so as to discover mis-
matches. Fourth, the ability to use these models and data as a basis for predic-
tion, decision-making, and adaptation. Below, we briefly consider technologies
that seek to address these needs.

2.2 Multi-modelling and Co-simulation

For CPSs such as those that arise in our agricultural scenario, there will rarely
be a single model developed during design that unifies the cyber and physical
elements. Rather, there will be several semantically diverse models for these
system elements such as Discrete-Event (DE) models of computational processes
versus Continuous Time (CT) models of physical elements. Further, the details
of models will often be retained by the suppliers of these elements who may
not wish to compromise their Intellectual Property (IP) by sharing them. In
order to analyse properties such as overall system dependability, it is necessary
to analyse these ensembles of diverse (and diversely owned) models. We term
such ensembles multi-models, and the tasks of constructing, maintaining and
analysing them we describe as multi-modelling.

In previous work, we developed and piloted an open tool chain for multi-
modelling [10,24]. A key technique here is co-simulation [13], in which a co-
simulation orchestration engine (COE) [35] manages the passage of time and
sharing of data among individual simulations in order to give a coherent whole-
system simulation. Since there are many modelling and simulation tools in use,
standards are emerging to enable co-simulation. The Functional Mock-up Inter-
face (FMI) standard [3]1, supports co-simulation of models packaged as Func-
tional Mock-up Units (FMUs), each of which is treated as a ‘black box’, support-
ing the separation of IP. The standard allows functions to set inputs, compute
over simulation intervals, and get outputs from FMUs that may run in diverse
simulators. The coordination of the simulators is done through an orchestration
engine [35]. Such engines have not yet been standardised, and offer challenges in
both research and practice [32]. Current co-simulation algorithms lack explicit

1 http://fmi-standard.org/.

http://fmi-standard.org/

www.manaraa.com

Multi-Modelling and Co-simulation in the Engineering of CPSs 43

support for dynamic reconfiguration of simulators, limiting their value in situ-
ations where CPS reconfigurations arise as part of a maintenance intervention,
for example [17].

2.3 Digital Twins

A digital twin is a virtual replica of physical assets, processes, people, places,
systems or devices created and maintained in order to answer questions about its
physical counterpart (the physical twin). Coupled with new sensor technology,
such a replica can provide a new layer of engineering insight, which will be
valuable in improving a product performance, and providing a seed for the next
generation of the product, in particular, the transition towards autonomy.

Although several commercial digital twin-based solutions are on offer (e.g.,
see those of ANSYS2 and Siemens3), there remain important challenges around
the engineering of such twins. For example, there is no clear way on how to keep
the digital twin calibrated under re-configurations and changes in the physical
twin. Another example is how to provide intuitive representation of the abnormal
behaviour of the physical twin, so that supervisory control systems (or humans)
can react to it rapidly.

2.4 Machine Learning for CPSs

In the context of digital twins, prediction is commonly performed through apply-
ing simulation (e.g., [20]). While the importance of Machine Learning (ML) mod-
els has been highlighted [31], works exploiting ML for real-time predictions are
few. In CPSs, standard ML approaches have been used to identify error situa-
tions, and have been exploited mainly for diagnostic purposes, e.g. [1]). In the
field of built environment, approaches to speeding building performance simula-
tion has been proposed, using co-simulation [2,28].

ML approaches can be broadly categorised as Deep (or Representation)
Learning [38], or statistical ML [33]. Exploiting digital twins in the CPS setting
requires ML models for the analysis of data coming from the real and virtual
spaces. The adoption of such sophisticated models requires advances on defining
the best network topology for each problem to be solved [36].

2.5 Decision Support and Visualisation with Digital Twins

Humans play a crucial role in CPSs, but in order to do so must be able to
make sense of the information coming from the CPS, sometimes in pressured
environments [14,30]. The presentation and visualisation of a CPS and the asso-
ciated operational and design data is critical and, although there is research
into using augmented reality to assist with CPS maintenance (e.g., [6]), more
work is needed on: interfaces that adapt to the evolution of the twins, in order

2 https://www.ansys.com/products/systems/digital-twin.
3 https://community.plm.automation.siemens.com/t5/Digital-Twin/ct-p/

DigitalTwin.

https://www.ansys.com/products/systems/digital-twin
https://community.plm.automation.siemens.com/t5/Digital-Twin/ct-p/DigitalTwin
https://community.plm.automation.siemens.com/t5/Digital-Twin/ct-p/DigitalTwin

www.manaraa.com

44 J. Fitzgerald et al.

to avoid flooding the user with irrelevant information; intuitive representation
of properties of interest for decision support [21]; and on supporting decision-
making across organisations. Finally, we note that, in a CPS, ‘faults’ will not be
unusual, given the independence of constituent systems, and decision support
enabled by statistical model checking and fault injection will be crucial, though
there appears to be little work to date on the interaction of these techniques.

3 Towards a Learning Digital Twin

We envision an open platform for creating learning digital twins that integrates
multi-models with data derived from CPS operations, and with inductive mod-
els learned from such operational data, enabling decision-making. The goal of
our current work is to create and evaluate such a learning digital twin, using
platforms that admit, as far as possible, open integration of a wide range of
tools.

Fig. 1. Functionality of a perpetually learning digital twin.

Figure 1 shows the main features of a learning digital twin of the kind we
envisage. In operation, the CPS will be interacting with the physical world and
human users, generating additional data related to system commissioning, con-
figuration or tuning from the administrator side. The twin receives data from
the real CPS, and multi-models developed within design activities. It supports
decision-making, whether autonomous or human, which may result in updates

www.manaraa.com

Multi-Modelling and Co-simulation in the Engineering of CPSs 45

to both the operational CPS and consistent updates to multi-models. Within
the digital twin, the following levels of functionality are delivered:

– Multi-model and Data Storage include the basic handling of multi-models
covering the architecture and interaction between the operational CPS and
the digital twin, recording and maintaining time series data acquired from
sensors, correlating it to existing multi-models.

– Model and Data Processing turns data into information. It includes static
and dynamic analysis on multi-models, via a range of tools, including co-
simulation and model checking. Data Analytics includes the analysis of time
series data and in particular the use of ML techniques to derive models based
on the CPS ‘as built’, as well as incident prediction. Specific techniques can
be down-selected depending application and data characteristics.

– Decision Enabling presents information to decision-makers based on the
model and data processing analyses done on operational data and multi-
models. This will include decision support through possibilities to carry out
trials, visualisation and Design Space Exploration (DSE).

– The API enables interaction between the digital twin and externals, including
(potentially) other digital twins.

To develop a learning digital twin, we can build on baseline technologies
for multi-modelling and co-simulation, and for the acquisition and integration
of data from operational CPSs. For example, the INTO-CPS open toolchain4

provides a basis for multi-model development and analysis using FMI for co-
simulation, and has integrated several discipline-specific model-based engineering
tools, including the Vienna Development Method (VDM) tool Overture5 and
the 20-sim tool6 [7,11,25,29]. However, this technology has not been used in a
digital twin context before and so we are investigating the adjustments needed
to support the reactive detection of deviations from predicted behaviour, and in
decision support.

In order to manage operational data, it is necessary to utilise cloud-based
platforms such as e-Science Central [15] or MindSphere7 to enable connection
of devices, data management, plug-in data analytics, and user collaboration.
Within this multi-modelling framework, there is potential to exploit tools for
simulation of, for example, mechatronic systems; Agent-Based Modelling for
aspects of human behaviour (e.g., NetLogo8); visualisation (e.g., Unity9); and
statistical model checking (e.g., [22,26]).

4 http://projects.au.dk/into-cps/.
5 http://www.overturetool.org.
6 https://www.20sim.com/.
7 https://new.siemens.com/global/en/products/software/mindsphere.html.
8 https://ccl.northwestern.edu/netlogo/.
9 https://unity.com/.

http://projects.au.dk/into-cps/
http://www.overturetool.org
https://www.20sim.com/
https://new.siemens.com/global/en/products/software/mindsphere.html
https://ccl.northwestern.edu/netlogo/
https://unity.com/

www.manaraa.com

46 J. Fitzgerald et al.

4 A Case Study: The Line-Following Robot

4.1 Introduction

In order to explore the approach that we advocate, we consider a simple exam-
ple based on a general-purpose Line Following Robot (LFR), a desktop-sized
version of which is shown in Fig. 2. The LFR has been used to illustrate co-
simulation [16], and as a pilot study in projects developing co-simulation tech-
nology. Althgouh very simple, the LFR ha ssome features in common with agri-
cultural robots of the kind that underpin the example in Sect. 2.1, and that have
been modelled in industry [12].

The LFR can follow a line painted on the ground. The line contrasts with
its background, and infra-red sensors located on the front of the robot distin-
guish the dark line from the lighter ground. The robot’s two wheels are powered
by individual motors that allow it to make controlled changes in position and
orientation. The number and position of the sensors may be configured in the
multi-model. A controller takes input from the sensors to make outputs to the
motors.

In the INTO-CPS technology, we typically give CPS architectural descrip-
tions in SysML [34]. A profile has been developed to support the description
of multi-models. An INTO-CPS application is then able to derive the code to
link FMUs and a co-simulation orchestration engine. The individual FMUs may
include discrete event or continuous time executables derived from a range of
tools. In this example, the discrete event formalism is VDM-RT [37], a dialect
of VDM; the continuous time formalism is a bond graph notation. The VDM
models are developed and simulated in Overture [23]; the bond graph models
are developed and executed in 20-sim [19].

Fig. 2. Desktop-sized LFR

www.manaraa.com

Multi-Modelling and Co-simulation in the Engineering of CPSs 47

4.2 Architectural Structure and Functional Mock-Up Units

The SysML Connection Diagram in Fig. 3 shows connections between the Con-
troller, Body, Sensor1 and Sensor2 component instances (FMUs). Broadly
speaking, the Controller receives sensor readings from both Sensor1 and Sensor2
components; the Controller in turn sends servo commands to the Body compo-
nent; and finally the Body sends the robot position to both sensor components.

The interface for each FMU is governed by a model description XML file. For
the Controller FMU that is developed using VDM-RT, the information about
its inputs and outputs is present in a special HardwareInterface class defined
in the object-oriented VDM-RT notation:
�

class HardwareInterface

instance variables

public leftVal : RealPort := new RealPort (0.0);
public rightVal : RealPort := new RealPort (0.0);
public servo_right_out : RealPort := new RealPort (0.0);
public servo_left_out : RealPort := new RealPort (0.0);

end HardwareInterface
� �

Fig. 3. LFR connections diagram

The actual control functionality takes the values of leftVal and rightVal
as inputs and assigns output to the two output ports. Essentially this is defined
using simple case analysis, but it can also be defined with a modal approach
(for example a degraded mode when one of the sensors no longer work). In the
VDM-RT model, there is a Controller class defined as follows:

www.manaraa.com

48 J. Fitzgerald et al.

�

class Controller

instance variables
servoLeft: RobotServo;
servoRight: RobotServo;
sensorRightVal :RobotSensor;
sensorLeftVal :RobotSensor;

operations

private control_loop : () ==> ()
control_loop () == ...

thread

periodic (10000 ,0 ,0 ,0)(control_loop);
end Controller

� �

The control_loop operation reads the sensor values and determines if the
robot should turn left, go straight or turn right in the next time step. The
periodic thread definition at the end sets the real-time characteristics (period,
jitter, delay and offset) of the control loop.

The physical elements of the robot have been modelled in 20-sim, which uses
numerical integration to solve sets differential equations to produce high-fidelity
simulations of physical phenomena. 20-sim generates these differential equations
from models that can be structured graphically or using bond graphs [18], or
can contain equations directly using the SIDOPS+ language [5].

Figure 4 shows the top-level 20-sim model of the robot physics. The servo
blocks (servo_left and servo_right) take an input signal from the controller indi-
cating the desired direction of rotation and desired power output between zero
(off) and one (full power). These blocks produce a rotational motion based on
parameters describing the physical characteristics of the motor inside the servo
(i.e. motor constants, resistance, inductance, friction). The encoder blocks model
optical rotary encoders that tell the controller how far the wheels have rotated
with a given resolution. The wheel blocks convert the rotational motion from
the servos to linear motion, which feed into the body block.

The bond graph contained within the body block is shown in Fig. 5. In the
upper half of this bond graph, the linear motion of the wheels is transformed
(TF) into rotation of the body, acting to overcome the rotational inertia (I). In
the lower half, the linear motion of the wheels is transformed (MTF) into the
translation of the body, overcoming friction (R) and inertia (I). The theta and
position blocks integrate the rotation and translation over time, which become
the robot_state: (x, y, θ).

www.manaraa.com

Multi-Modelling and Co-simulation in the Engineering of CPSs 49

Fig. 4. 20-sim model of robot physics

4.3 Matching the Descriptive Model to Deployed Components

The architecture of a CPS as built and deployed in its operating environment
may differ from its original design, either because it has been constructed using
legacy components, or because it has evolved over time, or because the envi-
ronment no longer meets the assumptions underpinning design. This is partic-
ularly the case in large-scale systems embedded in the physical infrastructure.
It is therefore not in general trivial to map operational data gathered from the
deployed CPS to the design-level multi-model. In our example, the communi-
cation shown in the design model between the body FMU and the two sensor
FMUs is not directly accessible in the deployed system10. Thus, a first adap-
tation that is necessary in order to be able to use the engineered multi-model
as a digital twin is to consider the body and sensor FMUs as a single black-
box FMU, by making use of nested co-simulation [35]. In addition, the LFR as
built in fact uses six pins to encode the two servo inputs that are shown in the
design-level architecture. Thus, it is necessary also to adapt either the existing
Controller FMU or the new hierarchical FMU representing the entire physical
system. Such changes could naturally also be made at the multi-model level.
This illustrates the need to develop methods around the management of design
models at a range of abstraction levels, including an indication of when it is
beneficial to alter the composition.

10 We expect that this may often be the case between FMUs that represent physical
elements by means of CT models.

www.manaraa.com

50 J. Fitzgerald et al.

Fig. 5. Bond graph inside the body block of the 20-sim model

4.4 Operational Data Gathering

In order to extract data from the physical twin either the CPS needs to be able
to have an edge-computing device locally, or send its logged data in real time
to a cloud solution. In either case, the live data can be provided to drive a co-
simulation that serves as an oracle, comparing co-simulation controller outputs
with the real system’s output signals. The values from the real CPS cannot be
expected to be exactly the same as those predicted by the co-simulation, and
so it will be necessary to consider the level of approximation that is acceptable,
which can in principle be different for different variables and system contexts.

4.5 Model and Data Processing

We envision support for processing in two different ways: (1) using co-simulation
with the multi-models developed during the engineering of the CPS and (2)
using ML. Both forms of processing will use the live streaming of the data that
is available between the FMUs in the real CPS. Whenever the example is co-
simulated both the inputs and outputs are logged in a time-series form for all
four FMUs. Each entry here contains the time, the step-size, and all inputs and
outputs from the four CPUs (in the same order). In this way it is possible to see
with different graphs how the co-simulation is progressing.

In Fig. 6 the sensor outputs are listed for respectively the real LFR and the
co-simulated LFR. At the modelling level the sensors are modelled such that
they are yielding a number indicating how dark the surface that the sensor is
seeing. In the realised version of the LFR though a cheaper sensor is used so this
simply gives a binary result. Thus, the comparison of the result in a digital twin

www.manaraa.com

Multi-Modelling and Co-simulation in the Engineering of CPSs 51

context needs to take this into account. This illustrates the kind of differences
that arise between ‘as designed’ and ‘as built’. Essentially this means that for
the two sensors there are four possible inputs.

Fig. 6. Sensor outputs from real LFR and sensor outputs from the simulation.

The interesting point from the controller perspective is that there is an appro-
priate relationship between the sensor input and the actuator output (to the
wheels). Since the controller here is a basic bang-bang controller taking sim-
ple sensor inputs it is relatively easy to see that there is a high correspondence
between the four possible inputs and the outputs. In a new version of the co-
simulation orchestration the live streaming of this real data will be fed into the
different FMUs, but instead of sending it on to the receiving FMUs it will be
compared against the data predicted from the FMUs. If the discrepancy is too
large, the intention is to support decisions by human operators.

4.6 Decision Enabling

In a simple example like the LFR it is difficult to envision complex decisions,
but we could imagine intelligent controllers that, for example, would enable
support with degraded modes if any of the sensors would fail. Such a change
could probably be conducted autonomously. However, in particular if there are
many alternative solutions to choose between (and none of them are particularly
advantageous) it would probably make more sense to involve a human in the final
decision. As in the future scenario described in Sect. 2.1, it would be important
to be able to fast-forward simulations to visualise what the consequences of
different potential interventions. In this context, exploring alternative solutions
using DSE will be important in managing the trade-offs between alternative
solutions.

www.manaraa.com

52 J. Fitzgerald et al.

5 Looking Forward

Digital Twin technology is attracting considerable attention in a wide range of
engineering domains11 , and at a range of scales, from individual machines within
a factory, up to national infrastructure [4]. In this paper, we have proposed that
digital twins for future CPSs can benefit from utilisation of the often formal
multi-disciplinary models developed during design alongside operational data
and inductive models learned from the system ‘as built’. We argue that the
use of design-time formal models – which have benefitted from highly rigorous
validation – may be beneficial in giving confidence on the overall system-level
properties of the digital twin. We have outlined something of the functionality
of such a twin, and have begun to try to realise it on a simple example.

Even the very basic robot study highlights some of the challenges in providing
foundations, methods and tools for the rigorous engineering of digital twins for
CPSs. In particular it has shown the need to address mismatches between models
that record design intent, and the real-world realisation. As even our simple
example showed, there is a need to consider structural differences as well as
differences at the level of individual data.

In lifting the idea of the formal model-based digital twin to future large-scale
CPSs, it is important to consider the range of abstraction levels of models. In
such systems, it is impractical to analyse an infrastructure CPS at one level
of abstraction only: too low a level and simulation results may not be timely;
too high a level and they are not useful. A dynamic approach, where abstrac-
tion levels can be changed during co-simulation, may yield more practical results.
Research questions include how to trigger level changes, and how to ensure align-
ment of different models of the same phenomena.

Finally, although digital twins offer the potential for adaptivity and improved
maintenance, it is worth highlighting the extent to which reliance is placed on
their correct functioning. A twin can be, at a certain level, a potential single
point of failure, and the extensive network communication in a CPS twin leaves
open the need to address issues of security and trust. Given the challenges we
outline above, we would argue that there is a case for a concerted effort to develop
formal foundations, methods and tools to support the digital twins as a vehicle
for moving models into run-time and operational contexts. Formal model-based
engineering techniques continue to have a key role to play in this promising and
challenging field.

Acknowledgements. We are grateful to the Poul Due Jensen Foundation, which has
supported the establishment of a new Centre for Digital Twin Technology at Aarhus
University, which will take forward the principles, tools and applications of the engi-
neering of digital twins. We gladly acknowledge the collaboration of many colleagues,
including Carl Gamble, Nicholas Ainslie, John Mace, Jennifer Whyte, Martin Mayfield,
Hugo Macedo, Frederik Foldager, Claudio Gomes, Casper Thule, Kenneth Lausdahl,
Christian Kleijn, Mihai Neghina and Stelios Basagiannis.

11 The Gartner group puts digital twins in its 10 strategically most important
technologies in 2019: https://www.gartner.com/smarterwithgartner/gartner-top-
10-strategic-technology-trends-for-2019/.

https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/
https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/

www.manaraa.com

Multi-Modelling and Co-simulation in the Engineering of CPSs 53

Dedication. It is a pleasure to offer this paper in honour of Stefania Gnesi, whose
work as a leading member of the formal methods and model-based design communities
internationally has enabled the collaborations that have underpinned our research. Ste-
fania’s work for the Formal Methods Europe Association – over decades – has helped
shape one of the world’s leading symposia in the field. In her role as chair of ERCIM-
FMICS and as a co-founder of the FormaliSE conference, she has done much to bring
formal methods to the wider industry and engineering communities. Indeed, FormaliSE
was one of the first places in which we discussed progress in co-simulation of formal
models [10]. The greatest tribute that we can pay to Stefania is to ensure that our com-
munity continues to build on the foundations that she has done so much to establish.

References

1. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer
vision: a survey. CoRR abs/1801.00553 (2018). https://arxiv.org/abs/1801.00553

2. Berger, J., Mazuroski, W., Oliveria, R.C., Mendes, N.: Intelligent co-simulation:
neural network vs. proper orthogonal decomposition applied to a 2D diffusive prob-
lem. J. Build. Perform. Simul. 11(5), 568–587 (2018). https://doi.org/10.1080/
19401493.2017.1414879

3. Blochwitz, T.: Functional mock-up interface for model exchange and co-simulation,
July 2014. https://www.fmi-standard.org/downloads

4. Bolton, A., Enzer, M., Schooling, J., et al.: The Gemini Principles: guiding values
for the national digital twin and information management framework. Centre for
Digital Built Britain and Digital Framework Task Group (2018). https://doi.org/
10.17863/CAM.32260

5. Breunese, A.P., Broenink, J.F.: Modeling mechatronic systems using the SIDOPS+
language. In: The Society for Computer Simulation International, pp. 301–306
(1997)

6. Controllab Products: Design of a Compensated Motion Crane using INTO-CPS.
Technical report, Press Release EU, Enschede, Netherlands (2018)

7. Couto, L.D., Basagianis, S., Mady, A.E.D., Ridouane, E.H., Larsen, P.G.,
Hasanagic, M.: Injecting formal verification in FMI-based co-simulation of cyber-
physical systems. In: The 1st Workshop on Formal Co-Simulation of Cyber-
Physical Systems (CoSim-CPS). Trento, Italy, September 2017

8. ECS-SRA: Electronic Components & Systems Strategic Research Agenda. Techni-
cal report, Electronic Components & Systems (ECS) (2019)

9. Electronic Components and Systems for European Leadership (ECSEL) Private
Members Board: Multi Annual Strategic Research and Innovation Agenda for
ECSEL Joint Undertaking (2016)

10. Fitzgerald, J., Gamble, C., Larsen, P.G., Pierce, K., Woodcock, J.: Cyber-Physical
Systems design: Formal Foundations, Methods and Integrated Tool Chains. In:
FormaliSE: FME Workshop on Formal Methods in Software Engineering. ICSE
2015, Florence, Italy, May 2015

11. Fitzgerald, J., Gamble, C., Payne, R., Larsen, P.G., Basagiannis, S., Mady, A.E.D.:
Collaborative model-based systems engineering for cyber-physical systems - a case
study in building automation. In: Proceedings INCOSE International Symposium
on Systems Engineering. Edinburgh, Scotland, July 2016

12. Foldager, F., Balling, O., Gamble, C., Larsen, P.G., Boel, M., Green, O.: Design
space exploration in the development of agricultural robots. In: AgEng Conference.
Wageningen, The Netherlands, July 2018

https://arxiv.org/abs/1801.00553
https://doi.org/10.1080/19401493.2017.1414879
https://doi.org/10.1080/19401493.2017.1414879
https://www.fmi-standard.org/downloads
https://doi.org/10.17863/CAM.32260
https://doi.org/10.17863/CAM.32260

www.manaraa.com

54 J. Fitzgerald et al.

13. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a survey. ACM Comput. Surv. 51(3), 49:1–49:33 (2018)

14. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emer-
gent behavior in complex systems. In: Kahlen, F.-J., Flumerfelt, S., Alves, A. (eds.)
Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-38756-7_4

15. Hiden, H., Woodman, S., Watson, P., Cala, J.: Developing cloud applications using
the e-science central platform. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
371(1983), 1–12 (2013)

16. Ingram, C., Pierce, K., Gamble, C., Wolff, S., Christensen, M.P., Larsen, P.G.:
Examples compendium. Technical Report, The DESTECS Project (INFSO-ICT-
248134), October 2012

17. Jung, T., Shah, P., Weyrich, M.: Dynamic co-simulation of internet-of-things-
components using a multi- agent-system. In: 51st CIRP Conference on Manufac-
turing Systems, vol. 72, pp. 874–879. Procedia CIRP, Elsevier (2018)

18. Karnopp, D., Rosenberg, R.: Analysis and Simulation of Multiport Systems: The
Bond Graph Approach to Physical System Dynamic. MIT Press, Cambridge (1968)

19. Kleijn, C.: Modelling and simulation of fluid power systems with 20-sim. Intl. J.
Fluid Power 7(3), 57–60 (2006)

20. Knapp, G., Mukherjee, T., Zuback, J., Wei, H., Palmer, T.A., De, T.D.: Building
blocks for a digital twin of additive manufacturing. Acta Mater. 135, 390–399
(2010)

21. Kunarth, M., Winkler, H.: Integrating the digital twin of the manufacturing sys-
tem into a decision support system for improving the order management process.
Procedia CIRP 72, 225–231 (2018)

22. Larsen, K.G., Legay, A.: Statistical model checking: past, present, and future. In:
Margariaand Steffen [27], pp. 3–15. https://doi.org/10.1007/978-3-319-47166-2_1

23. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.:
The overture initiative - integrating tools for VDM. SIGSOFT Softw. Eng. Notes
35(1), 1–6 (2010). https://doi.org/10.1145/1668862.1668864

24. Larsen, P.G., et al.: Integrated tool chain for model-based design of cyber-physical
systems: the INTO-CPS Project. In: CPS Data Workshop. Vienna, Austria, April
2016

25. Larsen, P.G., Fitzgerald, J., Woodcock, J., Lecomte, T.: Trustworthy Cyber-
Physical Systems Engineering, Chapter 8: Collaborative Modelling and Simula-
tion for Cyber-Physical Systems. Chapman and Hall/CRC, September 2016. ISBN
9781498742450

26. Legay, A., Sedwards, S., Traonouez, L.: Plasma lab: A modular statistical model
checking platform. In: Margaria and Steffen [27], pp. 77–93. https://doi.org/10.
1007/978-3-319-47166-2_6

27. Margaria, T., Steffen, B. (eds.): ISoLA 2016. LNCS, vol. 9952. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2

28. Mazuroski, W., Berger, J., Oliveria, R.C., Mendes, N.: An artificial intelligence-
based method to efficiently bring CFD to building simulation. J. Build. Perform.
Simul. 11(5), 588–603 (2018). https://doi.org/10.1080/19401493.2017.1414880

29. Neghina, M., Zamrescu, C.B., Larsen, P.G., Lausdahl, K., Pierce, K.: Multi-
paradigm discrete-event modelling and co-simulation of cyber-physical systems.
Stud. Inf. Control 27(1), 33–42 (2018)

30. Perrow, C.: Normal Accidents: Living with High Risk Technologies-Updated Edi-
tion. Princeton University Press, New Jersey (2011)

https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1007/978-3-319-47166-2_1
https://doi.org/10.1145/1668862.1668864
https://doi.org/10.1007/978-3-319-47166-2_6
https://doi.org/10.1007/978-3-319-47166-2_6
https://doi.org/10.1007/978-3-319-47166-2
https://doi.org/10.1080/19401493.2017.1414880

www.manaraa.com

Multi-Modelling and Co-simulation in the Engineering of CPSs 55

31. Qi, Q., Tao, F.: Digital twin and big data towards smart manufacturing and indus-
try 4.0: 360 degree comparison. IEEE Access 6, 3585–3593 (2018)

32. Schweiger, G., et al.: Functional Mock-up Interface: an empirical survey identifies
research challenges and current barriers. In: The American Modelica Conference,
Cambridge, MA, USA (2018)

33. Sugiyama, M.: Introduction to Statistical Machine Learning, 1st edn. Morgan Kauf-
mann, Boston (2015)

34. OMG Systems Modeling Language (OMG SysMLTM). Technical Report. Ver-
sion 1.4, Object Management Group, September 2015. http://www.omg.org/spec/
SysML/1.4/

35. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: the INTO-
CPS co-simulation framework. Simul. Model. Pract. Theory 92, 45–61 (2019).
https://doi.org/10.1016/j.simpat.2018.12.005. http://www.sciencedirect.com/
science/article/pii/S1569190X1830193X

36. Tran, D.T., Kiranyaz, S., Gabbouj, M., Iosifidis, A.: Heterogeneous Multilayer
Generalized Operational Perceptron. arXiv:1804.05093, pp. 1–12 (2018)

37. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and validating distributed embed-
ded real-time systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.)
FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006). https://doi.
org/10.1007/11813040_11

38. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

http://www.omg.org/spec/SysML/1.4/
http://www.omg.org/spec/SysML/1.4/
https://doi.org/10.1016/j.simpat.2018.12.005
http://www.sciencedirect.com/science/article/pii/S1569190X1830193X
http://www.sciencedirect.com/science/article/pii/S1569190X1830193X
http://arxiv.org/abs/1804.05093
https://doi.org/10.1007/11813040_11
https://doi.org/10.1007/11813040_11

www.manaraa.com

Changing Software in a Changing World:
How to Test in Presence of Variability,

Adaptation and Evolution?

Antonia Bertolino1(B) and Paola Inverardi2

1 ISTI–CNR, Pisa, Italy
antonia.bertolino@isti.cnr.it

2 University of L’Aquila, L’Aquila, Italy
paola.inverardi@univaq.it

Abstract. Modern software-intensive and pervasive systems need to be
able to manage different requirements of variability, adaptation and evo-
lution. The latter are surely related properties, all bringing uncertainty,
but covering different aspects and requiring different approaches. Test-
ing of such systems introduces many challenges: variability would require
the test of too many configurations and variants well beyond feasibility;
adaptation should be based on context-aware testing over many pre-
dictable or even unpredictable scenarios; evolution would entail testing
a system for which the reference model has become out-of-date. It is
evident how current testing approaches are not adequate for such types
of systems. We make a brief overview of testing challenges for changing
software in a changing world, and hint at some promising approaches,
arguing how these would need to be part of a holistic validation approach
that can handle uncertainty.

Keywords: Adaptation and evolution · Context-aware software ·
Software variability · Testing changing software

1 Introduction

Nowadays software is ubiquitous and governs our lives interacting with smart
objects and other software systems that increasingly pervade our surrounding
environment. We got used to require that software -be it working from our
portable device or in the public front office we ask or in a newly bought home
appliance- reacts promptly to satisfy our requests. We even expect that it is
capable to face unforeseen circumstances and events or even more that it can
anticipate our future needs.

Under pressure of tackling continuous changes that can potentially occur
in many ways, software systems themselves change continuously. For instance,
they can be Systems-of-Systems (SoS) emerging from the on-the-fly dynamic
composition of services, or they can perform self-repair after a problem, or their
components can be substituted at runtime.
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 56–66, 2019.
https://doi.org/10.1007/978-3-030-30985-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_5

www.manaraa.com

How to Test in Presence of Variability, Adaptation and Evolution? 57

Consequently, a traditional view of the software lifecycle as involving three
main stages: specification, coding (even if by model-driven transformations), and
testing is not adequate anymore.

In the software engineering literature, the problem of handling change has
been addressed along different research threads. One thread regards software
product line (PL) research. In the past two decades huge progress has been done
with methodologies and tools that can model and manage variants of products
within one family. By adopting a PL approach, developers can a-priori define
points of variations and acceptable alternative solutions for differing instantia-
tions of a broad software architecture. Such notion of change, which is referred to
as variability, has been a main research focus of Stefania Gnesi for several years:
in her work she has shown that variability can be formally described [2], or
even extracted a posteriori from the requirements [16]. More recently, the notion
of Dynamic Software Product Line (DSPL) has emerged [23], which delays the
decision of variations to runtime and extends the scope of variability.

On another thread, researchers have investigated approaches to engineer
software systems that can adapt to intervening events and situations. Such
approaches generally adopt variations of the MAPE (Monitor, Analyze, Plan,
Execute) model [24], i.e., the system needs to sense the context and be able
to react accordingly. Self-adaptation refers to systems that autonomously can
decide how to change themselves so to ensure continuous service.

Similar to adaptation is the notion of evolution: whereby adaptation is gen-
erally referred to as a reactive change triggered by changes in the external world,
evolution is rather conceived as a proactive attitude towards change. An evolving
system aims at continuously improving itself and providing enhanced services. It
must be able to change its goals and behaviour so to provide a service that can
satisfy novel requirements. Indeed, placing change in the center of the software
process is recognized as the only way to prevent software aging [33].

Although focusing on different facets of change, the notions of variability,
adaptation and evolution share several challenges and requirements. They all
make it difficult for a software developer to analyse a system and take decisions
on it. By stretching somehow the term, in the context of this work we will refer to
this difficulty in understanding or predicting a system behaviour as uncertainty.
We use this term to imply that we cannot know what to expect from a system,
because it can take too many possible configurations (variability), or can adapt
to context (adaption), or can change its goals (evolution). Indeed, following [21],
uncertainty can be defined as the difference between the amount of information
required to perform a task and the amount of information already possessed.

The task we are interested here is validation of systems that change. Systems
for which at the moment of validation complete information is lacking either
because it is unknown or because it is too large. In fact, we started by saying
that software systems are pervasive and thus we cannot underestimate the need
to ensure a reliable behaviour, notwithstanding changes. However, what does
it mean to test a system that exposes variability, adaptation or evolution, and
which approaches can be applied are still open research questions.

www.manaraa.com

58 A. Bertolino and P. Inverardi

In this opinion paper, we first overview current views of variability, adap-
tation and evolution, including their shared definitions and most common
approaches (Sect. 2). Then, we discuss the challenges descending for testing such
type of systems and hint at promising approaches (Sect. 3). Conclusions and
possible research directions conclude the paper (Sect. 4).

2 Many Dimensions of Change

As discussed in the introduction modern systems are subject to a number of
potential changes during their life time. Those changes cannot always be antic-
ipated or it might not be convenient to anticipate all of them. This introduces
levels of uncertainty in the predictable behavior of the system. In the follow-
ing we analyze the three dimensions of changes we have earlier introduced to
understand what are the potential sources of uncertainty.

2.1 Changing Software

Software needs to be able to change. Variability is the dimension that charac-
terizes the software that shall encompass the possibility of designing alterna-
tives in the systems, that will be solved only before execution, either statically
via a configuration step, or dynamically by providing the necessary informa-
tion. No matter how variability is resolved, it introduces in the validation step
of the development process the need to deal with the system’s strong degree
of non-deterministic behaviors. When explicitly introduced in the software life
cycle [3,25], variability can help reducing the uncertainty by constraining the
behavioral analysis into well defined boundaries. However such boundaries can
still permit an extremely large search space of potential configurations, like it
may happen in the Software Product Line context, thus retaining in practice a
degree of uncertainty in the final system behavior. In the past years an exten-
sive research thread contributed by Stefania Gnesi and co-authors has proposed
different behavioral expressive models able to compactly represent such search
spaces [5,6,40], however verification of such systems has not yet reached the
maturity of being routinely used in a development process.

2.2 Changing World

Software needs to be sensitive to the changes that the world around it encom-
passes. Both adaptation and evolution respond, in different ways, to this need.
Adaptation refers to the ability of a software system to react in presence of
changes of context that may compromise the system behavior, either qualita-
tively or quantitatively. It is a change that the system needs to undergo not
to compromise the compliance of its behavior with respect to the requirements
[26]. It typically appears concerning quantitative properties, e.g., degradation
of performance due to unexpected high workload. It is associated with the so
called self-* properties and autonomic systems [30] and, as already mentioned,

www.manaraa.com

How to Test in Presence of Variability, Adaptation and Evolution? 59

it is often implemented through possibly multiple feedback loops. Adaptation
may let the system acquire completely new behaviors not foreseen at design time,
which is even more evident nowadays with the increasing adoption of learning
techniques. How to accomplish adaptation by maintaining system’s correctness
is a challenge that has received a large deal of attention in the research commu-
nity and has also motivated the need to move part of the development artifacts
at run time (e.g., models at run time) [31].

Evolution has been traditionally the last step in the software life cycle coupled
with maintenance. Traditionally it was considered for long living systems that
might need to change in order to meet new emerging requirements from users,
operating system platform producers, machine changes. In such context the pace
of change allowed to integrate the evolution step in the ordinary software life
cycle with relatively little effort. For example, traceability issues all along the
development phases were required [15] as well as regression test emerged in the
validation step. Modern software systems are instead experiencing a fast twist
in pace due to the speed of changes both in terms of user expectation and in
terms of technological upgrades. In this respect the difficulties of evolution are
exacerbated. One main issue concerns the problem of keeping the consistency
among the different models of a system (i.e., co-evolution), notably requirements,
architecture and code implementation [32].

It appears evident that for modern software systems, validation in the pres-
ence of variability, adaptation and evolution needs to take into account a certain
degree of uncertainty as anticipated in [20]. Referring to the introduced notion of
uncertainty, this means that at the moment these systems are validated, devel-
opers do not possess the (complete) information about the systems that the
validation step may require. In the following we will discuss how the change
dimensions impact on testing and consider some research challenges we foresee
in validating software in presence of uncertainty due to changes.

3 Testing Software that Changes

In this section we reflect on the implications brought by change on the software
testing discipline. We start by sketching a theoretical framework on which the
aims and foundations of software testing are laid. Then we analyse the challenges
posed by uncertainties deriving from each of the three kinds of change discussed
in the previous section. We conclude by pointing at some promising directions
emerging from the literature for addressing the challenges.

3.1 Software Testing Foundations in Light of Change

As defined by Bertolino in [7], software testing consists of the dynamic verifica-
tion of the behavior of a program on a finite set of test cases, suitably selected
from the usually infinite executions domain, against the specified expected
behavior.

www.manaraa.com

60 A. Bertolino and P. Inverardi

This definition highlights the main concerns in software testing, in particular
that we need a strategy to select a feasible set of test inputs and that we must
be able to compare the test output against an expected behaviour, a.k.a. the
oracle problem [4].

In the early 80’s, a framework providing a theoretical foundation of software
testing was proposed by Gourlay [22]. The framework established a mathematical
relation among sets of specifications S, programs P and tests T, and defined
the oracle as an ok predicate over a test t ∈ T , a specification s ∈ S, and
a program p ∈ P . More formally, Gourlay’s framework defined a theoretical
predicate corr(p, s) over specifications and programs implying that a program
p is correct with respect to a specification s, and postulated that ∀p ∈ P,∀s ∈
S,∀t ∈ T, corr(p, s) ⇒ ok(t, p, s).

More recently, Staats and coauthors [38] revisited Gourlay’s framework, and
introduced a set O of test oracles (in place of the unique oracle ok), whereby a
test oracle o is a predicate over programs and tests; they defined a new corrt
predicate over tests, program and specifications that holds if and only if when
running test t, specification s holds for program p.

However, neither Bertolino’s definition for software testing, nor Staats and
coauthors’ revisited version of Gourlay’s theoretical framework consider explic-
itly that a program, and/or its input domain and/or its expected behaviour (i.e.,
oracle), can change and how the derived uncertainty can impact testing validity
and effectiveness.

Indeed, variability, adaptation and evolution clearly affect the notion of test-
ing, and we claim that in presence of change the theoretical framework for testing
should be revised to cope with the uncertainty they bring.

In presence of variability, not only we need to select a finite set of test cases,
but also we need to select a set of configurations among those implied by the
variation points.

In presence of adaptation, a test case should include a test input but also
the context in which the test is executed, and the program itself becomes a
function of the context. As a consequence, also the very concept of correctness
of a program with respect to a specification may change depending on context.

In presence of evolution, again the correctness relation between a program
and the specification becomes relative, in this case because specification can
proactively change.

Therefore, we leave as a challenging task for future work a revision of test-
ing theory as formulated in [22] and in [38] to take into account change and
uncertainty.

3.2 Testing Challenges Ahead

In front of a rich literature addressing the design and management of changing
systems, research on how such systems should be tested is still lacking. For
example, focusing on adaptation, in 2009 Salehie and Tahvildari [35] affirmed
that testing and assurance are probably the least focused phases, and there
are only few works addressing this topic. Concerning variability, in 2014 Galster

www.manaraa.com

How to Test in Presence of Variability, Adaptation and Evolution? 61

and coauthors observed that it is “studied in all software engineering phases, but
testing is underrepresented” [19]. Fortunately today this situation seems to be
changing, and several works appear addressing efficient approaches to variability
testing, such as, e.g., [1,27].

The testing challenges implied by change in the three forms that we distin-
guish have been studied in the literature generally along separate threads. It
is rarely the case that the three dimensions of change have been considered in
holistic way.

Concerning variability, this has been mostly addressed in the domain of
software Product Lines. The systematic survey in [12] distinguishes two main
research interests, namely the PL features and the PL products. Along the first
one, testing aims at verifying all feature interactions by testing all variations
across all dimensions. The second one concerns the actual testing of the prod-
ucts members of a family. In both cases, the great challenge is to manage the
huge number of potential test cases, which can increase exponentially with the
PL features.

The testing challenges stemming from adaptation have been characterised
by Siqueira and coauthors [37], who made a systematic survey of literature.
They list several general challenges, among which: the exponential growth of the
number of configurations to be tested; the difficulty of anticipating environment
changes when testing on a large-scale multi-vendor system; the problem to keep
traceability between the requirements and the test cases due to the changing
characteristics; the arduousness of simulating realistic contexts and workloads
due to unpredictability and unclear system boundaries.

Evolution is the dimension of change that has been more extensively
addressed in the software testing literature, because it corresponds in a sense
to the classical problem of regression testing. Strictly speaking, regression test-
ing concerns the re-testing of previously tested software to verify that changes
do not cause previously successfully passed test cases to fail. In recent work, the
step of “test suite augmentation” within regression testing process is attracting
more emphasis: it refers to creating new test cases specifically addressing the
changed behaviour of the evolving software [36]. However, proposed test suite
augmentation approaches are mostly code-based, and they do not scale up to
consider the complexity of modern evolving systems. The challenges in testing
evolving software include finding black-box approaches that can consider depen-
dencies among concurrently running processes, as addressed for instance in [41],
as well as dependencies from context changes, as described in [34].

Moreover, a challenge that we see as shared by all three types of change
concerns the difficulty of setting an oracle, be it automated or even manual. If
we accept that the software behaviour may change because of context adaptation,
or evolution of requirements, how can we discern whether an observed behaviour
that is not as we would have expected at a given moment is a failure, or is rather
a correct deviation because of a change?

When a test is executed we need a way to decide whether a test is successful
or fails. However, if we consider the testing of a changing software program P ,
one issue is that since the system has evolved or has assumed very different

www.manaraa.com

62 A. Bertolino and P. Inverardi

forms, we cannot have a readily available reference model to act as an oracle.
Even assuming that an oracle is available, for example from a specification, we
have to take into account that due to evolution the specification Spect that was
available at time t may become invalid in later time. So, if at time t′ > t we
observe that P is not compliant with Spect, what can we deduce? Is it because
the system has evolved (in good way) and hence we need to also evolve Spec?
Or instead it is because there is a failure in P behaviour?

In other words, in presence of changing systems, when an observed behaviour
is not compliant with the oracle, how can we decide whether it is for good
(hence the Spec we referred to is obsolete and, e.g., a new specification should
be mined [18]), or for bad (the system has evolved in unacceptable way or some
failure has occurred)?

3.3 Promising Testing Techniques

Based on our overview of how the foundations of testing software that changes
differ from those laid down for “traditional” testing, it is clear that we need
to find completely novel approaches to testing software in light of the uncer-
tainty brought by dynamic adaptation and evolution, and of the huge number
of possible configurations to test due to variability.

In this section we overview some recent techniques that could be adapted to
deal with change in all its three forms.

A natural approach to address the lack or obsolescence of models that can
be referred as test oracle or even for test generation is that of mining the model
from the program, in particular from the traces obtained by test executions.
This is the idea outlined in the anti-model based testing proposal by Bertolino
et al. [10], even though at the time it was aimed at testing applications when
a model is not available. Later on, the idea is further developed by Kanstrén
et al. [28], who used the term observation-based modeling.

Another promising research avenue is the one to identify so-called “core rela-
tives” [39], which are defined as pieces of code exhibiting “similar” behavior, even
though structurally different and producing different outputs. Such techniques
could be usefully adapted in testing changes.

A well established approach for software testing within some specific domain
where deriving an oracle is extremely difficult is metamorphic testing : this app-
roach was introduced in the late 90’s [13], and has been applied in several con-
texts and to solve various problems [14]. Metamorphic testing is based on a set
of properties that must hold between different executions of the tested system:
these necessary properties are called the metamorphic relations. Therefore, even
if we do not know what is the expected correct result for an execution, we can
compare the outputs across different executions against the expected relations,
and detect possible failures when the properties are not fulfilled.

We see several interesting ways in which metamorphic testing naturally
applies to the case of testing changing software. For example, where sensible,
we could define a set of necessary relations to be maintained across adaptation
or evolution, and perform metamorphic testing based on such relations to verify

www.manaraa.com

How to Test in Presence of Variability, Adaptation and Evolution? 63

if the software continues to keep the necessary properties. In presence of vari-
ability, metamorphic relations could be used to express common features within
a family of products.

Yet another potential direction to explore could be to raise the level of
abstraction at which the testing is conducted, and perform the testing of the
model and not of the implementation, as proposed by Briand and coauthors
[11]. The authors proposed to deal with uncertainty by associating appropriate
probability distributions to the model elements. A more detailed and complex
approach should be conceived to be able to consider all dimensions of variability,
adaptation and evolution.

From the field of deep learning systems, we could also adopt the concept of
surprise adequacy testing [29]: the authors propose that for testing these systems
where we cannot know the exact correct outputs, we could expect that what we
observe in operation can be different from what we observed during training,
but not too much different: they say that the “surprise” we observe must not
be too big. We could apply a similar concept for testing in operation a changing
system: we establish some “surprise” distances we can admit in operation, and
test accordingly.

Inspired by the Proteus framework by Fredericks and Cheng [17], a test plat-
form for changing software should support the adaptive generation of test plans
including a core set of test cases that must be satisfied even after change, and
an additional set of test cases aiming at testing possible adaptations/evolutions.
The former should be based on invariant properties that could be tested applying
metamorphic testing between source test cases before change, and follow up test
cases after change. The latter would require test suite augmentation: we could
perform observation-based testing and assess the mined model against a defined
degree of surprise, i.e., distance we can tolerate.

4 Perspectives for Research

As we discussed, testing software in presence of change opens a number of chal-
lenging research directions. Notwithstanding, testing remains indispensable, as
for such dynamic systems we cannot assume the availability of valid reference
models or test suites. On the contrary, we have to deal with uncertainty and
the only fact is the behaviour we observe. Because of this, we cannot adopt
traditional model-based testing techniques, and need to adapt approaches for
anti-model based testing or observation-based modeling or model testing.

An appropriate approach for testing in presence of change should handle
change in its three identified dimensions, which should be considered in combi-
nation, scaling up further the complexity of the task.

We have overviewed some promising research directions for testing changing
software in a changing world. As we cannot rely on the availability of an oracle,
we have suggested to adapt metamorphic testing principles for testing changing
software but still guaranteeing a core set of invariant properties. In combination
we also suggested the opportunity to adapt a notion of surprise-based testing
for test suite augmentation.

www.manaraa.com

64 A. Bertolino and P. Inverardi

We have only scraped the surface of the tackled problem, though: for exam-
ple, we did not discuss when and how testing should occur. For sure monitoring
software behaviour is essential, but what would be a proper trigger for mov-
ing from passive testing, to proactive? We would need to introduce proper test
governance policies [9].

Moreover, we did not discuss the challenges behind reproducing the context
of a changing world within which the testing should occur. As this could be too
costly or even infeasible, several authors have suggested to perform the testing
in production (e.g., [8]), but this poses many new challenges.

For sure many other challenges exist and many new research avenues could
be identified. The aim of this paper was not that of providing an exhaustive
survey of issues and opportunities, but rather that of depicting a preliminary
understanding of the problem difficulties and outlining promising directions for
tackling them.

Acknowledgements. This work has been partially supported by the GAUSS national
research project (MIUR - PRIN 2015, Contract 2015KWREMX).

References

1. Al-Hajjaji, M., Thüm, T., Lochau, M., Meinicke, J., Saake, G.: Effective product-
line testing using similarity-based product prioritization. Softw. Syst. Model. 18(1),
499–521 (2019)

2. Asirelli, P., Ter Beek, M.H., Gnesi, S., Fantechi, A.: Formal description of variabil-
ity in product families. In: 2011 15th International Software Product Line Confer-
ence, pp. 130–139. IEEE (2011)

3. Autili, M., Benedetto, P.D., Inverardi, P.: A hybrid approach for resource-based
comparison of adaptable java applications. Sci. Comput. Program. 78(8), 987–1009
(2013). https://doi.org/10.1016/j.scico.2012.01.005

4. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2014)

5. ter Beek, M.H., Damiani, F., Gnesi, S., Mazzanti, F., Paolini, L.: On the expres-
siveness of modal transition systems with variability constraints. Sci. Comput.
Program. 169, 1–17 (2019). https://doi.org/10.1016/j.scico.2018.09.006

6. Beohar, H., Varshosaz, M., Mousavi, M.R.: Basic behavioral models for software
product lines: expressiveness and testing pre-orders. Sci. Comput. Program. 123,
42–60 (2016). https://doi.org/10.1016/j.scico.2015.06.005

7. Bertolino, A.: Software testing. In: P. Bourque, R.D. (ed.) SWEBOK Guide to the
Software Engineering Body of Knowledge Trial Version, chap. 5, pp. 69–86. IEEE
CS, Los Alamitos (2001)

8. Bertolino, A., Angelis, G.D., Kellomaki, S., Polini, A.: Enhancing service federa-
tion trustworthiness through online testing. IEEE Comput. 45(1), 66–72 (2012).
https://doi.org/10.1109/MC.2011.227

9. Bertolino, A., Polini, A.: SOA test governance: enabling service integration test-
ing across organization and technology borders. In: 2009 International Conference
on Software Testing, Verification, and Validation Workshops, pp. 277–286. IEEE
(2009)

https://doi.org/10.1016/j.scico.2012.01.005
https://doi.org/10.1016/j.scico.2018.09.006
https://doi.org/10.1016/j.scico.2015.06.005
https://doi.org/10.1109/MC.2011.227

www.manaraa.com

How to Test in Presence of Variability, Adaptation and Evolution? 65

10. Bertolino, A., Polini, A., Inverardi, P., Muccini, H.: Towards anti-model-based
testing. In: Proceedings of DSN 2004 (Extended abstract), pp. 124–125 (2004)

11. Briand, L., Nejati, S., Sabetzadeh, M., Bianculli, D.: Testing the untestable: model
testing of complex software-intensive systems. In: Proceedings of the 38th Inter-
national Conference on Software Engineering Companion, ICSE 2016, pp. 789–
792. ACM, New York (2016). https://doi.org/10.1145/2889160.2889212, http://
doi.acm.org/10.1145/2889160.2889212

12. do Carmo Machado, I., Mcgregor, J.D., Cavalcanti, Y.C., De Almeida, E.S.:
Onstrategies for testing software product lines: a systematic literature review. Inf.
Softw. Technol. 56(10), 1183–1199 (2014)

13. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing: a new approach for
generating next test cases. Technical report, Technical Report HKUST-CS98-01,
Department of Computer Science, Hong Kong (1998)

14. Chen, T.Y., et al.: Metamorphic testing: a review of challenges and opportunities.
ACM Comput. Surv. 51(1), 4:1–4:27 (2018). https://doi.org/10.1145/3143561.
http://doi.acm.org/10.1145/3143561

15. Cleland-Huang, J., Gotel, O., Hayes, J.H., Mäder, P., Zisman, A.: Software trace-
ability: trends and future directions. In: Proceedings of the on Future of Soft-
ware Engineering, FOSE 2014, Hyderabad, India, May 31–June 7, 2014. pp. 55–69
(2014). https://doi.org/10.1145/2593882.2593891

16. Fantechi, A., Ferrari, A., Gnesi, S., Semini, L.: Requirement engineering of software
product lines: extracting variability using NLP. In: 2018 IEEE 26th International
Requirements Engineering Conference (RE), pp. 418–423. IEEE (2018)

17. Fredericks, E.M., Cheng, B.H.: Automated generation of adaptive test plans for
self-adaptive systems. In: Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, pp. 157–168. IEEE
Press (2015)

18. Gabel, M., Su, Z.: Testing mined specifications. In: Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software Engineering,
FSE 2012, pp. 4:1–4:11. ACM, New York (2012). https://doi.org/10.1145/2393596.
2393598, http://doi.acm.org/10.1145/2393596.2393598

19. Galster, M., Weyns, D., Tofan, D., Michalik, B., Avgeriou, P.: Variability in soft-
ware systemsa systematic literature review. IEEE Trans. Softw. Eng. 40(3), 282–
306 (2014)

20. Garlan, D.: Software engineering in an uncertain world. In: Proceedings of the
FSE/SDP workshop on Future of software engineering research, pp. 125–128. ACM
(2010)

21. Giese, H., et al.: Living with uncertainty in the age of runtime models. In: Ben-
como, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time. LNCS,
vol. 8378, pp. 47–100. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08915-7 3

22. Gourlay, J.S.: A mathematical framework for the investigation of testing. IEEE
Trans. Softw. Eng. 6, 686–709 (1983)

23. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product
lines. Computer 41(4), 93–95 (2008)

24. IBM White Paper: An architectural blueprint for autonomic computing (2006)
25. Inverardi, P., Mazzanti, F.: Experimenting with dynamic linking with ada. Softw.

Pract. Exper. 23(1), 1–14 (1993). https://doi.org/10.1002/spe.4380230102

https://doi.org/10.1145/2889160.2889212
http://doi.acm.org/10.1145/2889160.2889212
http://doi.acm.org/10.1145/2889160.2889212
https://doi.org/10.1145/3143561
http://doi.acm.org/10.1145/3143561
https://doi.org/10.1145/2593882.2593891
https://doi.org/10.1145/2393596.2393598
https://doi.org/10.1145/2393596.2393598
http://doi.acm.org/10.1145/2393596.2393598
https://doi.org/10.1007/978-3-319-08915-7_3
https://doi.org/10.1007/978-3-319-08915-7_3
https://doi.org/10.1002/spe.4380230102

www.manaraa.com

66 A. Bertolino and P. Inverardi

26. Inverardi, P., Tivoli, M.: The future of software: adaptation and dependability. In:
Software Engineering, International Summer Schools, ISSSE 2006–2008, Salerno,
Italy, Revised Tutorial Lectures, pp. 1–31 (2008). https://doi.org/10.1007/978-3-
540-95888-8 1

27. Jakubovski Filho, H.L., Ferreira, T.N., Vergilio, S.R.: Preference based multi-
objective algorithms applied to the variability testing of software product lines.
J. Syst. Softw. 151, 194–209 (2019)

28. Kanstrén, T., Piel, E., Gross, H.G.: Observation-based modeling for model-based
testing. Technical Report Series TUD-SERG-2009-012 (2009)

29. Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using surprise
adequacy. arXiv preprint arXiv:1808.08444 (2018)

30. Kounev, S., et al.: The notion of self-aware computing. In: Self-Aware Computing
Systems, pp. 3–16 (2017). https://doi.org/10.1007/978-3-319-47474-8 1

31. de Lemos, R., et al.: Software engineering for self-adaptive systems: research chal-
lenges in the provision of assurances. In: de Lemos, R., Garlan, D., Ghezzi, C.,
Giese, H. (eds.) Software Engineering for Self-Adaptive Systems III. Assurances.
LNCS, vol. 9640, pp. 3–30. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-74183-3 1

32. Mens, T., Serebrenik, A., Cleve, A. (eds.): Evolving Software Systems. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-45398-4

33. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.:
Challenges in software evolution. In: Proceedings of the Eighth International Work-
shop on Principles of Software Evolution, IWPSE 2005, pp. 13–22. IEEE Computer
Society, Washington, DC (2005). https://doi.org/10.1109/IWPSE.2005.7

34. Nanda, A., Mani, S., Sinha, S., Harrold, M.J., Orso, A.: Regression testing in the
presence of non-code changes. In: 2011 Fourth IEEE International Conference on
Software Testing, Verification and Validation, pp. 21–30. IEEE (2011)

35. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. (TAAS) 4(2), 14 (2009)

36. Santelices, R., Chittimalli, P.K., Apiwattanapong, T., Orso, A., Harrold, M.J.:
Test-suite augmentation for evolving software. In: 2008 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pp. 218–227. IEEE (2008)

37. Siqueira, B.R., Ferrari, F.C., Serikawa, M.A., Menotti, R., de Camargo, V.V.: Char-
acterisation of challenges for testing of adaptive systems. In: Proceedings of the 1st
Brazilian Symposium on Systematic and Automated Software Testing, SAST 2016,
Maringa, Parana, Brazil, 19–20 September, 2016, pp. 11:1–11:10 (2016). https://
doi.org/10.1145/2993288.2993294

38. Staats, M., Whalen, M.W., Heimdahl, M.P.: Programs, tests, and oracles: the foun-
dations of testing revisited. In: Proceedings of the 33rd International Conference
on Software Engineering, pp. 391–400. ACM (2011)

39. Su, F.H., Bell, J., Harvey, K., Sethumadhavan, S., Kaiser, G., Jebara, T.: Code
relatives: detecting similarly behaving software. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 702–714. ACM (2016)

40. Varshosaz, M., Beohar, H., Mousavi, M.R.: Basic behavioral models for software
product lines: revisited. Sci. Comput. Program. 168, 171–185 (2018). https://doi.
org/10.1016/j.scico.2018.09.001

41. Yu, T.: Simevo: Testing evolving multi-process software systems. In: 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp.
204–215. IEEE (2017)

https://doi.org/10.1007/978-3-540-95888-8_1
https://doi.org/10.1007/978-3-540-95888-8_1
http://arxiv.org/abs/1808.08444
https://arxiv.org/abs/1808.08444
https://doi.org/10.1007/978-3-319-47474-8_1
https://doi.org/10.1007/978-3-319-74183-3_1
https://doi.org/10.1007/978-3-319-74183-3_1
https://doi.org/10.1007/978-3-642-45398-4
https://doi.org/10.1109/IWPSE.2005.7
https://doi.org/10.1145/2993288.2993294
https://doi.org/10.1145/2993288.2993294
https://doi.org/10.1016/j.scico.2018.09.001
https://doi.org/10.1016/j.scico.2018.09.001

www.manaraa.com

Improving Software Engineering Research
Through Experimentation Workbenches

Klaus Schmid(B), Sascha El-Sharkawy(B), and Christian Kröher(B)

Institute of Computer Science, University of Hildesheim, Hildesheim, Germany
{schmid,elscha,kroeher}@sse.uni-hildesheim.de

https://sse.uni-hildesheim.de/en/

Abstract. Experimentation with software prototypes plays a fundamen-
tal role in software engineering research. In contrast to many other scien-
tific disciplines, however, explicit support for this key activity in software
engineering is relatively small. While some approaches to improve this sit-
uation have been proposed by the software engineering community, exper-
iments are still very difficult and sometimes impossible to replicate.

In this paper, we propose the concept of an experimentation work-
bench as a means of explicit support for experimentation in software
engineering research. In particular, we discuss core requirements that an
experimentation workbench should satisfy in order to qualify as such and
to offer a real benefit for researchers. Beyond their core benefits for exper-
imentation, we stipulate that experimentation workbenches will also have
benefits in regard to reproducibility and repeatability of software engi-
neering research. Further, we illustrate this concept with a scenario and
a case study, and describe relevant challenges as well as our experience
with experimentation workbenches.

Keywords: Experimentation workbench ·
Empirical software engineering · Static analysis ·
Software product line analysis

1 Introduction

A significant part of software engineering is experimental in nature. This holds
both for method-oriented research, which typically requires humans-in-the-loop,
as well as more implementation-oriented research (related to program analysis,
verification, software generation, etc.), which is the focus of this contribution.

The challenges to experimental research in software engineering are very sim-
ilar to these in other experimental disciplines, like physics or psychology. Those
include replicability of research results, efficient support for the experimental
process, like conducting variations, or enabling others to reuse the scientific
results. In some disciplines these issues have gained wide-spread attention, like
in psychology due to the reproducibility crisis [2]. In large-scale physics, like the
Large Hadron Collider (LHC), creating documentation solutions and supporting
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 67–82, 2019.
https://doi.org/10.1007/978-3-030-30985-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_6

www.manaraa.com

68 K. Schmid et al.

many variations of experiments is considered well before any experiments are
actually built, i.e., creating the experiments are major systematic engineering
activities in their own right. This inspired us to compare this situation with soft-
ware engineering research, in particular experimental research based on software
tools.

In software engineering, deficiencies in the systematic support of the research
process are increasingly recognized as an issue. In our own experience (and that
of others), even if the relevant software is provided, e.g., as open-source, it is very
difficult and sometimes impossible to replicate the experiments as they may rely
on (unavailable) third party tools or undocumented execution details. Thus, the
replication of a single evaluation may require several days or weeks of work only
for reverse engineering missing information or assets. This has also influenced
organizations, like the Association for Computing Machinery (ACM), to address
this need and provide guidelines to improve the situation, e.g., with assessing
publications [1]. As part of these guidelines, ACM defines a terminology that
distinguishes repeatability, replicability, and reproducibility. In this paper, we
will follow this terminology and, hence, use these terms as follows:

– Repeatability means that researchers receive the same results with their own
experimental setup on multiple trials.

– Replicability means that a different person receives the same results with the
same experimental setup as reported by a researcher on multiple trials.

– Reproducibility means that a different person receives the same results as
reported by a researcher with their own experimental setup on multiple trials.

A typical way to improve repeatability, replicability, and reproducibility is the
publication of all artifacts relevant to an experiment. For instance, conferences
increasingly provide the possibility to back up publications with artifacts and
assess their quality [1]. Other measures include the use of docker or virtual
machines to improve replicability [3]. However, these approaches are typically
applied after the fact, i.e., after the experiments are finished, as opposed to
practices in established experimental disciplines. This post-mortem approach
may lead to threats to validity as it leads to the risk of missing important details
in the documentation artifacts. These solutions do also not address other issues
in the scientific process, like exploration of experimental variation.

Here, driven from our own experiences in conducting technical research exper-
iments, we propose the concept of an experimentation workbench for software
engineering to remedy this situation and make the scientific workflow and its
requirements a central aspect in the tools we build. A key motivation for our
proposal is the question:

“How would a support environment for software engineering research look
like, if we would specifically engineer one?”

Today, we are used to development workbenches like Eclipse [32], but while
they are heavily used in research, they (only) aim at supporting the software

www.manaraa.com

Improving SE Research through Experimentation Workbenches 69

development process in general. They do not address any specific research-
oriented requirements. Other uses of the term workbench include artifacts, like
language workbenches [7]. Again, this term is more directed towards (language)
development, not so much towards research. We choose the term experimenta-
tion workbench in analogy to these uses of the term. The term experimentation
workbench is also not completely new. It has already been used in networking [9],
however, with slightly different semantics, namely to denote a specific form of
simulation environment.

An experimentation workbench, as we envision it, is not only about replica-
bility, but about supporting the scientific process at large (e.g., rapid variation,
reuse in new research), as we will discuss in the following sections. Thus, among
other things, it should also support general reproducibility. This would move
software engineering more in line with other experimental sciences. The require-
ments we put forward for defining the concept of experimentation workbenches
are our main contribution. We believe thinking in these terms from the begin-
ning and supporting the scientific process with such environments can be a major
contribution to our community. In summary, our contributions are:

– The definition of the concept of an experimentation workbench along with a
description of its defining requirements.

– An illustrative scenario highlighting the benefits of experimentation work-
benches.

– An example implementation (KernelHaven).
– A discussion of challenges for creating experimentation workbenches.
– A report of our experiences with realizing and using experimentation work-

benches in our research on product line analysis.

Below, we will further refine the concept of experimentation workbenches in
a scenario (Sect. 2), before we define the fundamental requirements in Sect. 3.
We illustrate the defined concept based on KernelHaven in Sect. 4, discuss major
challenges to realizing experimentation workbenches in Sect. 5, and provide our
experiences in Sect. 6. Finally, we conclude in Sect. 7.

2 Usage Scenario

In this section, we describe a scenario to clarify our expectations on how
experimentation workbenches support the experimentation workflow. We assume
experimentation workbenches to be constructed for a specific research domain.
For our scenario we use the domain of static product line analysis as a reference,
which is a rather active field of research [34]. It aims at questions like detecting
code that can never be part of a product, as there is no product configuration that
would allow this, or detecting type inconsistencies that only arise for specific code
configurations. All these analyses have a certain structure: the different inputs
like a variability model, source code, etc. must be analyzed and transformed
into appropriate formats for integration and analysis. We choose this domain to
match it to the example experimentation workbench discussed in Sect. 4. Figure 1

www.manaraa.com

70 K. Schmid et al.

Fig. 1. Example workflow using an experimentation workbench.

shows an illustration of an example workflow in this domain as supported by
an experimentation workbench. We discuss this workflow below by means of a
scenario.

Preparation. Stefania wants to test her new analysis approach. She implemented
it as a plugin for an experimentation workbench. This analysis works on an
abstract representation of a product line and requires inputs from the variability
model, the variability-enhanced build model, and C-code files. She uses Linux as
a case study, which is often used in research, but huge. For translating the source
code into an appropriate format for her analysis, two techniques are available: a
fast, but not so precise one, and one precise, but rather slow.

Trial. First, Stefania wants to perform a trial with a small subset of the data.
Thus, she defines the case study subset, the fast translation technique, and her
analysis by configuration of the experimentation workbench. This is possible
as data format standardization (along with necessary translations) and other
services are offered by the experimentation workbench. The workbench also
addresses parallelization and other technical issues regarding resource utiliza-
tion allowing her to focus only on the realization of her analysis. In particular,
no coding is required (except for implementing her analysis). This run gives the
expected results after a few minutes.

Pre-study. Stefania changes the configuration to include all input data for her
pre-study. She starts the analysis, which finishes already in a few hours. The
results are again positive, but some files have not been correctly processed as
she still used the fast but imprecise translation technique of her first trial.

Final. Stefania switches from the fast translation to the more precise one simply
by configuration of the experimentation workbench. This technique uses a differ-
ent approach and produces different outputs, but the experimentation workbench

www.manaraa.com

Improving SE Research through Experimentation Workbenches 71

handles format translations transparently. Hence, changing the complete analysis
is again as easy as simply modifying a configuration option. This helps to avoid
introducing accidental changes of the experiment that could occur if more com-
plex programming would be involved. Stefania compares the final results with
her pre-study. This is easy to do as she used the documentation feature, which
results in automatic archiving of all input and output data, implementation
artifacts, source code, and the entire configuration of the experimentation work-
bench. Apart from the impact of the more detailed analysis, the results match.
Hence, Stefania shares the documentation file with her fellow researchers, who
can directly rerun the analysis and compare the results or do further studies.

It is exactly this kind of fast, iterative changes along with the comprehensive
documentation that the concept of an experimentation workbench is about.

3 Concepts and Requirements

As illustrated in the usage scenario above, experimentation workbenches should
support researchers in easily performing experiments, explore the space of pos-
sibilities, document them, and share them with others, who then can build on
them, refine them, apply their own techniques or create further derived experi-
ments. These goals partially overlap with other approaches to improve the sci-
entific process in software engineering.

For example, benchmarking as a scientific approach can support commu-
nity building and can help to accelerate scientific advancement [29]. However, it
does not address aspects like replication, supporting the experimentation process
itself, etc. Concepts like Jupyter notebooks [26] support experimentation and to
some limited degree replication and sharing, so they already come close. We
could consider them as one specific instance of an experimentation workbench
for data science, but this is usually not applicable to software engineering exper-
imentation and it is still very generic, leaving the major burden of programming
to the researchers. Other concepts like using docker images or virtual machines
in software engineering address replication [3], but not other experimentation-
oriented capabilities. Thus, while various approaches exist that address related
topics, so far no one fully addresses the problems of the software engineering
researcher as we do here with the concept of experimentation workbenches.

In our vision, experimentation workbenches provide key capabilities to sup-
port typical research activities in the scientific workflow. However, we do not
expect that there will be a single experimentation workbench for all kinds of
software engineering research just as there is no single experimentation facility
in physics. Rather, we expect that the generic requirements, we present below,
will be instantiated in domain-oriented ways. For clarity, we abstract here from
any activities that are already well-supported, e.g., by development environ-
ments, and focus on those, for which there is typically no automated support
available. In our view these are, in particular, the following ones:

www.manaraa.com

72 K. Schmid et al.

R1 Support the setup (definition) of experiments.
R2 Support the analysis of experiments.
R3 Support the fast execution of variants of the experiment, including applying

the experiment setup to different cases.
R4 Support the documentation of all relevant artefacts for replication.
R5 Support the reuse of experiments (by third parties).
R6 Support the extension and specialization of experiments by third parties.

Supporting the setup of experiments (R1) means, in particular, that tech-
nical issues that are not relevant to the study, but only required to ensure its
execution, are handled by the workbench as far as possible. These could include
providing initialization code, process coordination, and parallelization. Platform
independence could be another aspect, which is not mandatory, but rather a
design decision made by the developers and judged according to the requirements
of the type of experimentation to be supported. Ideally, researchers only need
to focus on the algorithmic aspects of their contributions. Thus, the front end
to the researcher should provide a configuration interface or a Domain-Specific
Language (DSL) or a combination of both to assist in these tasks.

After an experiment execution an experiment analysis (R2) must be done
in order to determine what the results mean in relation to the initial research
question. This could be provided by visualization tools, by providing certain
kinds of tabularization, or simply by analysis scripts. The needs in this area
are strongly domain-dependent as the analysis will depend on the types and
amounts of data produced, requirements on statistics, and so forth. However, in
many cases it will be possible to address these requirements using environments
for data analysis like R [33]. Thus, if appropriate interfaces are available, there
is no need to re-implement this for each workbench.

In experimentation it is often the case that one wants to analyze variations
in the data or in algorithms to determine their impact on the overall outcome.
This requires the possibility to set up new versions of an experiment with little
effort and to easily go back to the previous analysis, if an experiment turns out
to be not successful (R3). Sometimes such a variation can also be driven by
performing a simplified version to improve turn-around time.

Finally, an experimentation workbench should support documentation of
experiments such that automated replication is easily facilitated (R4). Such a
replication package should at least include all inputs, outputs, code, and analysis
results, if applicable. Thus, the package should directly support the inspection of
any results, but also the direct replication of the experiments by any third-party.

Ideally, it should be possible to directly reuse not only the results, but even
the experiments (R5). While this reusability enables repeatability by allowing
researchers to always receive the same results with the same experimental setup,
it also supports replicability and reproducibility by different persons. In partic-
ular, third parties should be able to easily re-conduct an experiment by reusing
the experimental setup either directly, or with only slight adaptations, e.g., to fit
their environment, which still conform to the initially documented experiment.

www.manaraa.com

Improving SE Research through Experimentation Workbenches 73

The direct reuse of an experiment (R5) may not always be sufficient to
enable reproducibility. For example, if a third party aims at conducting a pre-
vious experiment of other researchers using a different case study. This may
require variations like different algorithms to provide the necessary data from
software artifacts as the new case study consists of different types of artifacts
than the initial one (e.g., Java source code instead of C source code). This may
require extensions or specializations of the initial experimentation, which ideally
should be directly supported by the experimentation workbench (R6). Moreover,
from the perspective of the overall scientific process that should be supported
along the lines of the well-known adage of “standing on the shoulders of giants”,
this requirement is actually particularly important. Today, such an extension is
extremely difficult, even if all the code is available as open source as existing
experimental implementations are typically not created for reuse or even exten-
sion by third-parties. Thus, we want to emphasize this here due its importance
to the scientific process.

4 An Experimentation Workbench for Static Product
Line Analysis

In this section, we discuss KernelHaven1 as an example of an open source exper-
imentation workbench [20,21]. We do not argue that it is the ideal or perfect
implementation of an experimentation workbench, but we use it here as a ref-
erence to describe some properties and technical implications of the concepts
and requirements introduced in Sect. 3. KernelHaven instantiates these generic
requirements for the domain of static analysis of software product lines. While we
focus on this domain here, a specialized instance2 of KernelHaven exists, which
addresses metrics for software product lines [12] as a subset of static product
line analysis (cf. requirement R6 in Sect. 3).

In order to abstract from technical details and allow to rapidly set up new
experiment variants (R3), it is necessary to take a domain-oriented perspective.
The resulting workbench will only support experiments in this domain. In our case
of product line analysis, Fig. 2 shows the resulting structure of that workbench.
It consists of various extractors, which transform the available assets into a com-
mon data model that provides a good basis for analysis. In our domain, the rele-
vant information is typically derived from three categories of assets: the variability
model, the build system, and code assets. Hence, a code pipeline, a build pipeline,
and a variability model pipeline further structure the workbench in Fig. 2, which
perform this derivation for the respective category of assets individually.

While this workbench was initially developed for experiments on Linux,
its architecture is much broader as all analysis and extractor components are
implemented by a flexible plugin system. Thus, for example, the application
to a proprietary variational build system only requires the development of an

1 Available at GitHub: https://github.com/KernelHaven/KernelHaven.
2 Available at GitHub: https://github.com/KernelHaven/MetricHaven.

https://github.com/KernelHaven/KernelHaven
https://github.com/KernelHaven/MetricHaven

www.manaraa.com

74 K. Schmid et al.

Documentation File

Legend:

C
od

e enilepiP Code
Assets

Code
Extractor

B
ui

ld
enilepiP Build

Assets

ytilibai ra
V

ledo
M Pi

pe
lin

e

Variability
Model Assets

Variability
Model Extractor

Build
Extractor

Extractors Common
Data Model

Analysis

Pipeline Configurator

Configuration File

Available
Assets

Plugin
Reads
Configures
Archives

Data Flow

Fig. 2. KernelHaven Overview.

appropriate extraction plugin.3 The common data model, which is used to rep-
resent the collected data of the various extractors, allows the reuse of existing
analysis plugins without additional work.

Figure 2 shows that the pipeline configurator reads a configuration file to
configure the whole infrastructure. It performs initialization of all subsystems
(in particular the wiring, initialization and starting of the components), creates
the corresponding processes, and allocates hardware resources. Also issues like
parallelization of the various processes are handled by the infrastructure. Initially
an adequate number of processes are created and throughout data dependencies
are used to manage the parallel processing.

3 In the case of minor variations, of course, also variations of existing plugins or even
parameterized instances can be used. In order to support this a parametrization
approach for plugins exists.

www.manaraa.com

Improving SE Research through Experimentation Workbenches 75

The configuration-oriented approach, which leads to an open ecosystem plat-
form, directly addresses requirements R1 to R3 (cf. Sect. 3). The platform can
also be configured to directly invoke documentation-related activities like archiv-
ing all relevant data, sources, implementations, configuration information, and
so forth. This addresses requirement R4 in Sect. 3. Requirements R5 and R6 are
addressed by combining that (a) other researchers can rerun the experiments
due to auto-documentation and (b) build on them by changing the configura-
tion using either existing or self-developed plugins. The auto-documentation fea-
ture of KernelHaven therefore produces the experiment documentation in terms
of an archive that contains all input, intermediate, and output data, as well
as the main infrastructure, all plug-ins, and the configuration file. This feature
directly supports reproducibility as a core task of research: the archive provides
the original experimental setup to other researchers, enables them to rerun the
same experiment on the same input data, and allows inspection of the previous
results.

Initially, KernelHaven plugins were mostly derived from existing research
prototypes. For example, they wrap a pre-existing tool and handle all the details
of driving these tools (e.g., particular parametrization or environment needs).
This has two major effects:

– The (re-)use of successful tools has been tremendously simplified: while for
some tools, like TypeChef [18], people typically need several days to make it
work reliably, the plugin embeds the relevant knowledge to make it reusable
in minutes.

– The combination of tools is now possible simply by configuration: while com-
bining existing tools as well as integrating with existing ones requires a lot of
work and tool-knowledge, it is now a matter of defining the desired plugins
as a parameter in a configuration file.

An important part of the domain design is the definition of the data struc-
tures and relevant data transformations to make extractors interchangeable. This
can also be illustrated with KernelHaven. The toolset provides several extrac-
tor plugins, which can operate on C-Source code and can provide variability-
tagged source-code fragments. One is derived from Undertaker [6], another one
from TypeChef [18]. They differ, however, very significantly in terms of the
level of detail they provide: Undertaker scans the source-file, identifies code
blocks as sequences of lines and tags them with the relevant variability derived
from any #ifdef-command. In the process it ignores header-files. On the other
hand, TypeChef performs full variability-aware parsing, including header-files
and macro expansions. As a consequence, it provides a complete AST adorned
with variability information.

While the results of the two tools differ fundamentally, they share some
information. Both extract the included variability information from source-files
using preprocessor directives, i.e., the presence conditions. This commonality is
sufficient for some types of analyses, like the identification of dead code [31].
In KernelHaven, all entities for representing extracted code information inherit
from a class, which stores this common information. This allows to exchange

www.manaraa.com

76 K. Schmid et al.

1 code.extractor.class = UndertakerExtractor

2 code.extractor.file_regex = .*\.c

3 build.extractor.class = KbuildMinerExtractor

4 variability.extractor.class = KconfigReaderExtractor

5 analysis.class = DeadCodeAnalysis

6 ...

Listing 1.1. Excerpt of a KernelHaven configuration file.

code extractors as long as the desired analysis does not require the specific out-
put of a certain extractor. The plugin system knows about these dependencies
and takes care of them. An example is illustrated in Listing 1.1, which shows the
relevant part to perform a dead code analysis on Linux with the Undertaker-
extractor. Only the configuration file, in particular Line 1, must be modified in
order to use TypeChef instead of Undertaker. However, this can be seen as a
refinement of the Undertaker-information as this also corresponds to code-blocks.
This is actually how the information is represented: a source-code processor may
provide variability-adorned code-blocks, which may contain more detailed infor-
mation (e.g., AST). The data structures are defined in a way that further steps
may ignore levels of detail that are not required in their processing increasing
composability of the various plugins.

While the analysis of results itself is not part of KernelHaven, the infras-
tructure supports R2 by supporting the export of the resulting data in analysis-
friendly formats like text-files (e.g., csv) or Excel. The core analysis is then
typically done either with Excel or using R-scripts.

This allows to execute the scenario described in Sect. 2. One can first test
new analysis concepts based on the rather fast, but not so detailed Undertaker-
extractor, which extracts variability elements as line ranges. After the analysis
has been positively evaluated, one can perform a more detailed analysis using
the macro-aware parser of TypeChef, which provides a code block as an AST-
fragment where all elements have the same presence condition. So, what both
extractors have in common is to provide source code elements tagged with pres-
ence conditions, which is sufficient for dead code analysis. An AST-based analy-
sis like type-analysis requires code extractors, which extract an AST containing
variability information. Currently KernelHaven supports this with TypeChef or
srcML [30]. It is important to note that (a) these different types of analysis are
all supported by KernelHaven, and (b), for switching among them, it is suffi-
cient to change some configuration options; no implementation change for any
extractor plugin or the analysis plugin is required as long as they all adhere to
the interface conventions.

Here, KernelHaven realizes two different perspectives on experimentation
workbenches. On the one hand, KernelHaven is a platform that provides sup-
port for various experiments in the domain of static product lines analy-
ses. On the other, we derived different KernelHaven instances based on this
platform. These instances consist of the common experimentation workbench,

www.manaraa.com

Improving SE Research through Experimentation Workbenches 77

configuration parameters, and if necessary also experimentation-specific plugins
that realize one specific analysis. In Sect. 6, we exemplary show some of the
experiments, i.e., KernelHaven instances, which we realized based on the Ker-
nelHaven platform.

5 Challenges

While we believe the concept of experimentation workbenches is very fruitful for
the research community and our own experiences with the KernelHaven imple-
mentation of it are so far very positive, there are still some challenges associated
with the realization of an experimentation workbench.

Domain specifity. The first and most obvious challenge to experimentation work-
benches is that they need to be constructed for a specific domain of experimen-
tation. Thus, the requirements, we presented here, must be interpreted in the
corresponding context and the capabilities of the workbench need to be scoped in
terms of types of experiments (variations) to take into account. Thus, an experi-
mentation workbench can be regarded as some form of product line [23] or open
ecosystem [4]. Similar to product lines, of course, incremental development of it
is possible.

Freedom of Implementation. It is fundamentally hard to guarantee full replicabil-
ity, without significantly restricting the expressiveness used for realising specific
parts of an experimental implementation. This is particularly the case for an
experimentation workbench, like KernelHaven, that even allows pre-existing sys-
tems written in different languages and with arbitrary infrastructures as plugins.
This issue is further compounded as in different domains different aspects may
be important for replicability. For example, KernelHaven is purely functionality-
related, i.e., as long as the same outputs are achieved for the same input, we
can assume replicability. In other areas like performance engineering, the issue
is different as similar timing behavior is required for replicability [8]. Hence, a
corresponding experimentation workbench will have to address different issues.
In this special case, special performance-rated environments have been proposed
to promote replication [25].

Scope of Documentation. An important issue is the scope of an implementation
that needs to be archived for replicability. In the example given in Sect. 4 only
code artifacts related to the workbench implementation and the plugins are
considered. The Java virtual machine and the operating system are not included.
This yields rather lightweight packages where multiple archives can easily be
stored locally. However, in other contexts the replication may require a copy of
the virtual machine and the operating system. In such cases, an experimentation
workbench may of course directly create a docker image or a virtual machine [3].
One can even imagine cases where a complex multi-machine setup needs to be
archived like in large-scale adaptive systems.

Controlled Experiment Variation. A related issue are experiment variations. If
some part of the analysis is replaced by something else, then this will result in
changes to the experiment. Typically, this will also invoke undesirable changes. In

www.manaraa.com

78 K. Schmid et al.

the example given, a switch from the simple code extractor to the more detailed
one does not only lead to a more precise analysis of variability information in
header files, but can also impact the details of the analyzed blocks as they are
analyzed in a different way. Whether these changes are acceptable or not, will
depend very much on the specifics of the analysis performed. In case plugins
are used that have been engineered from the beginning with an experimentation
workbench in mind, we expect this also to be less of an issue than it is currently
the case with the reengineered plugins that KernelHaven uses.

These challenges basically come down to the need of achieving a sufficient
domain understanding. Either prior to the construction of such an environment
or as part of the experimental process. In this regard the development of an
experimentation workbench can be compared to the development of a software
product line.

6 Experiences

So far, we described the general requirements for experimentation workbenches
and how the research community can take advantage of them. In this section,
we share our experiences when working with KernelHaven (cf. Sect. 4). We used
this experimentation workbench for our own research in the ITEA3 project
REVaMP24, which focuses on round-trip engineering of software product lines.
Since KernelHaven supports the definition of various experiments (R1) in the
domain of static SPL analysis, we were able to use KernelHaven for many differ-
ent research activities, like for example reverse engineering of variability informa-
tion for bootstrapping of SPL development, evolution support, and verification
tasks. We provide an overview of the variety of analyses supported by Kernel-
Haven and show how we could realize these very diverse analyses with limited
development resources in a short time. Further, we present lessons learned when
working with KernelHaven.

Together with the Robert Bosch GmbH, we worked on reverse engineering of
a dependency management system for a large-scale industrial product line [10].
For this, we decided to adapt the feature effect analysis described by Nadi et al.
[24] to the needs of Bosch. This kind of analysis requires usually much effort
to combine various parsers that extract variability information from different
information sources. By means of KernelHaven, we were able to develop a first
prototype very quickly, since the combination of data from different sources is
a major concern of KernelHaven and first suitable parsers were already present.
As a result, we could focus on the integration of parsers specific to the devel-
opment environment of Bosch [10], lifting the propositional analysis of feature
effects to integer-based variability [19], and on providing visualization support
for reverse engineered dependencies [17]. In addition, KernelHaven’s reproduc-
tion support (R4) simplified the execution of configured algorithms at the two
partners. Thus, we also achieved a significant benefit for industrial transfer of
our research results.
4 http://www.revamp2-project.eu/.

http://www.revamp2-project.eu/

www.manaraa.com

Improving SE Research through Experimentation Workbenches 79

KernelHaven also supports the verification of various properties of SPLs
through its data extraction and analysis capabilities. For instance, we can repro-
duce and freely combine a large number of published product line metrics [11]
resulting in more than 23,000 variations of metrics for single systems and SPLs,
many of which are not handled by any other tool [12]. Another very important
aspect for SPLs, is the analysis of (un-)dead code with respect to its variabil-
ity model [31]. This is a very time consuming task as it analyzes whether the
variability model allows the (de-)selection of all configurable code parts, e.g.,
#ifdef-blocks. Thus, this kind of analysis is more suitable for daily builds than
for a continuous analysis during the development. However, a commit analysis of
the Linux kernel has shown that changes to variability information occur infre-
quently and only affect small parts [22]. Based on this insight, we implemented
an incremental verification approach to reduce the overall time consumption by
about 90% [14], which is suitable to be applied in a continuous development envi-
ronment. The incremental verification is realized by combining previous results of
an already available dead code analysis with a new analysis that detects changed
variability information (R5 and R6).

Through the broad range of conducted experiments in combination with
tested variations of algorithms, KernelHaven evolved quickly to a highly con-
figurable system. For this, we realized a documentation system that provides
the user, based on installed plugins, a list of available configuration options,
supported values, and default settings. However, this system does not scale well
as it neither supports a documentation of suggested settings arising through the
combination of multiple plugins nor does it provide a dependency management
among the plugins, e.g., the metric analysis plugin requires code extractors that
extract a variability-aware AST rather than a simple block structure as needed
by most other analyses (cf. Sect. 4). Thus, for the future, we plan to address this
issue by (1). limiting the amount of configuration possibilities for stable plugins
and by (2). integrating dependency management systems suitable for software
ecosystems [5], e.g., based on our EASyProducer implementation [28]5.

This does also strongly suggest that experimentation workbenches can be
regarded as a special form of product line or open software ecosystem [27].

7 Conclusion

In this paper, we introduced the concept of an experimentation workbench as
a way of thinking about scientific experimentation artifacts with a focus on
the needs of the scientific process. We believe that thinking about experimental
research software in terms of this concept provides significant advantages when
developing research systems in software engineering. In the future, we believe
that some powerful experimentation workbenches for specific software engineer-
ing domains may provide a major contribution and foster the development of
better ecosystems that drive software engineering research.

5 https://sse.uni-hildesheim.de/en/research/projects/easy-producer/.

https://sse.uni-hildesheim.de/en/research/projects/easy-producer/

www.manaraa.com

80 K. Schmid et al.

Our main contributions besides the concept itself are the characterizing
requirements, which define an “ideal” experimentation workbench along with
an illustrative scenario. We further described KernelHaven as an example exper-
imentation workbench situated in the domain of product line analysis. Kernel-
Haven may provide a basis for a research ecosystem for product line analysis
as it integrates already today a number of existing research tools and makes
them significantly more accessible than is otherwise the case. Besides achieving
already significant research benefits, as discussed, we also found that this app-
roach significantly improves our potential of working with industrial partners.

We assume that the concept of an experimentation workbench always needs
to be interpreted relative to the specific scientific area. However, we hope the gen-
eral requirements we presented may guide the creation of such systems and thus
support the scientific progress by fostering the creation of ecosystems around
experimentation workbenches in a number of software engineering fields. For
example, one may interpret our concept presented in this paper in the context of
Natural Language Processing (NLP) in requirements engineering [13,15,16]. In
particular, the NLP tool for requirements analysis [16] may provide an excellent
foundation for extending it to an experimentation workbench for that domain
in future.

Acknowledgements. This work is partially supported by the ITEA3 project
REVaMP2, funded by the BMBF (German Ministry of Research and Education) under
grant 01IS16042H. Any opinions expressed herein are solely by the authors and not by
the BMBF.

References

1. Association for Computing Machinery: Artifact review and badging (2018).
http://www.acm.org/publications/policies/artifact-review-badging. Accessed 03
May 2019

2. Baker, M.: Over half of psychology studies fail reproducibility test. News
article in Nature - International Weekly Journal of Science (2015). https://
www.nature.com/news/over-half-of-psychology-studies-fail-reproducibility-test-
1.18248. Accessed 03 May 2019

3. Boettiger, C.: An introduction to docker for reproducible research. ACM SIGOPS
Operating Syst. Rev. 49(1), 71–79 (2015)

4. Bosch, J.: From software product lines to software ecosystems. In: 13th Interna-
tional Software Product Line Conference (SPLC 2009), pp. 111–119 (2009)

5. Brummermann, H., Keunecke, M., Schmid, K.: Formalizing distributed evolution
of variability in information system ecosystems. In: 6th International Workshop
on Variability Modelling of Software-Intensive Systems (VaMoS 2012), pp. 11–19
(2012)

6. CADOS / VAMOS Team: Undertaker (2015). https://vamos.informatik.uni-
erlangen.de/trac/undertaker. Accessed 03 May 2019

7. Dyer, R., Nguyen, H.A., Rajan, H., Nguyen, T.N.: Boa: A language and infras-
tructure for analyzing ultra-large-scale software repositories. In: 35th International
Conference on Software Engineering (ICSE 2013), pp. 422–431 (2013)

http://www.acm.org/publications/policies/artifact-review-badging
https://www.nature.com/news/over-half-of-psychology-studies-fail-reproducibility-test-1.18248
https://www.nature.com/news/over-half-of-psychology-studies-fail-reproducibility-test-1.18248
https://www.nature.com/news/over-half-of-psychology-studies-fail-reproducibility-test-1.18248
https://vamos.informatik.uni-erlangen.de/trac/undertaker
https://vamos.informatik.uni-erlangen.de/trac/undertaker

www.manaraa.com

Improving SE Research through Experimentation Workbenches 81

8. Eichelberger, H., Sass, A., Schmid, K.: From reproducibility problems to
improvements: a journey. In: Symposium on Software Performance (SSP 2016),
Softwaretechnik-Trends, vol. 36, no. 4, pp. 43–45 (2016)

9. Eide, E., Stoller, L., Lepreau, J.: An experimentation workbench for replayable
networking research. In: 4th USENIX Conference on Networked Systems Design
& Implementation (NSDI 2007), pp. 16–16 (2007)

10. El-Sharkawy, S., Dhar, S.J., Krafczyk, A., Duszynski, S., Beichter, T., Schmid,
K.: Reverse engineering variability in an industrial product line: observations and
lessons learned. In: 22nd International Systems and Software Product Line Con-
ference (SPLC 2018), vol. 1, pp. 215–225 (2018)

11. El-Sharkawy, S., Krafczyk, A., Schmid, K.: MetricHaven – more than 23,000 met-
rics for measuring quality attributes of software product lines. In: 23rd Interna-
tional Systems and Software Product Line Conference, SPLC 2019, vol. B. ACM
(2019). Accepted

12. El-Sharkawy, S., Yamagishi-Eichler, N., Schmid, K.: Metrics for analyzing vari-
ability and its implementation in software product lines: A systematic literature
review. Inf. Softw. Technol. 106, 1–30 (2019)

13. Ferrari, A., Dell’Orletta, F., Esuli, A., Gervasi, V., Gnesi, S.: Natural language
requirements processing: a 4D vision. IEEE Softw. 34(6), 28–35 (2017)

14. Flöter, M.: Prototypical realization and validation of an incremental software prod-
uct line analysis approach. Master thesis, University of Hildesheim (2018)

15. Gnesi, S., Ferrari, A.: Research on NLP for RE at CNR-ISTI: a report. In: 1st
Workshop on Natural Language Processing for Requirements Engineering, vol. 4,
pp. 1–5 (2018)

16. Gnesi, S., Trentanni, G.: QuARS: A NLP tool for requirements analysis. In: 2nd
Workshop on Natural Language Processing for Requirements Engineering and NLP
Tool Showcase, 1, pp. 1–5 (2019). Tool Demonstrations

17. Grüner, S., et al.: Demonstration of tool chain for feature extraction, analysis and
visualization on an industrial case study. In: 17th IEEE International Conference
on Industrial Informatics (INDIN 2019) (2019). Accepted

18. Kästner, C.: TypeChef (2013). https://ckaestne.github.io/TypeChef/. Accessed 03
May 2019

19. Krafczyk, A., El-Sharkawy, S., Schmid, K.: Reverse engineering code dependencies:
converting integer-based variability to propositional logic. In: 22nd International
Systems and Software Product Line Conference (SPLC 2018), vol. 2, pp. 34–41
(2018)

20. Kröher, C., El-Sharkawy, S., Schmid, K.: Kernelhaven – an experimentation work-
bench for analyzing software product lines. In: 40th International Conference on
Software Engineering: Companion Proceedings (ICSE 2018), pp. 73–76 (2018)

21. Kröher, C., El-Sharkawy, S., Schmid, K.: Kernelhaven - an open infrastructure for
product line analysis. In: 22nd International Systems and Software Product Line
Conference (SPLC 2018), vol. 2, pp. 5–10 (2018)

22. Kröher, C., Gerling, L., Schmid, K.: Identifying the intensity of variability changes
in software product line evolution. In: 22nd International Systems and Software
Product Line Conference (SPLC 2018), vol. 1, pp. 54–64 (2018)

23. van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering, 1st edn, 333 pp.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71437-8

24. Nadi, S., Berger, T., Kästner, C., Czarnecki, K.: Where do configuration constraints
stem from? An extraction approach and an empirical study. IEEE Trans. Softw.
Eng. 41(8), 820–841 (2015)

https://ckaestne.github.io/TypeChef/
https://doi.org/10.1007/978-3-540-71437-8

www.manaraa.com

82 K. Schmid et al.

25. Oliveira, A., Petkovich, J.C., Reidemeister, T., Fischmeister, S.: Datamill: rigorous
performance evaluation made easy. In: 4th ACM/SPEC International Conference
on Performance Engineering (ICPE 2013), pp. 137–149 (2013)

26. Project Jupyter: The Jupyter Notebook (2019). http://jupyter.org. Accessed 03
May 2019

27. Schmid, K.: Variability modeling for distributed development – a comparison with
established practice. In: 14th International Conference on Software Product Line
Engineering (SPLC 2010), pp. 155–165 (2010)

28. Schmid, K., Eichelberger, H.: Easy-producer: from product lines to variability-rich
software ecosystems. In: 19th International Conference on Software Product Line
(SPLC 2015), pp. 390–391 (2015)

29. Sim, S.E., Easterbrook, S.M., Holt, R.C.: Using benchmarking to advance research:
a challenge to software engineering. In: 25th International Conference on Software
Engineering (ICSE 2003), pp. 74–83 (2003)

30. srcML Team: srcML (2017). http://www.srcml.org/. Accessed 03 May 2019
31. Tartler, R., Lohmann, D., Sincero, J., Schröder-Preikschat, W.: Feature consis-

tency in compile-time-configurable system software: facing the Linux 10,000 fea-
ture problem. In: 6th Conference on Computer Systems (EuroSys 2011), pp. 47–60
(2011)

32. The Eclipse Foundation: Eclipse IDE (2019). https://www.eclipse.org/. Accessed
03 May 2019

33. The R Foundation: R Project (2019). https://www.r-project.org/. Accessed 03
May 2019

34. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Computing Surveys 47(1),
p. 45 (2014). Article 6

http://jupyter.org
http://www.srcml.org/
https://www.eclipse.org/
https://www.r-project.org/

www.manaraa.com

Formal Methods and Tools

www.manaraa.com

Innovating Medical Image Analysis
via Spatial Logics

Gina Belmonte1, Vincenzo Ciancia2, Diego Latella2, and Mieke Massink2(B)

1 Azienda Ospedaliera Universitaria Senese, Siena, Italy
2 Consiglio Nazionale delle Ricerche - Istituto di Scienza e Tecnologie

dell’Informazione ‘A. Faedo’, CNR, Pisa, Italy
Mieke.Massink@isti.cnr.it

Abstract. Current computer-assisted medical imaging for the plan-
ning of radiotherapy requires high-level mathematical and computa-
tional skills. These are often paired with the case-by-case integration of
highly specialised technologies. The lack of modularity at the right level
of abstraction in this field hinders research, collaboration and transfer
of expertise among medical physicists, engineers and technicians. The
longer term aim of the introduction of spatial logics and spatial model
checking in medical imaging is to provide an open platform introduc-
ing declarative medical image analysis. This will provide domain experts
with a convenient and very concise way to specify contouring and seg-
mentation operations, grounded on the solid mathematical foundations of
Topological Spatial Logics. We show preliminary results, obtained using
the spatial model checker VoxLogicA, for the automatic identification of
specific brain tissues in a healthy brain and we discuss a selection of
challenges for spatial model checking for medical imaging.

Keywords: Spatial logics · Closure Spaces ·
Spatial model checking · Medical imaging

1 Introduction

Spatial and Spatio-temporal logics and model checking are enjoying an increasing
interest in Computer Science (see for instance [12,13,16,25,26,35]). The main
idea of spatial and spatio-temporal model checking is to use specifications written
in logical languages to describe spatial properties and to automatically identify
patterns and structures of interest. Spatial and spatio-temporal model checking
have recently been applied in a variety of domains, ranging from Collective
Adaptive Systems [10,17,18] to signals [35] and images [4,13,26], just to mention
a few. The origins of spatial logics can be traced back to the forties of the previous
century when McKinsey and Tarski recognised the possibility of reasoning on
space using topology as a mathematical framework for the interpretation of
modal logic (see [9] for a thorough introduction). In their work, modal logic
formulas are interpreted as sets of points of a topological space. In particular, in
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 85–109, 2019.
https://doi.org/10.1007/978-3-030-30985-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_7

www.manaraa.com

86 G. Belmonte et al.

Fig. 1. Examples: open ball (left) and its topological closure (right)

that context, the modal operator � is interpreted as the (logical representation
of the) topological closure operator. Informally, this operator adds an (infinitely
thin) border to an open set of points as illustrated in Fig. 1.

In recent work [12,13], Ciancia et al. pushed such theoretical developments
further to encompass arbitrary graphs as models of space. In that work Closure
spaces, a generalisation of topological spaces, are used as underlying model for
discrete spatial logic inspired by recent work by Galton [21–23]. This resulted in
the definition of the Spatial Logic for Closure Spaces (SLCS), and a related model
checking algorithm. Furthermore, in [11], a spatio-temporal logic, combining
Computation Tree Logic with the spatial operators of SLCS was introduced. An
(extended) model checking algorithm has been implemented in the prototype
spatio-temporal model checker topochecker1.

A completely different and, so far, little explored domain of application for
spatial model checking is that of medical imaging. Medical imaging is concerned
with the creation of visual representations of parts of the human body for the
purpose of clinical analysis and in preparation of medical intervention. In our
recent work [4,6–8] we focused in particular on spatial model checking in the area
of medical imaging for radiotherapy. One of the most important steps in the plan-
ning of radiotherapy is the accurate contouring of tissues and organs at risk in
medical images, commonly produced by Computed Tomography (CT), Magnetic
Resonance (MR), and Positron Emission Tomography (PET). Recent research
efforts in the field of medical imaging are therefore focused on the introduction of
automatic contouring procedures. These procedures are used to identify particu-
lar kinds of tissues. These can be for example parts of the brain (white matter2,
grey matter3) or tissues that could indicate diseases that need treatment. Such
(semi-) automatic procedures would lead to an increase in accuracy and a con-
siderable reduction in time and costs, compared to manual contouring – the
current practice in most hospitals. The software for automatic contouring that
is starting to appear on the market is, however, highly specialised for particular
types of diseased tissue in particular parts of the body (e.g., “breast cancer”, or
“glioblastoma” – a kind of malign tumour in the brain), lacks transparency to its
users, provides little flexibility, and its accuracy is still not always satisfactory.
In the last few years also deep learning algorithms have become very popular for
medical image analysis. They are reaching good results and are computation-
ally efficient, but they are also posing their own limiting factors such as lack of

1 Topochecker: a topological model checker, see http://topochecker.isti.cnr.it, https://
github.com/vincenzoml/topochecker.

2 Part of the central nervous system in the brain.
3 Place where neurons are located in the outer part of the brain.

http://topochecker.isti.cnr.it
https://github.com/vincenzoml/topochecker
https://github.com/vincenzoml/topochecker

www.manaraa.com

Innovating Medical Image Analysis via Spatial Logics 87

sufficiently large accurately labelled data sets, labelling uncertainty and prob-
lems to deal with rare cases (see for example a recent survey [29] and references
therein) but also lack of explainability and transparency. Our recent work shows
that, when comparing the accurate contouring of brain tumour tissue using a
spatial model checking approach [8] with the best performing algorithms (among
which many based on deep learning) on the public benchmark data set for brain
tumours (BraTS 2017 [38]), our approach on 3D images is well in line with
the state of the art, both in terms of accuracy and in terms of computational
efficiency.

The work in the present paper is focusing on the identification of relevant
tissues in the healthy brain such as white matter and grey matter rather than
diseased tissue. As in our previous work, we do this using VoxLogicA, (Voxel-
based Logical Analyser)4 the free and open source spatial model checker described
in [8] which efficiently implements the spatial logic SLCS enriched with a number
of specific operators for the domain of medical imaging that were introduced
in [4,8]. Furthermore, we provide a selection of challenges laying ahead for the
use of spatial model checking in medical imaging as a valuable complementary
method in this important area of research.

In Sect. 2, we briefly recall the spatial logic framework and some of the main
aspects of spatial model checking based on Closure Spaces, and provide a number
of illustrative examples that serve as a gentle introduction to the spatial logic.
Section 3 illustrates further operators that are of particular interest in Medi-
cal Imaging. In Sect. 4 we show how these specific operators can be combined
with the basic logic to identify tissues of interest in a healthy brain. In Sect. 5
we describe some of the main challenges for successful application of spatial
model checking in the area of medical imaging for radiotherapy. Related work is
described in Sect. 6. In Sect. 7 we provide some conclusions and an outlook for
further research.

2 The Spatial Logic Framework

A 2D digital image can be modelled as an adjacency space, i.e. a set X of cells
or points—each corresponding to a distinct pixel—together with an adjacency
relation R among points. Usually, the so called orthogonal adjacency relation5 is
used, where only pixels which share an edge count as adjacent; on the other hand,
in the ortho-diagonal adjacency relation (see Fig. 2) pixels are adjacent as long as
they share at least either an edge or a corner. Each pixel of an image is associated
with one or more (colour) intensities; we model this by equipping the points
with attributes. We assume sets A and V of attribute names and values, and an
attribute valuation function A such that A(x, a) ∈ V is the value of attribute
a of point x. Attributes can be used in assertions α, i.e. boolean expressions,
with standard syntax and semantics. Consequently, we abstract from related

4 VoxLogicA: https://github.com/vincenzoml/VoxLogicA.
5 Sometimes called von Neumann adjacency. The relation is reflexive and symmetric.

https://github.com/vincenzoml/VoxLogicA

www.manaraa.com

88 G. Belmonte et al.

Fig. 2. Pixels that are orthogonally adjacent to pixel A (a) and orthodiagonally adja-
cent (b) are shown in blue. Distance transform (c) with distance to pixel A as attribute
shown in each pixel for orthogonal adjacency and Manhattan distance function. (Color
figure online)

details here and assume function A extended in the obvious way; for instance,
A(x, a ≤ c) = A(x, a) ≤ c, for appropriate constant c.

A similar reasoning applies to 3D—or, in general, multi-dimensional—images,
where voxels are used instead of pixels and the (chosen) adjacency relation needs
to be extended in the obvious way (an extended introduction to these matters
is given in [4]).

Given a set of (attributed) points X with a binary relation R ⊆ X × X we
define function CR : 2X → 2X with CR(Y) � Y ∪ {x|∃y ∈ Y.y R x}. It turns out
that CR is a closure function and (X, CR) is a closure space6. Thus, adjacency
spaces are a subclass of closure spaces.

A (quasi-discrete) path π in (X, CR) is a function π : N → X, such that for
all Y ⊆ N, π(CSucc(Y)) ⊆ CR(π(Y)), where π is implicitly lifted to sets in the
usual way (i.e. π(Y) = {x | ∃y ∈ Y.π(y)}) and (N, CSucc) is the closure space
of natural numbers with the successor relation: (n,m) ∈ Succ ⇔ m = n + 1.
Informally: the ordering in the path imposed by N is compatible with relation
R, i.e. if π(i) 	= π(i + 1) then π(i)R π(i + 1)7.

A closure space (X, C) can be enriched with a notion of distance, i.e. a function
d : X × X → R≥0 ∪ {∞} such that d(x, y) = 0 iff x = y, leading to the
distance closure space ((X, C), d). The notion is easily lifted to sets Y 	= ∅:
d(x, Y) � inf{d(x, y)|y ∈ Y }, with d(x, ∅) = ∞.

In this paper, we use the version of the logic presented in [8], based on a
reachability operator, as in [5], and recalled in the sequel. For given set P of
atomic predicates p, and interval of R I, the syntax of the logic is given below:

Φ :: = p | ¬Φ | Φ ∨ Φ | NΦ | ρ Φ[Φ] | DIΦ (1)
6 The reader interested in the formal definition of closure spaces and on their properties

is referred to the literature (see e.g. [12,13,21–23] and references therein). Here
it suffices to say that C(Y) is essentially the set of points close to any point in
Y ; note that, since closure spaces generalize topological spaces, in the latter, the
closure operator C coincides with topological closure, so that, for instance, in the
monodimensional Euclidean space R, C([0, 1)) = C((0, 1)) = C((0, 1]) = C([0, 1]) =
[1, 0].

7 We refer to [13] for a discussion on paths on the more general class of closure spaces,
including e.g. Euclidean spaces, including e.g. Euclidean spaces.

www.manaraa.com

Innovating Medical Image Analysis via Spatial Logics 89

Satisfaction M, x |= Φ of a formula Φ at point x ∈ X in distance closure model
M = (((X, C), d),A,V) is defined in Fig. 3 by induction on the structure of
formulas. It is assumed that space is modelled by the set of points of a distance
closure model; each atomic predicate p ∈ P models a specific feature of points and
is thus associated with the points that have this feature. A point x satisfies N Φ if
it belongs to the closure of the set of points satisfying Φ, i.e. if x is near (or close)
to a point satisfying Φ; x satisfies ρ Φ2[Φ1] if there is a path π rooted in x—i.e.
with x = π(0)—and an index � such that π(�) satisfies Φ2—i.e. M, π(�) |= Φ2—
and all intermediate points in π, if any, satisfy Φ1—i.e. M, π(j) |= Φ1, for all
j with 0 < j < �; x satisfies DIΦ if the distance of x from the set of points
satisfying Φ falls in interval I; in the sequel we will use standard abbreviations
for denoting intervals I of interest as parameter of D, such as: ‘< r’ for [0, r) and
‘≥ r’ for [r,∞). Finally, the logic includes logical negation (¬) and disjunction
(∨); as usual, the true (�) and false (⊥) constants as well as conjunction (∧)
are defined as derived operators.

M, x |= p ∈ P ⇔ x ∈ V(p)
M, x |= ¬ Φ ⇔ M, x |= Φ does not hold
M, x |= Φ1 ∨ Φ2 ⇔ M, x |= Φ1 or M, x |= Φ2

M, x |= N Φ ⇔ x ∈ C({y|M, y |= Φ})
M, x |= ρ Φ2[Φ1] ⇔ there exists a path π and an index � such that the following holds:

π(0) = x and M, π(�) |= Φ2 and
M, π(j) |= Φ1, for all j with 0 < j < �

M, x |= DI Φ ⇔ d(x, {y|M, y |= Φ}) ∈ I

where, whenever p := α is a definition for p, we assume x ∈ V(p) if and only if A(x, α)
yields the truth-value ‘true′.

Fig. 3. Definition of the satisfaction relation

We provide a few simple examples to illustrate these basic spatial operators
in Fig. 4. The examples are shown for a spatial model based on a 2D space of
100 points arranged as a 10 × 10 grid, with an orthogonal adjacency relation.
We assume the set of atomic predicates P is the set {black, white, red} and,
in Fig. 4a, we show in black the points satisfying the atomic predicate black
and similarly for white and red. In Fig. 4b the points satisfying formula black ∨
red are shown in green8; similarly, Fig. 4c shows the points satisfying ¬(black ∨
red), and Fig. 4d shows those satisfying N black; all points of this model satisfy
ρ red[white], as shown in Fig. 4e while only the points satisfying black in the
model satisfy also black ∧ ρ red[white], as shown in Fig. 4f. Finally, Fig. 4g shows
in green the points that satisfy D[2,3]red, i.e. those points that are at a distance
of at least 2 and at most 3 from points satisfying red in Fig. 4a. In this case we
assume that the underlying notion of distance is that of the Manhattan distance
as shown in Fig. 2.
8 Note that this colour does not correspond to any atomic predicate and so it is not

part of the model; we use it only for illustration purposes.

www.manaraa.com

90 G. Belmonte et al.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. An example model (a); the points shown in green are those satisfying black ∨
red (b), ¬(black ∨ red) (c), N black (d), ρ red[white] (e), black ∧ ρ red[white] (f), and
D[2,3]red (g). (Color figure online)

In the version of the logic presented in [12,13] a surrounded operator S was
introduced for closure spaces, inspired by the spatial until operator discussed
in [1] for topological spaces; x satisfies Φ1 S Φ2 if it satisfies Φ1 and in any path
π with x = π(0), if there is � such that π(�) does not satisfy Φ1, then there
is j, 0 < j ≤ �, such that π(j) satisfies Φ2; in other words, x belongs to an
area satisfying Φ1 and one cannot escape from such an area without hitting a
point satisfying Φ2, i.e. x is surrounded by Φ2. In [8] it has been shown that the
surrounded operator can be expressed using the reaches operator ρ as follows:

Φ1 S Φ2 ≡ Φ1 ∧ ¬ρ (¬(Φ1 ∨ Φ2))[¬Φ2]

In this paper S will be considered as a derived operator. Again with reference
to Fig. 4a we note that the two black points also satisfy black S(N red).

3 Spatial Logic for Image Analysis

In this section we illustrate the use of the variant of SLCS briefly presented
in Sect. 2 extended with a few additional operators introduced in [4,7,8], that
are of particular interest for the domain of image analysis. In earlier work we
focused on the contouring of diseased (brain) tissue [4,8]. In the next section we
show how short but formal and unambiguous logic specifications can be used to
identify typical parts of the human brain.

Before presenting the specifications, it is convenient to introduce a few addi-
tional derived operators, defined in Fig. 5.

Let us consider a point of a model which satisfies a formula of the form
ρ Φ2[Φ1]; from the definition of the reaches operator, there is no guarantee that

www.manaraa.com

Innovating Medical Image Analysis via Spatial Logics 91

touch(Φ1, Φ2) � Φ1 ∧ ρ Φ2[Φ1]
grow(Φ1, Φ2) � Φ1 ∨ touch(Φ2, Φ1)
flt(r, Φ1) � D<r(D≥r¬Φ1)

Fig. 5. Definition of the touch, grow and flt derived operators.

such a point would also satisfy Φ1, i.e. the formula satisfied by the intermedi-
ate points of the path, if any. Such guarantee is ensured by the derived oper-
ator touch—i.e. a point satisfies touch(Φ1, Φ2) if it satisfies Φ1 and there is a
path rooted in this point that reaches a point satisfying Φ2 with all preceding
points satisfying Φ1; note that all such preceding points satisfy touch(Φ1, Φ2) too.
Figure 4c shows in green the points satisfying touch(white, red) in the model of
Fig. 4a—that, by the way, in this specific model, happen to be the same as those
satisfying ¬(black ∨ red).

The formula grow(Φ1, Φ2) is satisfied by points that satisfy Φ1 and by points
that satisfy Φ2 and that are on a path that reaches a point satisfying Φ1. Figure 6a
shows in green the points satisfying grow(red, white) in the model of Fig. 4a.

A point satisfies formula flt(r, Φ1) if it is at a distance of less than r from
the set of points that are at a distance at least r from the set of points that do
not satisfy Φ1. This operator works as a filter; only contiguous areas satisfying
Φ1 that have a minimal diameter of at least 2r are preserved; these are also
smoothened if they have an irregular shape (e.g. protrusions of less than the
indicated distance). An example of the effect of the flt operator is shown in
Figs. 6b to e. Let us consider the model of Fig. 6b—defined on only two atomic
predicates, namely black and white—and let us consider the formula flt(2,black);
Fig. 6c shows in green the points of the model of Fig. 6b satisfying ¬black, while
those satisfying D≥2(¬black) are shown in Fig. 6d and finally Fig. 6e shows those
satisfying D<2(D≥2(¬black))—i.e. flt(2,black).

Furthermore a statistical similarity operator is introduced (see [4,8]). It can
search for tissue that has the same statistical texture characteristics as a provided
texture sample by comparing the similarity of the histograms of the two textures.
With reference to a point x, the statistical similarity operator ����c

[
m M k
r a b

]
Φ

compares the region of the image constituted by the sphere (hypercube) of radius
r centred in x against the region characterised by Φ. The comparison is based
on the cross correlation of the histograms of the chosen attributes of (the points
of) the two regions, namely a and b and both histograms share the same range
([m,M]) and the same bins ([1, k]). In summary, the operator allows to check to
which extent the sphere (hypercube) around the point of interest is statistically
similar to a given region (specified by) Φ. This implements a form of texture
similarity, which, in practice, works quite well for medical images, also since it is
by definition invariant with respect to rotation. In Fig. 7 we report an example
that was used in [4] as a benchmark. The benchmark uses a checkerboard-like
pattern with areas having differently-sized squares (see Fig. 7a). Figure 7b shows
the output of statistical cross-correlation—after thresholding—using as “target”

www.manaraa.com

92 G. Belmonte et al.

(a) (b) (c) (d) (e)

Fig. 6. With reference to the model in Fig. 4a, (a) shows in green the points satisfy-
ing grow(red, white). In (c) (d, e, respectively) the points of the model shown in (b)
that satisfy ¬black (D≥2(¬black), D<2(D≥2(¬black))—i.e. flt(2,black)—respectively)
are shown in green. (Color figure online)

region the whole image. The associated histogram mostly consists of an equal
number of black and white points (plus a smaller number of points having an
intermediate value, due to grey lines separating the different areas of the image).
Therefore the points that have high local cross-correlation with the whole image
(depicted in green) are those that lay on the border of squares, whereas in the
inner part of any square, the histogram only consists of either white or black
points.

Fig. 7. A checkerboard-like pattern (a) and the result of the �� operator applied to it
(b). (Color figure online)

The maxvol operator is another operator introduced for the domain of image
analysis. A point satisfies maxvol Φ if it belongs to the largest connected compo-
nent of (the subspace induced by the) points that satisfy Φ. If there are more than
one of such largest components, then the points of all such largest components
satisfy the property maxvol Φ.

Finally, a percentiles operator is introduced that assigns to each point of
an image the percentile rank of its intensity among those that are part of the
image. The interpretation of percentiles(img ,mask , c) considers the set of points
S identified by the Boolean-valued mask mask in the image img—an image with
an intensity attribute value associated to each point—and returns an image in

www.manaraa.com

Innovating Medical Image Analysis via Spatial Logics 93

which the percentile attribute value of each voxel x is the fraction of points in
S that have an intensity below that of x in img ; c is a weight, between 0 and
1, used to take into account also the fraction of points that have intensity equal
to that of x in the computation; more precisely, the percentile value vx of each
voxel x is defined by

vx =
lx + (c · ex)

N

where lx is the number of voxels in S having intensity below that of x, ex is
the number of voxels in S that have intensity equal to that of x, and N is the
total number of voxels in S. This operator is used as a form of normalisation
of the provided image so that the specification can be used on different cases
without the need to recalibrate or explicitly normalise the intensities of the
image which may differ in a similar way as normal photographs may show some
over or under-exposition. To clarify this, let us just mention one example: the
hyperintense areas of an image can be defined as those that have percentile rank
higher than 0.95, no matter what is the range of the intensity of the source
image, or even its numeric type and precision.

The spatial logic SLCS and the additional operators discussed in this section
have been implemented in the free open source spatial model checker VoxLogicA.
VoxLogicA is specifically designed for the analysis of (possibly multi-dimensional,
e.g. 3D) digital images as a specialised image analysis tool, though it can also
be used for 2D (general purpose) image analysis. It is tailored to usability and
efficiency by employing state-of-the-art algorithms and open source libraries,
borrowed from computational image processing, in combination with efficient
spatial model checking algorithms. The source code and binaries of VoxLogicA
as well as an exhaustive list of the available built-ins, a user manual and a
mini-tutorial for the tool are available at the web site of the tool (see Footnote
4). Furthermore, a “standard library” is provided containing short-hands for
commonly used functions, and for derived operators. For further details on the
model checker and its implementation we refer to [8].

4 Illustration: Brain Segmentation

In previous work [4,7,8] we have focused on how the spatial model checker
VoxLogicA can be used for contouring of brain tumours and associated oedema.
In this section we present preliminary results on the identification of specific
tissues in the healthy head and brain such as white and grey matter, the skull,
the bone marrow and so on. For this purpose we use two simulated brain images9

from a set of twenty [2,28]. Simulated brain images have the advantage that
data is generated and therefore the ‘ground truth’ is know, i.e. it is know for
sure which points belong to which kind of tissue. This is very useful for the
quantitative testing of image analysis methods.

9 See https://brainweb.bic.mni.mcgill.ca/brainweb/anatomic normal 20.html (Pub-
licly available).

https://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_normal_20.html

www.manaraa.com

94 G. Belmonte et al.

The specifications that we present serve the purpose to illustrate the flexibil-
ity and the potential of the approach, although we expect that our method will
be further improved to obtain more accurate results in future work.

The syntax we use for the specifications is that of VoxLogicA, namely: |,&,!
are boolean or, and, not ; distleq(c,phi) is the formula D≤cphi (similarly,
distgeq; distances are in millimeters); the statistical similarity operator (see
Sect. 6) ����c

[
m M k
r a b

]
Φ is written as crossCorrelation(r,a,b,phi,m,M,k) �� c;

where the function crossCorrelation computes the relevant cross-correlation
value. The >. and <. operators (greater than, and less than, respectively) per-
form thresholding of the attribute values of the points of an image; border is
true on voxels that lay at the border of the image. Other operators should be
self-explaining or will be explained in passing.

Specification 1: Derived operators in VoxLogicA

1 import "stdlib.imgql"

2 let grow(a,b) = (a | touch(b,a))

3 let flt(r,a) = distleq(r,distgeq(r,!a))

4 load imgT1 = "INPUTDIR/NAME t1.nii.gz"

5 let t1 = intensity(imgT1)

6 let similarT1To(a) = crossCorrelation(3,t1,t1,a,min(t1),max(t1),30)

7 let similarT1Tor1(a) =

crossCorrelation(1,t1,t1,a,min(t1),max(t1),30)

In the first part of the specification, shown in Specification 1, standard derived
operators are imported from the file stdlib.imgql (they will be explained when
they are used) and the derived operators that were presented in Sect. 3 are
defined, i.e. the operators grow and flt.

In line 4 the 3D magnetic resonance image (MRI) is loaded (which in this
case is of type T1, short for T1-weighted-Fluid-Attenuated Inversion Recovery).
In this case, the file is encoded using the NIfTI file format (.nii file name
extension)10. In line 5 the name t1 is bound to the attribute of each voxel of
the image corresponding to the intensity of that voxel in the image. In line 6
and 7 two variants of the statistical similarity operator crossCorrelation are
defined that share the same parameters, but use a different radius, 3 mm and
1 mm, respectively, around each point.

The second part of the specification is given in Specification 2, where the
operations for the identification of the head and the background in the image
are shown. Figure 8 shows a few intermediate results of Specification 2 that make
it easier to follow the informal description below. Such figures across this section
have been produced using the save command of the tool, which, when applied to
a formula, generates and saves to disk a new binary image, where exactly those
points satisfying the formula at hand are rendered using the boolean value true.

10 The NIfTI file format is a special data format by the Neuro-imaging Informatics
Technology Initiative, https://nifti.nimh.nih.gov/.

https://nifti.nimh.nih.gov/

www.manaraa.com

Innovating Medical Image Analysis via Spatial Logics 95

Specification 2: Segmentation of head and background

1 let bg = percentiles(t1,t1 >. 0,0.5)

2 let bg1 = touch(bg <. 0.6,border)

3 let head1 = maxvol(flt(2,!bg1))

4 let head2 = distleq(3,head1)

5 let bg2 = maxvol(!head2)

6 let background = distleq(3,bg2)

7 let head=!background

Such a binary image (also called region of interest) can be loaded in viewers
to produce coloured overlays that are superimposed to the original image. In
line 1 bg (short for ‘background’) is defined where each point in the image is
associated with the value of its percentile ranking attribute w.r.t. the intensity of
the points. In line 2 this is used to identify all points from which a border point
can be reached passing only through relatively dark (low intensity) points that
satisfy bg < .0.6, shown in red in Fig. 8b. Note that the formula is satisfied also
by points inside the skull; this is due to the fact that the image under analysis is a
3D image, so there are (3D) paths which do not lay in the 2D projection shown in
the figure. In line 3 this is used to obtain head1, a first approximation of the area
of the head as the maximum volume that is not identified as background—after
some smoothening using the filter operator (Fig. 8c). In line 4 also all points at
a distance of less than 3 mm from points satisfying head1 are included (Fig. 8d).
This temporary enlargement of the head area is useful to separate points that
are part of the background from those that are part of the head, so that in line 5
the operator maxvol can be used to identify all points of the background (in red
in Fig. 8e). After this, the temporary enlargement is removed using the distleq
operator in line 6 (in blue in Fig. 8f) and the points that satisfied it are again
part of the background.

The separation of the background from the part of the image that is really
of interest, namely the head, is important for the next steps. In particular, the
percentiles can now be obtained considering only the area of the head. Since
the anatomy of any adult human head is very similar, the number of points in
each percentile, i.e. the normalised grey-level, have a very similar distribution for
any head regardless of the possible fluctuations in the luminosity of the images
due to differences in the registration. Therefore, in line 1 of Specification 3 the
percentile rank for each point satisfying head is obtained in pt1. In line 2 the
similarity coefficient (cross correlation) is computed (for each voxel) and in line
3 we define the interior part of the head, i.e. those points of the head that are at
a distance of at least 30 mm from the background (Fig. 9a). The following steps
use these definitions to identify the white matter of the brain. In line 4 we seek
to obtain an area of the brain that is certainly composed of white matter and is
defined as the largest area in the inner part of the brain each point of which is
in a 3 mm ball that has a cross correlation coefficient with the complete head of
between 0.4 and 0.6 (Fig. 9b). These values have been obtained experimentally

www.manaraa.com

96 G. Belmonte et al.

Fig. 8. Identification of head and background. Original axial view (a). In red points
satisfying bg1 (b); points satisfying head1 (c); points satisfying head2 (d); points sat-
isfying bg2 (e); points satisfying head (in red) and background (in blue) (f). (Color
figure online)

in such a way that they correspond to points that are white matter and not other
kind of tissue, such as the eyes, that also has a high intensity11. Then, in line 5,
we look for all the points that are similar to white1 using a rather small radius
(1 mm) to obtain good accuracy (Fig. 9c). Subsequently, in line 6 the largest
volume of points is selected that is sufficiently similar with a coefficient of at
least 0.6 (Fig. 9d). This gives already a very good approximation. In line 7 this
is somewhat refined by “closing tiny grey holes” in this area using a surrounded
operator (Fig. 9e).

Specification 3: Segmentation of white matter

1 let pt1 = percentiles(t1,head,0.5)

2 let headSim = similarT1To(head)

3 let headInt = head & !(distleq(30,!head))

4 let white1 = maxvol((headSim <. 0.6) & (headSim >. 0.4) & headInt)

5 let whiteT1 = similarT1Tor1(white1)

6 let white2 = maxvol(whiteT1 >. 0.6)

7 let white = white2 | ((headSim >. 0.3) & surrounded((headSim >.

0.3),white2))

11 Again, note that we are processing a 3D image.

www.manaraa.com

Innovating Medical Image Analysis via Spatial Logics 97

Fig. 9. Identification of white matter. In red points satisfying headInt (a); points
satisfying white1 (b); level of similarity whiteT1 (c); points satisfying white2 (d);
points satisfying white (e). (Color figure online)

In Specification 4 we proceed by identifying the grey matter of the brain. In
line 1 we take a larger internal portion of the head than that of headInt so that
we are sure that the grey matter, which is mostly situated near the white matter
towards the outside of the brain, is included. In line 2 an area is identified that
is almost certainly part of the grey area, using expert knowledge on percentile
ranking, similarity coefficient and position within the internal part of the head
(Fig. 10a). In line 3 we use the knowledge that grey matter is attached to the
white matter of the brain (Fig. 10b). We now have a good sample of grey matter,
but there are some areas that are not covered (see the grey parts that are not
red yet in the left and top part of the head in Fig. 10b). So we look for further
texture that is similar to grey matter in line 4 and 5 (Fig. 10c and d). This indeed
includes the previous grey areas that were missed out, but also includes other
areas in the bottom outer part of the head. We use again the knowledge that
grey and white matter are next to each other using touch and distleq and the
knowledge that white and grey matter do not overlap, i.e. !white to exclude the
areas on this outer part as they cannot be part of the grey matter for anatomical
reasons. This gives us the final result for grey matter as shown in (Fig. 10e).

In a very similar fashion we can also identify the cerebrospinal fluid (CSF),
the skull and the bone marrow for example. We omit the details here and only
show the final results in Fig. 11. In the same figure we show some preliminary
analysis of the quality of the described method by comparing our results with a
‘ground truth’ segmentation provided by the method in [2]. Figure 11 shows our

www.manaraa.com

98 G. Belmonte et al.

Specification 4: Segmentation of grey matter

1 let headInt2 = head & !(distleq(10,!head))

2 let grey1 = (headSim >. 0.6) & (pt1 <. 0.8) & headInt2

3 let grey2 = touch(grey1,white)

4 let greyT1 = similarT1To(grey2)

5 let grey4 = (greyT1 >. 0.3) & (pt1 <. 0.8) & (pt1 >. 0.4) & (whiteT1

<. 0.8)

6 let grey = touch(grey4,white) & distleq(9,white) & !white

Fig. 10. Identification of grey matter. In red points satisfying grey1 (a); points sat-
isfying grey2 (b); level of similarity greyT1 (c); points satisfying grey4 (d); points
satisfying grey (e). (Color figure online)

results in red and the ‘ground truth’ segmentation of [2] for case study12 Pat04
in blue. The points in pink are those where both analyses coincide.

Note that all the analyses are performed in 3D and can be viewed from all
three directions. As an example, in Fig. 12 we show the three perspectives, axial,
coronal and sagittal, for the grey matter for one particular cross-section.

We have applied the same specification also on case Pat05 of the same public
database and have obtained very similar results. As a preliminary measure of
similarity between the ‘ground truth’ segmentation and that obtained via spa-
tial model checking we report here the Dice measure13, and the sensitivity and

12 See http://brainweb.bic.mni.mcgill.ca/brainweb/anatomic normal 20.html.
13 Dice = 2∗TP/(2∗TP+FN+FP), where TP denotes True Positive and FN denotes

False Negative.

http://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_normal_20.html

www.manaraa.com

Innovating Medical Image Analysis via Spatial Logics 99

Fig. 11. Comparison with other results. Original axial view (a). In red the points
satisfying our specification, in blue the ‘ground truth’ provided by the method in [2]
for the case study of patient nr. 04 and in pink points that satisfy both analyses. White
matter (b); grey matter (c); CSF (d); skull (e); bone marrow (f). (Color figure online)

Fig. 12. Comparison in 3D perspective for grey matter. In red points satisfying our
specification, in blue points identified by the ‘ground truth’ segmentation in [2] for the
case study of patient nr. 04 and in pink points that satisfy both analyses. Axial (a),
coronal (b) and sagittal (c) perspective. (Color figure online)

www.manaraa.com

100 G. Belmonte et al.

specificity measures for the grey and the white matter of the brain. Sensitivity
measures the fraction of voxels that are correctly identified as part of a tumour
(True Positives). Specificity measures the fraction of voxels that are correctly
identified as not being part of a tumour (True Negatives). All these similarity
coefficients give a result between 0 (no similarity) and 1 (perfect similarity) and
are commonly used to provide a combined measure of the similarity of two seg-
mentations. For example a Dice index of around 0.9 is considered as indicating
very good similarity. This is so because there is no unique ‘gold standard’ for
comparison as also manual expert markings have a certain level of variability
(see also Sect. 5 and [32]).

Table 1. Similarity between the results of ‘ground truth’ segmentation and that
obtained via spatial model checking for case studies Pat04 and Pat05

Pat04 Pat05

Dice Sensitivity Specificity Dice Sensitivity Specificity

Grey matter 0.90 0.91 0.98 0.89 0.88 0.99

White matter 0.89 0.85 1.0 0.90 0.85 1.0

Table 1 provides some first indication that the specification could be a good
candidate to be applied to further cases for the segmentation of MRI images of
healthy brains, much in the same way as we have done for tumour segmenta-
tion in [8]. Also from an execution time point of view our preliminary results
obtained with VoxLogicA are encouraging as the complete segmentation (head,
background, white matter, grey matter, CSF, skull and bone marrow) of the
brain was obtained in less than 2 min on a MacBook Pro running MacOS Mojave,
with 2.7 GHz Intel core i7 and 16 GB of memory. We leave the analysis of the
other cases of the benchmark and a more complete comparison with the results
of other techniques for segmenting healthy brain tissue for future work.

5 Challenges in Spatial Model Checking for Medical
Imaging

Medical Imaging, and in particular brain tumour segmentation, is a very active
and important area of research, see for example [33] and references therein.
There are, however, also a great number of challenges. In the following we briefly
describe some of them, and in particular those where we think that an approach
based on spatial model checking may make a significant contribution to.

Modularity, Composition and Flexibility. An aspect that all logic-based
model checking techniques have in common is their reliance on a relatively small
set of basic logical operators. There are in general many choices for such minimal

www.manaraa.com

Innovating Medical Image Analysis via Spatial Logics 101

sets of operators. Ideally, this provides at the same time a good expressivity and
also the basis for the definition of a useful set of derived operators that match
the level of domain specific reasoning of the user. In case of medical imaging for
radiotherapy, for example, that could be the neuro-radiologist. Derived operators
exploit the compositionality of the basic operators so that more complicated
operators can be constructed out of the basic building blocks. Furthermore, the
basic set should allow for very efficient verification algorithms and be minimal,
such that the correctness of the algorithms can be proven with reasonable and
acceptable effort. Finally, we would also expect a certain flexibility and generality
of the approach requiring that the operators are not too much specifically tied
to a particular application or even a single case study or type of analysis.

Although these notions have been studied extensively in thewider field ofmodel
checking, the solutions in the sense of particular sets of basic operators, that have
been proposed need to be reinterpreted in the case of spatial model checking and
founded on other mathematical theories such as closure spaces. Restricting space
to more regular structures than general graphs may also lead to very significant
increases in the efficiency of spatial model checking algorithms at the cost of some
generality. Such increase in efficiency may, however, make the difference between a
tool that can effectively improve the daily work of, for example, neuro-radiologists
and a tool that is very general but too slow or requiring too much memory to be of
practical use. These increases in efficiency are also due to the fact that for example
very efficient existing image processing algorithms and related software packages
can be exploited. For example, in VoxLogicA [8] the state-of-the-art cross-platform
and open source computational imaging library ITK14 was used for the efficient
implementation of the basic spatial operators. What exactly constitutes the best
choice of basic spatial operators, given the trade-offs, is still not a fully answered
question, however some promising candidate sets have been proposed for this area
in some of our earlier work [12,13].

Interactive Feedback and Ease of Use. Whereas traditional model checkers
and their extensions are in general used by experts in formal methods or by
software engineers, in the case of spatial model checking for medical applications
the expected users have a different background. Moreover, the specific analyses
that clinicians or neuro-radiologists are envisioned to perform with these tools
should be embedded into their daily activities and must be well-integrated with
other environments that they use such as those for safe and secure archiving
of images and their results. Furthermore, other aspects should be taken into
account as well, such as cognitive fatigue and avoidance of information overload,
allowing users to easily focus on their main critical(!) task at hand without being
distracted by useless details. There are relatively few studies addressing these
issues in some depth, even if the problem has been taken up by some research
groups, see for example work by Gambino et al. [24] for a survey and some
concrete proposals.
14 The Insight Segmentation and Registration Toolkit, see https://itk.org and http://

www.simpleitk.org.

https://itk.org
http://www.simpleitk.org
http://www.simpleitk.org

www.manaraa.com

102 G. Belmonte et al.

Explainability, Independent Reproducibility and Transferability. In
recent years, following the success of the use of artificial intelligence and neural
networks for image recognition tasks, much of the research in medical imag-
ing and segmentation tasks in particular, has focused on these (probabilistic)
learning algorithms (see for example [33,38]). Such algorithms, however, usually
depend on the availability of large and precisely annotated data sets for their
learning phase. During such a learning phase the software is autonomously cali-
brating the value of thousands of parameters until the resulting program provides
a satisfactory level of correct responses on the training data set. Deep learning
is based on the use of artificial neural networks, consisting of several layers, that
can extract a hierarchy of features from raw input data. Such learning algorithms
may reach surprisingly good results, but they also pose some open challenges.
First of all, developing large and precisely annotated data sets in delicate areas
such as medical imaging and tumour segmentation is a time-consuming task
that can only be performed, mostly manually, by specialists. This is difficult
to achieve, not only because it is very laborious, but also because of the rela-
tively high intra-expert and inter-expert variability; [32] quantifies the average of
disagreement in identified contours by experts as 20± 15% and 28± 12%, respec-
tively, for manual segmentations of brain tumour images. Interactive approaches
based on spatial model checking, in this context, may be of help to improve
the generation of manual ground truth labels in a more efficient, transparent
and reproducible way. Furthermore, the automatic algorithms that are obtained
with a (deep) learning approach cannot provide human intelligible insight in why
certain areas are identified as tumours. In other words, these procedures lack
explainability. This is a more serious problem than it may seem, at first sight,
since these algorithms (as any other in this context) do not always provide the
correct results, and in the critical context of radiotherapy the preparations must
comply to rigorous protocols where medical staff must be put in the condition
to take responsibility for their decisions.

Extendability and Openness. Manual segmentation by experts is still the
standard for in vivo images. This method is expensive and time-consuming, dif-
ficult to reproduce and possibly inaccurate due to human error. However, the
expertise that has been gained by many practitioners in the field is very valu-
able and could in principle be exploited in improving segmentation procedures if
such procedures could be easily expressed through and supported by computer
assisted operations at the right level of abstraction. For example, if various seg-
mentation procedures could be captured in an unambiguous way by the compo-
sition of a number of rather high-level operations in a formal specification, such
specifications could be published, exchanged, discussed and improved directly
by those experts working in the field. This challenge would call for an extend-
able framework, where new operations can be introduced, and that is sufficiently
open to be used by a wider community.

www.manaraa.com

Innovating Medical Image Analysis via Spatial Logics 103

Device Independence and Vendor Neutrality. Different research groups
and institutions employ specific best-practices for image analysis, often locally
built from home-made integration of different software technologies. This gives
rise to a plethora of incompatible systems, very often of academic significance,
but rarely used in clinical practice. Missing integration with existing hardware,
hand-crafted procedures, lack of maintenance and accountability, difficult use,
hard-coded dependence on the execution environment (e.g. specific operating
system or hardware), are just some factors that hinder clinical application, medi-
cal procedure approval processes, and ethical scrutiny, creating a barrier between
medical research and healthcare. Thus, successful technological transfer mostly
happens by specialised, proprietary software solutions that are typically bun-
dled with the hardware. The challenge here is to overcome the fragmentation of
the medical imaging ecosystem, by providing a set of open standards and ref-
erence implementations, fostering a paradigm shift in the field in several ways
such as by facilitating communication between research and healthcare providers
and by providing technologies that are appropriate for intermediaries (such as
manufacturers and vendors of Medical Imaging devices) to turn novel ideas into
clinical practice. This may be pursued through the social computing capabilities
of a spatial logic based language, that can attract experts of diverse fields to
collaborate through a common communication infrastructure.

Privacy Issues. Regulation issues, especially related to privacy, may easily
arise in an open platform. However, in the envisioned approach privacy is a key
strength, rather than an issue. The definition of an open standard for image
analysis, and its free and open source software implementation, will enable users
to exchange analysis procedures, and establish common knowledge, without out-
sourcing the actual, privacy sensitive data, which can be handled on-site, obeying
to the locally established practices.

The above is only a small selection of the many challenges in medical imag-
ing for radiotherapy. We do by no means intend to present an exhaustive list.
However, we think that the listed challenges are relevant and have shown where
we expect that further research in a spatial logic-based method may lead to a
useful contribution to advance this important field.

6 Related Work

Most of the present paper was dedicated to the potential of spatial model check-
ing in the field of medical imaging, initiated in [7], and of image segmentation and
contouring for the purpose of radiotherapy in particular (see [4,6,8]). However,
spatial model checking has been explored in a number of other applications and
it has been extended in several ways. In this section we provide a brief overview
of recent related work.

www.manaraa.com

104 G. Belmonte et al.

A very valuable resource and reference on the topological origins of spatial
logic is the Handbook of Spatial Logics [1]. This handbook describes several
spatial logics, with applications far beyond topological spaces. Among them are
not only logics that treat morphology, geometry, distance, or such as dynamic
systems, but also a treatment of discrete models, that are particularly difficult
to deal with from a topological perspective. See, for example [21], introducing
the approach of Closure Spaces upon which the work in [12,13,16] is based.

Starting from a spatial formalism and from a temporal formalism, spatio-
temporal logics may be defined, by introducing a mutually recursive nesting of
spatial and temporal operators. Several combinations can be obtained, depend-
ing on the chosen spatial and temporal fragments, and the permitted forms
of nesting of the two. A large number of possibilities are explored in [27], for
spatial logics based on topological spaces. One such structure was investigated
in the setting of closure spaces, namely the combination of the Computation
Tree Logic (CTL) with SLCS, resulting in the Spatio-Temporal Logic of Closure
Spaces (STLCS). In STLCS spatial and temporal fragments may be arbitrary
and mutually nested.

STLCS is interpreted on a variant of Kripke models, where valuations are
interpreted at points of a closure space. Fix a set P of proposition letters. STLCS
em state and path formulas are defined by the grammars shown below, where p
ranges over P .

Φ :: = p | ¬Φ | Φ ∨ Φ | NΦ | ρ Φ[Φ] | Aϕ | Eϕ (2)

ϕ :: = X Φ | Φ U Φ (3)

The logic features the CTL path quantifiers A (“for all paths”), and E (“there
exists a path”). As in CTL, such quantifiers must necessarily be followed by one
of the path-specific temporal operators, such as15 XΦ (“next”), FΦ (“eventu-
ally”), GΦ (“globally”), Φ1 UΦ2 (“until”), but, unlike CTL, in this case Φ, Φ1

and Φ2 are STLCS formulas that may make use of spatial operators, e.g. N , ρ
and operators derived thereof (see Sect. 2.) The mutual nesting of such opera-
tors permits one to express spatial properties in which the involved points are
constrained to certain temporal behaviours.

As a proof of concept, a model checking algorithm has been defined, which
is a variant of the classical CTL labelling algorithm [3,19], augmented with the
algorithm in [10] for the spatial fragment. The algorithm, which operates on finite
spaces, has been implemented as a prototype tool which is described in [11]. The
same algorithm is also implemented in the tool topochecker.

The tool has been used to analyse a number of properties of vehicular move-
ment in public transport systems in the context of smart cities. In [10], a bus
transportation case study was developed, to detect problems in the automatic
vehicle location (AVL) data that is provided as input to other systems that in

15 Some operators may be derived from others; for this reason in the definition of the
language we use a minimal set of connectives. As usual in logics, there are several
different choices for such a set.

www.manaraa.com

Innovating Medical Image Analysis via Spatial Logics 105

turn provide information to passengers and system operators such as bus arrival
prediction systems. Such data may contain errors originating in a problem with
the hardware of the measurement device or also indicate operational problems
experienced by bus drivers that encountered unexpected road works or accidents
and have to deviate from their planned route.

In [15], spatio-temporal model checking has been used to study a phenomenon
known as clumping, which may occur in so-called “frequent” services – those
where a timetable is not published. Clumping occurs where one bus catches up
with – or at least comes too close to – the bus which is in front of it. In [17]
spatio-temporal model checking has been used to detect the emergent formation
of ‘clusters’ of full (and empty) stations in the simulation traces of a Markov
Renewal Process (MRP) model of large bike sharing systems [31]. Subsequently,
spatio-temporal model checking has been used in combination with statistical
model checking in [18] to analyse further properties of bike sharing systems.

The logics discussed so far characterise properties of single points in space.
In [13] an extended version of SLCS has been defined that is able to express
properties that sets of points may satisfy collectively. The resulting logic, the
Collective SLCS, CSLCS, can be used for example, for expressing that the points
satisfying a certain formula Φ1 are collectively surrounded by points satisfying
formula Φ2. The notion of region as set of points and related properties has
been studied extensively in the literature, also in the context of discrete spaces
(see [36,37] among others). For instance, RCC5D is a theory of region parthood
for discrete spaces and RCC8D extends it with the topological notion of con-
nection and the relations of disconnection, external connection, tangential and
nontangential proper parthood and their inverse relations. In [14] an encoding of
RCC8D into CSLCS is provided and it is shown how topochecker can be used
for effectively checking the existence of a RCC8D relation between two given
regions of a discrete space.

Two variants of the spatial modalities have also been added to the Signal
Temporal Logic [20,30] leading to the Signal Spatio-Temporal Logic (SSTL).
The first variant, the bounded somewhere operator �· [w1,w2] is borrowed from [34],
while the second one, the bounded surround operator S[w1,w2], is inspired by
SLCS. The logic comes with a boolean and quantitative semantics which can
be found in [34,35]. The boolean semantics defines when a formula is satisfied,
the quantitative semantics provides an indication of the robustness with which
a formula is satisfied, i.e. how susceptible it is to changing its truth value for
example as a result of a perturbation in the signals. In [5] an extension of SSTL
is presented which uses a reachability operator as a basic operator of the logic.

In [25] a variant of spatial logic is proposed where spatial properties are
expressed using quad trees. The authors show that very complex spatial struc-
tures can be identified with the support of model checking algorithms as well
as machine learning procedures. However, the formulation of spatial proper-
ties becomes rather complex. The combination of this spatial logic with linear
time signal temporal logic, defined with respect to continuous-valued signals, has
recently led to the spatio-temporal logic SpaTeL [26].

www.manaraa.com

106 G. Belmonte et al.

7 Conclusions

Medical imaging is a very broad and active field of research with particular
requirements. In this work we have illustrated the basic framework of spatial
verification and how spatial logic and spatial model checking can be used to iden-
tify various kinds of tissues in the healthy brain. The field of medical imaging is
posing very particular challenges, not only of technical nature, but in particular
also in terms of responsibility, explainability, transparency and reproducibility.
Formal verification and spatial model checking may provide interesting comple-
mentary methods in this important field.

The presented specifications are a first proof of concept to show that it is
indeed possible to identify various (healthy) brain tissues with the available
operators in the presented logic. The results are promising from different per-
spectives, however, we expect that the specifications can be further improved to
obtain better accuracy. Improvements are also foreseen from the methodological
point of view. More work is needed to refine the analyses and check applicability
to a larger set of images in particular with respect to stability and accuracy of
the results, and to make the approach available in a clinical setting. The latter
requires the design of appropriate case studies and establishing experimental
protocols for clinical validation. This is planned as part of future work.

Acknowledgments. This paper was written for the Festschrift in honour of Director
of Research Dr. Stefania Gnesi. We would like to thank Stefania for the many years she
has been coordinating our Formal Methods and Tools Laboratory at ISTI-CNR, and we
hope she will continue to contribute to our Lab for many years to come. She guided the
group safely through the many periods of instability of very different nature, and she
did so with confidence and optimism. If now we have so many young (and less young)
motivated formal methods researchers in our group, that explore and develop new and
creative directions of formal methods research, both in theory and for applications, this
is made possible, in a large part, thanks to her tireless efforts in all these years.

Part of this work has been developed in the context of the Italian MIUR-PRIN
2017 project “IT MaTTerS: Methods and Tools for Trustworthy Smart Systems”.

References

1. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics.
Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4

2. Aubert-Broche, B., Griffin, M., Pike, G., Evans, A., Collins, D.: Twenty new digital
brain phantoms for creation of validation image data bases. IEEE Trans. Med.
Imaging 25(11), 1410–1416 (2006). https://doi.org/10.1109/TMI.2006.883453

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
4. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial

logics and model checking for medical imaging. Int. J. Softw. Tools Technol. Transf.
(2019). https://doi.org/10.1007/s10009-019-00511-9. Online First

https://doi.org/10.1007/978-1-4020-5587-4
https://doi.org/10.1109/TMI.2006.883453
https://doi.org/10.1007/s10009-019-00511-9

www.manaraa.com

Innovating Medical Image Analysis via Spatial Logics 107

5. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spa-
tially distributed cyber-physical systems. In: Talpin, J., Derler, P., Schneider, K.
(eds.) Proceedings of the 15th ACM-IEEE International Conference on Formal
Methods and Models for System Design, MEMOCODE 2017, Vienna, Austria, 29
September–02 October 2017, pp. 146–155. ACM (2017). https://doi.org/10.1145/
3127041.3127050

6. Belmonte, G., et al.: A topological method for automatic segmentation of glioblas-
toma in mr flair for radiotherapy - ESMRMB 2017, 34th annual scientific meeting.
Magn. Reson. Mater. Phys. Biol. Med. 30(S1), 437 (2017). https://doi.org/10.
1007/s10334-017-0634-z

7. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: From collective adaptive sys-
tems to human centric computation and back: spatial model checking for medical
imaging. In: ter Beek, M.H., Loreti, M. (eds.) Proceedings of the Workshop on
FORmal methods for the quantitative Evaluation of Collective Adaptive SysTems,
FORECAST@STAF 2016, Vienna, Austria, 8 July 2016. EPTCS, vol. 217, pp.
81–92 (2016). https://doi.org/10.4204/EPTCS.217.10

8. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: a spatial model
checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019, Part I. LNCS, vol. 11427, pp. 281–298. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17462-0 16. Preprint http://arxiv.org/abs/1811.05677

9. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Handbook of Spatial
Logics [1], pp. 217–298

10. Ciancia, V., Gilmore, S., Latella, D., Loreti, M., Massink, M.: Data verification
for collective adaptive systems: spatial model-checking of vehicle location data.
In: Eighth IEEE International Conference on Self-Adaptive and Self-Organizing
Systems Workshops, SASOW, pp. 32–37. IEEE Computer Society (2014)

11. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental
spatio-temporal model checker. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-49224-6 24

12. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 18

13. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for
closure spaces. Log. Methods Comput. Sci. 12(4) (2016). http://lmcs.episciences.
org/2067

14. Ciancia, V., Latella, D., Massink, M.: Embedding RCC8D in the collective spatial
logic CSLCS. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models,
Languages, and Tools for Concurrent and Distributed Programming. LNCS, vol.
11665, pp. 260–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21485-2 15

15. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. STTT
20(3), 289–311 (2018). https://doi.org/10.1007/s10009-018-0483-8

16. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Spatial logic and spatial model
checking for closure spaces. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM
2016. LNCS, vol. 9700, pp. 156–201. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34096-8 6

https://doi.org/10.1145/3127041.3127050
https://doi.org/10.1145/3127041.3127050
https://doi.org/10.1007/s10334-017-0634-z
https://doi.org/10.1007/s10334-017-0634-z
https://doi.org/10.4204/EPTCS.217.10
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.1007/978-3-662-44602-7_18
http://lmcs.episciences.org/2067
http://lmcs.episciences.org/2067
https://doi.org/10.1007/978-3-030-21485-2_15
https://doi.org/10.1007/978-3-030-21485-2_15
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/978-3-319-34096-8_6
https://doi.org/10.1007/978-3-319-34096-8_6

www.manaraa.com

108 G. Belmonte et al.

17. Ciancia, V., Latella, D., Massink, M., Paškauskas, R.: Exploring spatio-temporal
properties of bike-sharing systems. In: 2015 IEEE International Conference on
Self-Adaptive and Self-Organizing Systems Workshops, SASO Workshops 2015,
Cambridge, MA, USA, 21–25 September 2015, pp. 74–79. IEEE Computer Society
(2015). https://doi.org/10.1109/SASOW.2015.17

18. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 46

19. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (2001). http://
books.google.de/books?id=Nmc4wEaLXFEC

20. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

21. Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.)
COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48384-5 17

22. Galton,A.:Ageneralizedtopologicalviewofmotion indiscretespace.Theor.Comput.
Sci. 305(1–3), 111–134 (2003). https://doi.org/10.1016/S0304-3975(02)00701-6

23. Galton, A.: Discrete mereotopology. In: Calosi, C., Graziani, P. (eds.) Mereology
and the Sciences. SL, vol. 371, pp. 293–321. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-05356-1 11

24. Gambino, O., Rundo, L., Cannella, V., Vitabile, S., Pirrone, R.: A framework for
data-driven adaptive GUI generation based on DICOM. J. Biomed. Inform. 88,
37–52 (2018). https://doi.org/10.1016/j.jbi.2018.10.009

25. Grosu, R., Smolka, S., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.:
Learning and detecting emergent behavior in networks of cardiac myocytes. Com-
mun. ACM 52(3), 97–105 (2009)

26. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: SpaTel: a novel
spatial-temporal logic and its applications to networked systems. In: Proceedings of
the 18th International Conference on Hybrid Systems: Computation and Control,
HSCC 2015, pp. 189–198. ACM, New York (2015)

27. Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic + tem-
poral logic = ? In: Handbook of Spatial Logics [1], pp. 497–564

28. Kwan, R.S., Evans, A., Pike, G.: MRI simulation-based evaluation of image-
processing and classification methods. IEEE Trans. Med. Imaging 18(11), 1085–
1097 (1999)

29. Litjens, G.J.S., et al.: A survey on deep learning in medical image analysis. Med.
Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005

30. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

31. Massink, M., Paškauskas, R.: Model-based assessment of aspects of user-
satisfaction in bicycle sharing systems. In: Sotelo Vazquez, M., Olaverri Monreal,
C., Miller, J., Broggi, A. (eds.) 18th IEEE International Conference on Intelligent
Transportation Systems, pp. 1363–1370. IEEE (2015). https://doi.org/10.1109/
ITSC.2015.224

32. Mazzara, G., Velthuizen, R., Pearlman, J., Greenberg, H., Wagner, H.: Brain tumor
target volume determination for radiation treatment planning through automated
mri segmentation. Int. J. Radiat. Oncol. Biol. Phys. 59(1), 300–312 (2004)

https://doi.org/10.1109/SASOW.2015.17
https://doi.org/10.1007/978-3-319-47166-2_46
http://books.google.de/books?id=Nmc4wEaLXFEC
http://books.google.de/books?id=Nmc4wEaLXFEC
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/3-540-48384-5_17
https://doi.org/10.1007/3-540-48384-5_17
https://doi.org/10.1016/S0304-3975(02)00701-6
https://doi.org/10.1007/978-3-319-05356-1_11
https://doi.org/10.1007/978-3-319-05356-1_11
https://doi.org/10.1016/j.jbi.2018.10.009
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1109/ITSC.2015.224
https://doi.org/10.1109/ITSC.2015.224

www.manaraa.com

Innovating Medical Image Analysis via Spatial Logics 109

33. Menze, B., et al.: The multimodal brain tumor image segmentation benchmark
(BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

34. Nenzi, L., Bortolussi, L.: Specifying and monitoring properties of stochastic spatio-
temporal systems in signal temporal logic. In: 8th International Conference on Per-
formance Evaluation Methodologies and Tools, VALUETOOLS 2014, Bratislava,
Slovakia, 9–11 December 2014. ICST (2014)

35. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar,
R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23820-3 2

36. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.
In: Nebel, B., Rich, C., Swartout, W.R. (eds.) Proceedings of the 3rd International
Conference on Principles of Knowledge Representation and Reasoning (KR 1992),
pp. 165–176. Morgan Kaufmann, Burlington (1992)

37. Randell, D.A., Landini, G., Galton, A.: Discrete mereotopology for spatial reason-
ing in automated histological image analysis. IEEE Trans. Pattern Anal. Mach.
Intell. 35(3), 568–581 (2013). https://doi.org/10.1109/TPAMI.2012.128

38. Spyridon (Spyros) Bakas, et al. (eds.): 2017 International MICCAI BraTS Chal-
lenge: Pre-conference Proceedings, September 2017. https://www.cbica.upenn.
edu/sbia/Spyridon.Bakas/MICCAI BraTS/MICCAI BraTS 2017 proceedings
shortPapers.pdf

https://doi.org/10.1007/978-3-319-23820-3_2
https://doi.org/10.1007/978-3-319-23820-3_2
https://doi.org/10.1109/TPAMI.2012.128
https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf
https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf
https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf

www.manaraa.com

Formal Methods in Designing Critical
Cyber-Physical Systems

Mehrnoosh Askarpour1(B), Carlo Ghezzi1, Dino Mandrioli1, Matteo Rossi1,
and Christos Tsigkanos2

1 Politecnico di Milano, DEIB, Milan, Italy
{mehrnoosh.askarpour,carlo.ghezzi,dino.mandrioli,matteo.rossi}@polimi.it

2 Vienna University of Technology, Vienna, Austria
christos.tsigkanos@tuwien.ac.at

Abstract. Cyber-Physical Systems (CPS) are increasingly applied in
critical contexts, where they have to support safe and secure operations,
often subject to stringent timing requirements. Typical examples are
scenarios involving automated living or working spaces in which humans
operate, or human-robot collaborations (HRC) in modern manufactur-
ing. Formal methods have been traditionally investigated to support
modeling and verification of critical systems. In this paper, we review
some of the main new challenges arising in the application of formal
methods to modeling and verification of CPS. We do that by presenting
two case studies (emergency response in a smart city and a smart manu-
facturing system), reflecting past work of the authors, from which some
general lessons are distilled.

Keywords: Cyber-Physical Systems (CPS) · Formal model ·
Formal verification · Model-based design

1 Introduction

The revolutionary advancements of embedded computing have led to a genera-
tion of systems that integrate computing and physical processes, called cyber-
physical systems (CPS) [2,22]. Such systems incorporate functions of sensing,
actuation, and control while making decisions in a predictive or adaptive man-
ner. This manifests in various novel fields such as the Internet of Things (IoT)
[3]. The use of CPSs is growing every day with the developments of new appli-
cation areas. For example, CPSs enable the creation of smart spaces [24,26],
i.e., spatial environments including both cyber and physical elements and sup-
porting new kinds of advanced functionalities. A particular case of smart spaces
is smart factories [30], where computational and communication features are
embedded in a manufacturing workspace to combine the flexibility of humans
with the efficiency of machines and to allow for collaboration between them
in a safe way [23]. To design such new kinds of complex systems, it is crucial
to analyze, specify, and then verify their expected properties. Often properties
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 110–130, 2019.
https://doi.org/10.1007/978-3-030-30985-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_8

www.manaraa.com

Formal Methods in Designing Critical Cyber-Physical Systems 111

are classified in functional vs non-functional ones, where the former capture the
expected results of the system, whereas the latter correspond to its complemen-
tary properties—such as space, time, safety, security, fault tolerance, continuous
adaptation, communication and process time, energy, or cost—and are no less
relevant than the functional ones.

Model-based techniques could considerably simplify the design of such com-
plex systems, and make the analysis of all of their required properties precise and
rigorous. Although the separation of cyber and physical concerns in the mod-
eling and design of CPSs could be beneficial for tractability, it complicates the
assessment of the impacts and tradeoffs of the two domains [21]. The interplay
between cyber and physical elements raises new challenges, and their effective
orchestration requires semantic models that reflect properties of interest in both
of them [18].

Formal languages should be defined to support specification both of a formal
model of a CPS—e.g., a smart space—and of the properties it is expected to
satisfy. These models could be input to automated formal verification tools to
enable analysis and validation during design. Furthermore, the physical aspect of
CPSs brings more uncertainty and dynamism into the picture w.r.t traditional
embedded systems, due to the runtime physical intercommunication with the
world (e.g., human-robot interaction, sensing or actuating on the elements of
the environment). Thus, formal methods should also be brought to runtime,
to support runtime verification and possible automatic adaptations to detected
changes.

In this paper, we report the results of our analysis of the state of the art con-
cerning the main issues regarding the modeling of CPSs and discuss the value of
formal methods in resolving them. The paper reviews three issues that we found
highly critical and then describes two case studies—a smart city and a smart
factory—designed and verified by formal modeling and validation techniques.

The rest of this paper is structured as follows: Sect. 2 argues about the most
important challenges in the modeling of CPSs and the use of formal methods to
address them; Sect. 3 reports two case studies designed and verified in a formal
manner; finally, Sect. 4 concludes.

2 Key Factors in the Design of CPSs

This section introduces a set of common, critical issues that have been raised in
the literature concerning the design of CPSs.

2.1 Space and Time

From a software engineering perspective, cyber-physical systems live within a
dynamic spatial environment populated with devices, human agents, changing
context and/or localized resources. This can be abstracted into a cyber-physical
space (CPSp), a structure indicating a spatial environment comprised of both
computational and communication elements, which are interrelated and form

www.manaraa.com

112 M. Askarpour et al.

some composite topological structure [26]. Such cyber-physical spaces are much
more dynamic than traditional—physical—spatial environments used to be.
Humans or devices moving around connecting and disconnecting from wireless
networks are an example of entities dynamically performing actions while oper-
ating in a composite CPSp. Such dynamics have to be considered in the design
of systems operating within spatial environments. Moreover, as for any other
software-intensive system, maintaining a CPSp which operates in a dynamic
environment is faced with the manifold challenges that evolution brings—in
software, its composite environment and system—and demands for operational
management to observe a constantly changing space and potentially react to
environmental changes. Essentially, CPSp is a cyber-physical system operating
in physical space and whose requirements and behaviors depend on space. This
induces an extended notion of “space”, which includes both the physical and the
cyber dimension. Consider, for example, a bike-sharing system, which is typi-
cally made of internet-connected IoT devices; a bike has a distinct location in
the physical space, but it is also located within a computer network, through its
connection to a base station. In this particular case of a CPSp, we can define
topological relations among entities that depend on the physical space (e.g., a
currently available bike is located at an intersection that is “next” to the current
location where a certain customer is standing) and also on the cyber space (a
bike is logically connected to a customer’s account when it is in use, to record its
usage time). Topological relations may change over time, and we need to be able
to specify requirements for the functionalities supported by the CPSp, which
may predicate on topological relations that span both over the physical and the
cyber space.

The physical environment in which CPSs operate or where CPSps are real-
ized is perceived not only across space, but also over time. Hence, CPSs exhibit
spatio-temporal features and their correct behavior is defined in both space and
time. A formal representation of a CPS should predicate upon the flow of events
along time, while reflecting spatial characteristics such as the distribution of sys-
tems in space [6], including positions or distances of different components. Such
spatial characteristics also affect the timing of events within the system and
the overall execution workflow, as only particular spatial distributions of objects
would lead to the correct and safe execution of the business logic. Moreover, even
though the resulting models should be a reflection of the physical reality, they
should also suit formal verification. Hence, these models are usually an approx-
imation of the reality resulting by appropriately abstracting the temporal [11]
and spatial domains in which the system lives. In other words, the formal models
of CPSs, like those of other types of systems, trade precision and exhaustiveness
for simplicity and tractability and accept some level of abstraction.

Let us illustrate through an example the importance of capturing both
space and time requirements in CPSs. Consider a manufacturing workspace in
which humans and robots collaborate without any fences or physical segrega-
tion between them. A formal model of such a system needs to capture different
temporal requirements of the collaboration (e.g., what the expected response

www.manaraa.com

Formal Methods in Designing Critical Cyber-Physical Systems 113

time is, or what is the sequencing of jobs the robot should execute before the
operator) and also spatial characteristics of the workspace (e.g., which mobility
paths are more frequent for robots, where the exact place for execution of each
job is, which areas are more prone to more frequent and dangerous contacts
between humans and robots). It is important for robots and humans to perform
the right action, at the right time and in the right place. For example, assume
that a human and an industrial robotic arm with a screwdriver end-effector are
expected to perform a collaborative pick-and-place task (e.g., picking workpieces
with different shapes from a bin, then place and screwdrive them on a pallet).
The correct way of performing this task is the following: “first the operator picks
the workpieces one by one and places them on the pallet, then she removes her
hand from the pallet; only then the robot end-effector moves above the pallet
and starts to screwdrive the pieces”. If the operator violates this instruction and,
for example, tries to slightly move the workpiece while the robot is screwdriv-
ing it, then the execution may be interrupted—hence prolonged—or, worse, the
operator could get hurt.

The interplay between space and time and its relevance to the satisfaction
of requirements is exacerbated for novel types of pervasive systems, technologies
and paradigms such as the Internet of Things (IoT), which often feature phys-
ically distributed entities roaming the physical space [27], exhibiting collective
behaviors. Spatially-distributed IoT systems live within a dynamic spatial envi-
ronment populated with devices, a changing context and/or localized resources.
This spatial environment is often only partially known—or even unknown—at
design time, which creates the need for suitable reasoning facilities and analyz-
able models used to observe, evaluate and react to a constantly changing space.
Frequently, these activities must be performed during system operation, when
analysis techniques working at runtime ensure that possible changes occurring
due to the evolving spatial distribution and context—for example due to actions
performed by active agents, or by the external environment—do not lead to
violations of requirements [25]. This can be achieved through an autonomic,
self-adaptive approach such as a MAPE loop [17]: (M)onitoring the spatial envi-
ronment for changes, (A)nalyzing possible requirement violations, (P)lanning
necessary countermeasures (e.g., moving a device from one point in space to
another) and then (E)xecuting such actions and updating the shared model of
space for the next loop.

2.2 Human-Robot Interaction

A distinguishing feature of many smart space applications is the presence of
interactions between humans and robots. We can broadly classify the types of
robots involved in these applications in the following categories:

– Robots with interface devices are such that the operator usually has no
physical contact with the robot and the communication occurs via interface
devices. They are used in a variety of domains such as healthcare, manufac-
turing, disaster management. Examples are medical and surgeon robots, large
manufacturing robots and earthquake rescue robots.

www.manaraa.com

114 M. Askarpour et al.

– Service provider or domestic robots are usually employed as caregivers
for elderly people or people with physical disabilities. Interaction with this
type of robot occurs via interfaces, but it also features some level of physical
contact with human operators (i.e., the care receivers). In the applications
where these types of robots are used, the output of the robot is not contin-
uously dependent on human inputs, and once a command is received from
the interface device, the robot proceeds with its execution. In these scenarios
humans are mostly passive receivers of services.

– Collaborative robots should attain a predefined goal by working in collab-
oration with humans. The specified objective—i.e., a job—is typically divided
into atomic parts—i.e., actions— that must be carried out either by humans,
or by robots, or by both of them concurrently. In these scenarios robots coor-
dinate their actions with those of the humans—e.g., the operator must place
a workpiece in position x before the robot can screwdrive it there.

These are general types of robots and could potentially be applied in very dif-
ferent areas, from disaster response to entertainment.

In general, the presence of humans (either as physical participants, or as
command triggers)—who are, by their own nature, unpredictable agents—raises
significant modeling issues when one wants to guarantee a certain level of safety
and reliability for the application. To capture the unpredictable nature of human
actions, stochastic models could be defined to describe the probability with which
a certain behavior is taken, thus allowing designers to focus on the most probable
ones. Building meaningful stochastic models, however, requires huge and reliable
log data concerning human actions—and in particular human interactions with
robots—to identify suitable probabilistic distributions (e.g., how probable it is
for the operator to make an error and perform an action earlier or later than
when it needs to be done). Unfortunately, such data logs are usually not avail-
able. To overcome this problem, nondeterministic modeling approaches can be
used, which render unpredictability by describing alternative behaviors that are
chosen in a nonobservable manner. Formal models could, for example, capture
reasonably foreseeable human behaviors, for different types of human operators
(experienced user vs novice user, attentive vs absent-minded, etc.). Nondetermin-
istic and stochastic models could also be combined; for example, nondeterminism
could be used to describe the choices that an operator can make based on her
level of fatigue, but each fatigue level could have a different probability.

2.3 Managing Uncertainty at Runtime Through Self-adaptation

The difficulty of requirement validation for CPSs is exacerbated by the fact that
they include both computational and physical aspects, they are susceptible to
emergent behaviors, and their operational environment is often only partially
known—or even unknown—at design time. Therefore, requirement analysis—
preferably through formal verification—is a key activity in the design of CPSs.
Requirement analysis consists in evaluating whether the system (as deployed
in some environment) satisfies some intended behavior. However, the extent of

www.manaraa.com

Formal Methods in Designing Critical Cyber-Physical Systems 115

the assurances obtained through the analysis depends on whether they address
concerns that arise at design time or at runtime.

A consequence of relying only on design time verification is that the quality
of provided guarantees depends strongly on the quality of the generated model.
If the people who brainstormed to build the model have left out even only one
possible situation, serious problems could occur during system operation (e.g.,
issues arising from people forgetting to take back their cards from an ATM).
Consider, for example, a smart manufacturing facility where both humans and
robots operate. In addition to the sources of uncertainty that are known at
design time (e.g., human errors, malfunctioning sensors and actuators), unex-
pected events could occur during system operation, which had not been foreseen
at design time. Examples of such events could be the unplanned entrance of
another human operator in the workcell, or the unloading of workpieces to be
grabbed by a robot that are geometrically unknown for the robot gripper. Even
sources of uncertainty that are foreseeable at design time can be difficult to
manage at runtime, as they could generate special sub-cases that have not been
analyzed during design. For example, the fact that humans might make errors
when interacting with a robot is quite expected, but it is very difficult to consider
all such possible errors and their potential critical consequences.

The above example shows that satisfaction of certain requirements cannot
always be guaranteed at design time. Instead, evaluation must be deferred at run-
time, and subsequently their satisfaction must be ensured by adaptively generat-
ing counteractions that can prevent the system from violating requirements [28].
These counteractions, in turn, may threaten the satisfaction of system require-
ments. Uncertainty and its attributes have been investigated in the past [10,20],
and classified [20] by (1) the place where it manifests, (2) its level—the spec-
trum between perfect knowledge and total lack of any knowledge—and (3) its
nature—i.e., whether it originates from imperfect knowledge or from variabil-
ity. Research on self-adaptive systems has long tackled managing uncertainty at
runtime, considering both functional and non-functional requirements [4].

3 Case Studies

In this section we report on two exemplars of critical CPSs where formal methods
prove to be highly useful. The first is a disaster scenario within a smart city,
highlighting both design time reasoning of a space-intensive CPS as well as its
runtime verification. The second is a smart factory, highlighting the validation
of domain-specific requirements concerning the human operator’s physical safety
during the interaction with a robot system. Different formalisms and modeling
approaches are adopted to enable reasoning on the two case studies, showing the
potential that formal methods can bring to the design and analysis of complex
CPSs.

Let us remark that the main concerns in the two case studies are different,
hence different formalisms have been used to model them. The first example
is more oriented towards the verification of general concepts (safety, reliability,

www.manaraa.com

116 M. Askarpour et al.

integrity) with stronger focus on spatial aspects and their modeling; the second
one verifies domain-specific requirements (physical safety of human while inter-
acting with the robot system) with a stronger focus on temporal aspects. Hence,
the modeling notation chosen for the first case was more oriented towards topo-
logical concerns (e.g., the capability of describing linking or containment rela-
tionships among entities), whilst for the second it was more oriented towards
behavioral aspects (e.g., actions of system and human along time).

3.1 Case Study 1: Reasoning on Space-Intensive CPS

In this section, we introduce a case study concerning the emergency response
in a smart city as an illustrative scenario of a space-intensive CPS, reasoning
upon which is enabled by its consideration as a cyber-physical space (CPSp).
We describe the scenario in a succinct manner; the interested reader can refer
to [26] for a complete treatment. The scenario presented is a generalized case
which can be instantiated for a variety of spatio-temporal reasoning cases. We
begin with a brief description of the static structure of the cyber-physical space
and then we consider its dynamics—i.e., how the space may change over time.
Subsequently, we introduce two characteristic analysis scenarios exposing typical
design challenges that are relevant for design and operation. We suggest that
satisfaction of critical requirements arising from these scenarios can be either
checked at design time, or at runtime.

Autonomous Unmanned Aerial Vehicles (UAVs) can be used as radio relay
platforms in environments characterized by poor connectivity. These environ-
ments can be regions where no global connectivity exists, e.g., due to a disaster
or even absence of line of sight between ground transmitters and receivers. We
consider a setting of UAV-carried communication infrastructure [31] in a disaster
scenario for smart city applications such as emergency response. The setting we
present, including the model and its dynamics, is a generalized case [9] which
can be concretized for a variety of urban warfare, search and rescue, home-
land security or surveillance scenarios where autonomous UAVs operate in a
space-dependent environment and global system properties need to be formally
verified.

Emergency Response in a Smart City. Communication is disabled in a city due
to a disaster; search and rescue must be performed. Parts of the city may be
unsafe, and victims may be stranded in various locations. Autonomous UAVs
are dispatched to locate and provide communication infrastructure to victims,
leading them to safety. UAVs move in the city environment in specific ways, by
flying over buildings. UAVs carry short-range antennas, and victims are able to
connect when they are in the vicinity. If a UAV is close to a victim, it can lead her
to a safe zone. A safe zone is some part of the city which can lead to a hospital.
To utilize our approach, the designer specifies the model, the ways UAVs can
move and desired properties of the system, specification steps illustrated in the
following.

www.manaraa.com

Formal Methods in Designing Critical Cyber-Physical Systems 117

Modeling Space and Its Dynamics. In general, graphs are a natural way to
model the topology of a CPSp, such as the urban scenario at hand. The basic
intuition is that entities are represented by nodes, while relations between entities
are represented by edges. We distinguish two fundamental kinds of relations
between entities to which we refer to as containment and linking. Containment
signifies that an entity is located within another, while linking expresses the fact
that two entities are connected in some way. In Fig. 1, the topological structure
of a city is presented, where buildings, roads and city blocks form a city. Various
such entities may be connected, signifying that one can physically move from
e.g., a building to an adjacent one. Such a model may enjoy formal semantics.

Bigraphs [19] are an emerging formalism for structures in ubiquitous com-
puting, dealing with both containment and linking among entities and thus fit
our intuition of modelling the topology of a cyber-physical environment. We use
the basic notion of a bigraph which consists of two superimposed yet orthogonal
graphs: a place graph is a forest, a set of trees defined over a set of nodes, and
a link graph is a hypergraph over the same set of nodes, where edges between
nodes can cross locality boundaries. Nodes are typed, and the node types are
called controls in the bigraphical terminology.

We abstain from providing details of the formalism and instead rely on intu-
ition; the interested reader can refer to the vast body of literature on the topic for
complete definitions and proofs of the bigraphical theory [19]. Bigraphs can be
described in algebraic terms according to Formulae (1a)–(1e). Basically, nodes
are written in terms of their controls, i.e., names that define a node’s type,
such as P, Q, and U. The hierarchical structure of nodes through containment
relationships is expressed according to Formula (1a), while the notation in For-
mula (1b) is used to indicate that two nodes are placed at the same hierarchical
level. Bigraphs form rooted hierarchies; in Formula (1c), W and R indicate dif-
ferent roots. Bigraphs can contain sites, a special kind of node that denotes a
placeholder, indicating the presence of unspecified nodes. A node may contain
any number of sites, which are simply indexed in the context of their defining
bigraph, as expressed in Formula (1d). Second, connections of an edge with its
node are treated as separate elements of a bigraph, referred to as ports. Port
names appear in the algebraic notation; in Formula (1e), the node of control K
has port names in w. These port names are used to identify nodes, which may
be omitted if a single instance node of a given type exists in the bigraph, and to
express the linking structure: ports with the same name are connected forming
a hyper-edge in the link graph. Port names prefixed by ‘@’ are variables ranging
over the names of a bigraph.

P.Q Nesting (P contains Q) (1a)
P | Q Juxtaposition of nodes (1b)
W ‖ R Juxtaposition of bigraphs (1c)
−i Site numbered i (1d)
Kw Node with control K having ports w (1e)

www.manaraa.com

118 M. Askarpour et al.

In practice, we can obtain a bigraphical model of space for our smart city case
study from a domain model [29]; this occurs in two steps. To obtain the basic
topological structure of a city, we automatically extract a bigraph from city
models described in CityGML [13], a widely used XML-based standard for the
exchange of city models, widely used within the architectural informatics disci-
pline. Subsequently, further entities of interest such as UAVs (UAVi) and disaster
victims (Victim) are placed in that model represented by appropriate predi-
cates. A conceptual representation of the topological structure extracted from a
CityGML model with 20 buildings is illustrated in Fig. 1. A 2D projection of the
roads and buildings is shown in light grey in the background, while the concep-
tual bigraphical structure is shown in the foreground. The bigraph exposes the
following placing structure: A City node serves as root of the extracted bigraph.
It contains nodes of type Road, which in turn contain nodes of type RoadSegment
and Crossroad, a road segment representing the part of a road between two cross-
roads. Moreover, a City node contains nodes of type Block, a block representing
the area surrounded by road segments. Blocks may contain an arbitrary number
of Building nodes, each one representing a building. Auxiliary nodes (e.g., for
City and Road) are not shown in Fig. 1 for the sake of readability. Other entities
are present in the city as well, such as hospitals, airports, etc.

As for the linking structure of the extracted bigraph, it records an accessibility
relation between city elements for the problem at hand—how UAVs may traverse
the city. Each building is connected to the building next to it (represented by
blue links in Fig. 1), and to a block’s surrounding road segment if it is located
in the respective block boundary (represented by green links). Moreover, road
segments are linked to the crossroads being connected by that road segment
(represented by red links). Links represent the fact that it is possible for a UAV
to go from, e.g., a building to a road segment connected to it. An equivalent,
partial algebraic representation of the city space is found in Formula (2); the
formula shows how two buildings, Bld2 and Bld4 (found within the same block
Blk1), are connected through a link identified by port name 4.

Notice how the link signifies that two nodes of control C found in different
parts of the model are connected, through the use of the same port name. A
Hospital (not shown in Fig. 1) is also included in the city block. Other entities
in various parts of the model are abstracted away in the formula representation
using the formalism’s sites facility. Hence, Formula (2) specifies the model of
Fig. 1 only partially, as sites signify that unspecified entities are present in some
parts of the containment hierarchy—for instance, Blk1 (lower left) contains other
buildings besides Blk2 and Blk4 (Fig. 1).

City.(Blk1.(Bld2.(UAV3.(−11) | Bg2Bg.(C4 | −1) | −5)
| Hospital | Bld4.(Bg2Bg.(C4 | −4) | −3) | −2) | −9 | −10). (2)

Space is rarely static, thus a formalism for modeling evolving space-intensive
systems should also capture system dynamics to enable reasoning about the
effects of changes in space. Bigraphical Reactive Systems (BRS) [19] extend
bigraphs with well-defined semantics of dynamic behavior expressed as a set

www.manaraa.com

Formal Methods in Designing Critical Cyber-Physical Systems 119

Fig. 1. Static bigraphical structure extracted from a CityGML model. The same struc-
ture is (partially) represented in algebraic form in Formula 2. (Color figure online)

of rules. BRS essentially allow describing possible ways in which the structure
of the space can evolve through the application of transformation rules which
selectively rewrite parts of a bigraph; they are called reaction rules. Reaction
rules have the general form of R → R′, where R is called the redex and R′ is
called the reactum; both the redex and reactum are bigraphs. If an occurrence
of a redex can be found in a host bigraph, it may be replaced by the reactum, in
a fashion similar to graph rewriting [8]. Redex and reactum can be considered
as patterns, which are parametric; they describe some structure that can be
transformed into another, which may not be concretely specified.

To this end, we can model the changes inherent in the disaster scenario
using a BRS specification. For reasons of simplicity, we consider one such type
of dynamics specification; how UAVs may move from a building to another.
In Formula (3), a parametric reaction rule captures how a UAV moves from a
building (Bld@a) to another connected one (i.e., through a connection C@b which
has the same port name). Essentially, the CPSp model is transformed, to record
that the UAV is now found inside the Bld@b. Note how the reaction is parametric;
presence of other UAVs, buildings or other entities is not described, but merely
that the UAV moves inside the specified structure. The parametric reaction can
occur for instance, if a UAV is located in Bld2, to move e.g., to Bld4. Similarly
to this reaction rule, we may additionally consider, e.g., that victims located by

www.manaraa.com

120 M. Askarpour et al.

UAVs move with them until a safe zone is reached.

Blk@w.(Bld@a.(UAV@UAVid.(−11) | Bg2Bg.(C@b | −1) | −5)
| Bld@b.(Bg2Bg.(C@a | −4) | −3) | −2) | −9 →

Blk@w.(Bld@a.(Bg2Bg.(C@b | −1) | −5)
| Bld@b.(UAV@UAVid.(−11) | Bg2Bg.(C@a | −4) | −3) | −2) | −9. (3)

Analysis Scenarios and Verification. We consider two different analysis
scenarios; the first aims at early requirements validation, as typically performed
at design time. The second highlights validation at runtime, where the underlying
system model is only known while in operation.

Scenario A: Verification of System Requirements. While bigraphs and bigraph-
ical reaction rules are adequate for describing the topology of a CPSp and its
inherent dynamics, a quality evaluation model to support systematic reasoning
on the behaviour of the changing system is required. We assume that a CPSp is
specified by a BRS as discussed previously. To enable automated reasoning, this
specification can be transformed into an equivalent transition system generally
known as a (doubly) Labelled Transition System (dLTS) [7]. States of this tran-
sition system describe bigraphical configurations of the CPSp, while transitions
describe how the configuration of the system can change by moving from one
state to its successors. Interpreting a BRS specification as a dLTS entails describ-
ing its possible evolution based on the application of reaction rules. Labelled
transition systems are amenable to formal verification via explicit-state model
checking. Model checking performs an exhaustive analysis of the state space to
check the validity of a property. We abstain from describing the mechanisms
behind this, and instead illustrate a characteristic case; the interested reader
can refer to [26] for a complete treatment.

We consider the setting where victims and UAVs are positioned in various
parts of the city; the initial state of the system is thus known. Victim and UAV are
predicates describing entities, and their position within a bigraphical structure
signifies their location in the city. Recall that there is a hospital in the city, and
that victims are considered safe if they are in the hospital. UAVs roam inside the
city, and if they locate a victim, they lead them to safety. Normally, UAVs fol-
low some path planning strategy; from all possible movements of a UAV at any
point, a strategy selects the optimal one, based on the strategy and local environ-
mental conditions. Moreover, interesting problems arise with target search and
surveillance scenarios, which can lead to complex controller algorithms; we are
not concerned with the design of a controller here, but with verifying properties
of the system which concern any decisions that the system of UAVs may take
while operating within a city environment. Behaviors that may violate a global
property of the system must be investigated, so every possible system behavior
must be verified, possibly with an overall goal of using violating sequences to
learn (or debug) a controller strategy. We consider a generic global requirement

www.manaraa.com

Formal Methods in Designing Critical Cyber-Physical Systems 121

of the system, which states that if victims exist in the city, eventually all victims
are found inside the hospital (i.e., no victims are located in other buildings). An
LTL property (with the usual semantics) encoding the requirement is found in
Formula (4), utilizing a parametric bigraphical pattern to express that no victim
is eventually found in a building. Such a property can be used to validate the
domain modeling, by verifying that the model and dynamics specified indeed
lead to a valid system. Note how the formula utilizes a site in the same hierar-
chical level (within the building), thus allowing other entities to be inside the
building, and a symbolic port name (?) denoting any building name.

�(Victim → �¬Bld?.(Victim | −0)). (4)

Scenario B: Spatial Verification at Runtime. In this scenario, we assume that
UAVs are deployed in a spatial environment that is unknown at design time.
The spatial model is instead built and updated at runtime, for example through
a monitoring infrastructure in place [27]. Furthermore, we consider the following
property, specifying that “all disaster victims are located in places in the city
so that they can reach the hospital through road segments or crossroads”. This
is an example of a property of interest that would be not convenient to be
expressed in LTL, since it does not predicate about the temporal evolution, but
about certain relations in space—its topology. Hereafter, we illustrate the use
of a spatial logic by which we can capture and verify the property at hand. We
abstain from describing precisely the corresponding semantics and verification
procedures, and instead illustrate an exemplar case; the interested reader can
refer to [26] for a complete treatment.

The spatial reasoning approach we advocate uses the Spatial Logic for Clo-
sure Spaces (SLCS [6]), based on an extension of semantics of modal logics to
closure spaces, a closure space being a generalization of a standard topological
space [12]. A logical property will be evaluated accordingly on updated models
of the CPSp obtained at runtime, assuming no knowledge about the structure
of the model at design time, beyond the actual property specification. A spatial
formula, in our case, consists of propositions representing bigraphical patterns
along with SLCS operators. The logic features Boolean operators, a “one step”
modality turning closure into a logical operator, and a “surrounds” operator.
Informally, closure in space is similar to next in temporal logics, while surrounds
is similar to until. The syntax of SLCS is defined by the following grammar:

φ :: = p | � | ¬φ | φ ∧ φ | C φ | φ S φ (5)

where p is drawn from a set of bigraph patterns, C is the closure operator, and S
is the spatial surrounds operator. When used for the sake of spatial model check-
ing, SLCS formulae are evaluated on bigraphical closure models [26]. While the
elementary syntax presented above features the two fundamental spatial opera-
tors closure and surrounds, a set of more complex operators may be derived from
them. In [5], for instance, complex operators reflecting the notions of nearness

www.manaraa.com

122 M. Askarpour et al.

and reachability have been derived. In particular, the so-called “reach through”
operator is defined as φ �(ψ) ζ. Informally, it is satisfied for a point x, if x satis-
fies φ and there is a sequence of points starting from x, all satisfying ψ, reaching
a target point satisfying ζ.

Formula (6) below formally encodes a property which needs to be verified
on a model monitored at runtime. Note that there is no information encoded on
how a victim should reach the hospital, and the specification is able to capture
every possible instance of a reachability realization through crossroads and road
segments that may appear on a model.

Victim �(RoadSegment? ∨ Crossroad?) Hospital.(−1)). (6)

To support runtime verification of the CPSp in our operational scenario, proper-
ties like the one presented in Formula (6) can be evaluated whenever the moni-
toring indicates a change in the CPSp, reflected in the bigraphical closure model.
In the simplest case, an alarm may be generated if a critical property is violated.
More advanced systems could be self-adaptive, counteracting property violations
by triggering measures that ensure that requirements are satisfied. While the
specification of such systems is beyond the scope of this paper, related research
has proposed a number of such strategies (see e.g., [28] for security strategies).
Although self-adaptation has been largely studied for temporal properties, we
believe that the fundamentals may be adopted for the spatial domain as well.

3.2 Case Study 2: Reasoning on Temporal Modeling of CPS

In this scenario, we have analyzed a mobile robot unit which autonomously relo-
cates in the layout shown in Fig. 2. This robot system is configured as a combi-
nation of a driverless truck (i.e., AGV) and a manipulator, which mainly moves
between three assembly stations— 1 , 2 and 3 —and a sensor-based inspection
station 4 , as shown in Fig. 2(a). The robot unit can be manually relocated by
operators around its predefined positions. The robot unit can travel and access
the whole workspace (the blue area in Fig. 2(b)), including a load/unload area
for raw materials and finished parts. Two human operators (OP1 and OP2) are
employed in the application. OP1 is mostly present in stations 1 and 2 , while
OP2 works mainly in 3 or executes auxiliary manual tasks on the workbench in
4 . Both operators can freely hold and resume their tasks, swap posts, or join one

another in some area. The main robot-assisted intended tasks are: pallet assem-
bly at stations 1 and 2 , including bin-picking from a local storage carried by
the mobile unit; pallet disassembly (reversal of assembly) at 1 and 2 , includ-
ing bin-dumping; pallet inspection at station 3 ; lead-through programming of
assembly, disassembly, and inspection tasks (trajectories, parameters, etc.) at
stations 1 , 2 and 3 ; material handling on load/unload areas. Other manual
tasks by OP1 and OP2 include manual loading of parts/boxes; (additional) visual
inspection of pallet at stations 1 , 2 and 3 ; manual assembly/disassembly
of pallet at stations 1 and 2 ; manual measurements of parts at station 4 ;

www.manaraa.com

Formal Methods in Designing Critical Cyber-Physical Systems 123

cleaning pallets at stations 1 and 2 ; kitting of tools and parts at stations 1 ,
2 and 3 ; general supervision at stations 1 , 2 and 3 . The generated formal

model of the described system replicates all combinations of robot/manual task
assignments (e.g., robot holds and OP1 screw-drives jigs and vice versa, switch-
ing tasks on the fly, quitting a manual task and assigning the robot to proceed
autonomously). Frequently, robot base and operators move side-to-side across
the central aisle, or other operators transit along the aisle because the target
area is part of a larger plant and access to it is not restricted (Fig. 2(b)).

aisle

1 2

3

4

Loading area (raw materials,...)

shu�le

shu�le

storage

10
00

40
00

70
00

35
00

10000

4000

800
1050

1200
900

30020
0

shu�le and
storage

Test
sta�ons

Assembly
sta�ons

3 4 1 2

Loading area (raw
materials, finished, ..)

aisle

)b()a(
Guide

Operators OP1 , OP2
(main loca�ons)

Operators OP1 , OP2
(alterna�ve loca�ons)

Other operators (crossing area
without assigned tasks)

Robot mobile unit
(main loca�ons)

Robot mobile unit
(alterna�ve loca�ons)

All sizes in mm

Fig. 2. Sketch of a cyber-physical space of a smart factory: (a) precise workcell depic-
tion, (b) actual layout. (Color figure online)

Modeling Time and Its Dynamics. The model includes a descretized replica
of human ({head, chest, leg, arm, fingers}) and robot {R1, R2, Ree, Rbase}. This
example, unlike the previous one, focuses more strongly on time. This preference
is driven by the overall goal of the project, which was centered on human physical
safety analysis. As described in Sect. 2.2, different timings of human and robots
actions could lead to different situations which could be harmful to humans.
Harmful situations could also be of different intensities and need to be evaluated
differently. For example if human and robot have a contact in 1 , the harmfulness
of the contact could differ if the robot is already there and then human enters
1 and hits the robot or viceversa.

www.manaraa.com

124 M. Askarpour et al.

Table 1. List of derived TRIO operators; φ, ψ denote propositions, and v is a variable
and d is a constant value.

TRIO Operator Definition Meaning

Past (φ, d) d > 0 ∧ Dist (φ, −d) φ occurred d time units in the past

Alw (φ) ∀t(Dist (φ, t)) φ always holds

SomP (φ) ∃t(t > 0 ∧ Dist (φ, t)) φ occurs sometimes in the past

Lasted (φ, d) ∀t(0 < t < d → Dist (φ, −t)) φ held for the last d time units

Lasts (φ, d) ∀t(0 < t < d → Dist (φ, t)) φ held for the next d time units

Lastedie (φ, d) ∀t(0 < t ≤ d → Dist (φ, −t)) φ held for the last d time units

UpToNow (φ) ∃t(t > 0 ∧ Lasted (φ, t)) φ holds in a nonempty interval
immediately preceding now

Becomesφ φ ∧ UpToNow (¬φ) φ holds now but it did not hold for
a nonempty interval that preceded
the current instant

In order to model these temporal configurations we have used TRIO, a logical
language which assumes an underlying linear temporal structure and features a
quantitative notion of time [11]. TRIO formulae are built out of the usual first-
order connectives, operators, and quantifiers, as well as a single basic modal
operator, called Dist, that relates the current time, which is left implicit in the
formula, to another time instant: given a time-dependent formula φ (i.e., a term
representing a mapping from the time domain to truth values) and a (arithmetic)
term t indicating a time distance (either positive or negative), formula Dist (φ, t)
specifies that φ holds at a time instant at a distance of exactly t time units from
the current one. While TRIO can exploit both discrete and dense sets as time
domains, in this work we assume the standard model of the nonnegative integers
N as discrete time domain. For convenience in the writing of specification formu-
lae, TRIO defines a number of derived temporal operators from the basic Dist,
through propositional composition and first-order logic quantification. Table 1
defines some of the most significant ones.

Yet, modeling the space is very important because of the placement of sen-
sors and end effectors of the robot. The workspace is discretized in 23 regions
with different characteristics and not all areas have static properties. An ele-
ment (human or robot part) occupies one region at each time instant (e.g., if
phead = Lk holds, it means that the human head is currently in Lk). The robot is
constantly moving around and the areas mostly situated on the aisle could have
different characteristics from time to time. In order to resemble the human rea-
soning about spatial properties and construct a 3D model of the workspace, each
region is modeled in three layers: lower, middle and upper sections. The mobile
base of the robot is always allowed in the lower layer, while the manipulator arm
could move in the middle and upper layers.

To define different aspects of a system, we introduce several definitions
in addition to basic TRIO operators. For example, predicate Sepij captures

www.manaraa.com

Formal Methods in Designing Critical Cyber-Physical Systems 125

the distance between Oi and Rj with tree possible values: close (being in
the same region), mid (being in adjacent regions), and far (any other case).
Another example is predicate ArrivedBeforeijk, which captures the contact in
which the robot hits the operator, and which holds when human part Oi ∈
{head, chest, leg, arm, fingers} hits robot part Rj ∈ {R1, R2, Ree, Rbase} in lay-
out section Lk ∈ {1, ..., 23} because it arrived at k earlier than j. This formula
is only an example of the interplay between time and space, as explained in
Sect. 2.1. Examples of other formulae are presented in Table 21. The relative val-
ues of force and velocity, that are very important when evaluating the danger
of a contact, are captured by the model via two variables whose variations are
discretized with four possible values none, low, mid, high. Temporal modeling
allows for creating a meaningful and smooth fluctuation between these values.
For example, the value of velocity cannot jump from none to high. These vari-
ations are modeled in Formulae 11 of Table 2. The same formulae hold also for
the force.

Another important role that time plays in modeling is to reproduce the exe-
cuting actions of human and robot that together create the full executing task
(i.e., the job). As described in Sect. 2.3, a more thorough analysis would be pro-
vided by defining a rough sense of sequencing between different actions of a task,
but not enforcing a static workflow. This is what we do by describing each action
with a pair of pre- and post-conditions, which are combinations of temporal and
spatial requirements, such as for example required positions of objects, or actions
that should have been terminated beforehand. They enforce a realistic execution
to the actions (e.g., the human operator cannot pick a workpiece if he or she is
not in front of the bin, thus the pre-condition of the bin-picking action is the
correct position for the operator), but generate and explore dynamically all the
meaningful and possible workflows (e.g., what happens if that operator, instead
of continuing the bin-picking, stops and switches to an inspection action). An
action can be in one of several states: ns, when the action’s preconditions are
not yet satisfied; wt, when pre-conditions are satisfied and the human operator
should start the execution; exe, when normative execution is ongoing; sfex,
when execution is ongoing while some hazard is detected; hd, when, due to a
risky hazard, the execution is on hold; exit, when the execution is aborted due
to a high risk; dn, when the action is correctly performed and completed and its
post-conditions are satisfied.

The model also contains definitions of physical hazards according to [15] and
corresponding risk values [16] for detecting harmful contacts. For the sake of
brevity, in this paper we do not provide details on the modeling of hazards and
risks. It suffices to say that each hazard, based on the severity of the harm it could
cause and its occurrence frequency, is assigned a risk value among {0, 1, 2}. If the
value of risk is 0, everything is good, while a risk value equal to 1 is negligible.
Otherwise, if there is a risk with value equal to 2, the human operator is in
danger. Hence, the latter situation needs to be avoided.

1 The full formal model is available on github/safer-hrc.

https://github.com/Askarpour/SAFER-HRC/tree/master/test-case3/3D-withoutexit

www.manaraa.com

126 M. Askarpour et al.

Table 2. Selected formulae of the second case study.

Analysis Scenarios and Verification

Scenario A: Detecting Hazards. The main requirement of this case study was to
verify the physical safety of the human operator while working with the robot
system. The physical safety itself needs to be interpreted in a general and stan-
dard way, and that is why the well-known industrial standards such as [14–16]
are used in modeling the system. The formal verification procedure is supposed
to detect and highlight any possible situation in which the movements of human
and robot would violate the constraints imposed by the standards, which means
detecting cases in which the risk value is 2. The formula below states the above
property, and expresses that, for each hazardous situation involving human part
i and robot part j in layout k, the risk should be below 2.

∀Oi.∀Rj .∀Lk : Alw(riskijk ≤ 1) (7)

www.manaraa.com

Formal Methods in Designing Critical Cyber-Physical Systems 127

The verification was carried out through the Zot [32] formal verification tool,
which reports the state of the system at each instant of time (e.g., positioning of
the human and robot, state of task execution, level of criticality of human and
robot interaction).

Scenario B: Detecting Human Errors at Runtime. The physical safety of humans
is a critical issue that needs to be considered in the early stages of design. Antic-
ipating hazardous situations and identifying proper remedies are tasks usually
tackled at design time. However, not every situation is predictable in advance.
For example, as discussed in Sect. 2.3, the presence of human operators intro-
duces in the picture an unavoidable level of uncertainty, as their behavior during
execution can never be fully predicted. To make the model more accurate, we
have introduced a model of erroneous behavior that includes the formalization
of the most frequent human errors that can influence the workflow, from the
point of view of both time and space. The model is applicable also for runtime
verification.

We categorize human errors in three main types: (i) space-related errors—the
operator is in the wrong location, or places instruments in the wrong locations;
(ii) goal-related errors—the operator does not follow instructions correctly and
the action is performed poorly, which happens more frequently when the oper-
ator is not trained or skillful; and (iii) time-related errors—the operator does
not follow the correct temporal ordering of actions. The latter group of errors
could be represented by five error phenotypes: repetition, omission, early/late
execution, and intrusion.

Let us here consider repetition errors. For example, assume that we want to
model a task in which the operator and robot should pin a number of workpieces
on a pallet by screwdriving them with some fixtures. Hence, the operator should
prepare fixtures, then the robot should start moving towards the pallet. If the
operator places the fixtures, but continues to play with them while the robot
is moving, a collision between the operator’s hand and the robot end-effector is
very probable.

To formalize this kind of situations, for each action ax we have defined two
corresponding attributes, opStartsx and opStopsx, which correspond to human
mental decisions about starting or stopping the execution of the action depending
on what the operator may see, touch or feel.

Repetitionx ⇔ (UpToNow (posCx) ∧ opStartsx) ∨ (Becomes (posCx) ∧ ¬opStopsx)

The formula above, which is a simplified version of the one appearing in
[1], states that an action ax is repeated when: it has already been done and its
post-conditions are already satisfied, but the operator wants to start it over; or
its post-conditions are just satisfied, but the operator does not realize this and
continues to execute it. The formal definitions of other phenotypes and error
types have been discussed in [1].

www.manaraa.com

128 M. Askarpour et al.

4 Conclusions

In this paper, we discussed why formal modeling and verification are needed in
designing and operating CPSs, to offer assurances about their dependable use
in many practical application areas in which they are increasingly deployed. We
also discussed why and how modeling and verification methods need to accom-
modate the specific new requirements arising from interaction of computing ele-
ments with the physical environment, which is typical of CPSs. In particular,
we focused on CPSs where the notion of space in which the system operates and
time constraining operations are key. We also stressed how uncertainty, at differ-
ent levels, heavily affects CPSs and asks for new approaches to formal methods
that break the traditional boundary between design time and runtime. We also
presented how in our past work we provided solutions to these problems, and
case studies we developed in which we such solutions were applied.

The work we presented here, however, can only be viewed as a solution to
some of the problems we need to face when formal methods are applied in the
design and operation of CPSs. A community effort is needed to consolidate
methods and provide both support tools and libraries including application-
independent components and open to extensions to ad-hoc components special-
ized towards single application fields.

Dedication. It is an honor for us to dedicate this “gift” to Stefania. Stefania very
much deserves recognition for her lasting, high-level research in computer science, cov-
ering and integrating theoretical and applicative fields. Mostly, her work in the orga-
nization of many events typical of the FM community has been intense, continuous
and always worldwide appreciated. The oldest ones of us had the fortune to cooperate
with her in many occasions since our common early steps in the academia. Among
the many occasions of pleasant and productive cooperation we like to remember the
superb organization of the 2003 FM symposium and the ever increasing success of the
FORMALISE conference.

References

1. Askarpour, M., Mandrioli, D., Rossi, M., Vicentini, F.: Formal model of human
erroneous behavior for safety analysis in collaborative robotics. Robot. Comput.-
Integr. Manuf. 57, 465–476 (2019)

2. Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 12(1), 161–
166 (2011)

3. Bures, T., et al.: Software engineering for smart cyber-physical systems: challenges
and promising solutions. ACM SIGSOFT Softw. Eng. Notes 42(2), 19–24 (2017)

4. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research
roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9 1

https://doi.org/10.1007/978-3-642-02161-9_1

www.manaraa.com

Formal Methods in Designing Critical Cyber-Physical Systems 129

5. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental
spatio-temporal model checker. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.)
SEFM 2015. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-49224-6 24

6. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 18

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

8. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation-part I: basic concepts and double pushout
approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars, pp. 163–246.
University of Pisa, Pisa (1997)

9. Eaton, C.M., Chong, E.K., Maciejewski, A.A.: Multiple-scenario unmanned aerial
system control: a systems engineering approach and review of existing control
methods. Aerospace 3(1), 1 (2016)

10. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-
Adaptive Systems II. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5 9

11. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling Time in Computing.
Monographs in Theoretical Computer Science. An EATCS Series, Springer (2012)

12. Galton, A.: A generalized topological view of motion in discrete space. Theoret.
Comput. Sci. 305(1), 111–134 (2003)

13. Gröger, G., Kolbe, T.H., Czerwinski, A., Nagel, C., et al.: OpenGIS city geography
markup language (CityGML) encoding standard, version 1.0. 0 (2008)

14. ISO 10218–1: Robots and robotic devices – Safety requirements for industrial
robots - Part 1: Robots. International Organization for Standardization, Geneva,
Switzerland (2011)

15. ISO 10218–2: Robots and robotic devices – Safety requirements for industrial
robots - Part 2: Robot systems and integration. International Organization for
Standardization, Geneva, Switzerland (2011)

16. ISO 12100: Safety of machinery – General principles for design – Risk assess-
ment and risk reduction. International Organization for Standardization, Geneva,
Switzerland (2010)

17. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

18. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pp. 363–369, May 2008

19. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, New York (2009)

20. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: Proceedings of
the 5th ACM/SPEC International Conference on Performance Engineering, ICPE
2014, pp. 3–14. ACM, New York, NY, USA (2014)

21. Rajhans, A., Cheng, S.W., Schmerl, B., Garlan, D., Krogh, B.H., Agbi, C., Bhave,
A.: An architectural approach to the design and analysis of cyber-physical systems.
Electronic Communications of the EASST 21, (2009)

https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-49224-6_24
https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.1007/978-3-642-35813-5_9

www.manaraa.com

130 M. Askarpour et al.

22. Rajkumar, R.R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next
computing revolution. In: Proceedings of the 47th Design Automation Conference,
pp. 731–736. ACM (2010)

23. Tan, J.T.C., Duan, F., Zhang, Y., Watanabe, K., Kato, R., Arai, T.: Human-
robot collaboration in cellular manufacturing: design and development. In: 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 29–34
(2009)

24. Tsigkanos, C., Kehrer, T., Ghezzi, C., Pasquale, L., Nuseibeh, B.: Adding static
and dynamic semantics to building information models. In: Proceedings of the
2nd International Workshop on Software Engineering for Smart Cyber-Physical
Systems, pp. 1–7. ACM (2016)

25. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Architecting dynamic cyber-physical spaces.
Computing 98(10), 1011–1040 (2016)

26. Tsigkanos, C., Kehrer, T., Ghezzi, C.: Modeling and verification of evolving cyber-
physical spaces. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, pp. 38–48 (2017)

27. Tsigkanos, C., Nenzi, L., Loreti, M., Garriga, M., Dustdar, S., Ghezzi, C.: Infer-
ring analyzable models from trajectories of spatially-distributed internet of things.
In: Proceedings of the 14th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS@ICSE 2019, Montreal, QC,
Canada, 25–31 May 2019, pp. 100–106 (2019)

28. Tsigkanos, C., Pasquale, L., Ghezzi, C., Nuseibeh, B.: On the interplay between
cyber and physical spaces for adaptive security. IEEE Trans. Dependable Sec.
Comput. 15(3), 466–480 (2018)

29. Visconti, E., Tsigkanos, C., Hu, Z., Ghezzi, C.: Model-driven design of city spaces
via bidirectional transformations (2019)

30. Wang, S., Wan, J., Li, D., Zhang, C.: Implementing smart factory of Industrie 4.0:
an outlook. Int. J. Distrib. Sens. Netw. 12(1), 3159805:1–3159805:10 (2016)

31. Xie, J., AI-Emrani, F., Gu, Y., Wan, Y., Fu, S.: UAV-carried long distance WI-FI
communication infrastructure. In: AIAA Infotech@ Aerospace (2016)

32. ZOT: a bounded satisfiability checker (2012). github/fm-polimi/zot

http://github.com/fm-polimi/zot

www.manaraa.com

Automata-Based Behavioural Contracts
with Action Correlation

Davide Basile1(B), Rosario Pugliese1, Francesco Tiezzi2, Pierpaolo Degano3,
and Gian-Luigi Ferrari3

1 Department of Statistics, Computer Science and Applications,
University of Florence, Florence, Italy

davide.basile@unifi.it
2 School of Science and Technology, University of Camerino, Camerino, Italy

3 Department of Computer Science, University of Pisa, Pisa, Italy

Abstract. The rigorous design of Service-Oriented Computing (SOC)
applications has been identified as one of the primary research challenges
for the next 10 years. Many foundational theories for SOC have been
defined, but they often rely on mechanisms different from real-world
SOC technologies, hindering actual service modelling and verification.
In this paper, we propose a novel automata-based formalism of service
contracts equipped with a mechanism, inspired by current web service
technologies, exploiting correlation data to drive service interactions and
with formal foundations enabling reasoning about service correctness.

1 Introduction

The increasing need of integrating functionalities of heterogeneous applica-
tions across multiple organisations has led to the emergence of an architectural
approach for distributed systems supporting the Service-Oriented Computing
paradigm (SOC) [12]. Systems are conceived as networks of loosely-coupled,
interoperable and reusable components, called services, accessible by end-users
and other system components. Services operate with little or no knowledge
about their clients, and can be assembled in enterprise applications enacting
complex business processes. They are created and published by possibly mutu-
ally distrusted organisations that may have conflicting goals. Services cooperate
to achieve overall goals and at the same time they compete to perform spe-
cific tasks of their organisation. Ensuring reliability of a composite service is
important, e.g. to avoid economic loss. Therefore, understanding and fulfilling
a minimal number of behavioural obligations of services is crucial to determine
whether the interactive behaviour is consistent with the requirements.

The most prominent instantiation of the SOC paradigm is given by so-
called Web services, which provide operations that can be published, located
and invoked in the Web via XML messages complying with standard formats.
The interaction logic for composing Web services can be described by using the
OASIS standard for orchestration of web services WS-BPEL [25].

In SOC, a service can engage in conversations with its partners in order to
exchange the information necessary to fulfil all activities required by the service.
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 131–151, 2019.
https://doi.org/10.1007/978-3-030-30985-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_9

www.manaraa.com

132 D. Basile et al.

For example, a hotel booking service typically interacts several times with a
hotel service before finalising a room reservation. The loosely-coupled nature of
SOC implies that, from a technological point of view, the connection between
interacting partners cannot be assumed to persist for the whole duration of a
conversation. Therefore, to enable the association, i.e., correlation, of a message
with the right conversation, the message must include some value providing
a form of context (e.g., a hotel identifier). The link among partners is hence
determined by these correlation values, which are used to deliver each message
to the appropriate interacting partner. Such message correlation mechanism is
in fact at the basis of messaging in the WS-BPEL standard.

Whilst SOC is nowadays a well-established technology, the rigorous design of
SOC applications is still identified as one of the primary research challenges for
the next 10 years. The recent Service Computing Manifesto [12] points out that
“Service systems have so far been built without an adequate rigorous foundation
that would enable reasoning about them” and, moreover, that “The design of
service systems should build upon a formal model of services”. As a matter
of fact, currently used software engineering technologies for SOC lack rigorous
formal foundations.

In the last decade, behavioural contracts [4,11] have been proposed to for-
malise the externally observable behaviour of services in terms of offers of the
service and requests by the service to be matched. Agreement of (a composition
of) contracts relies on the fulfilment of all service requests through corresponding
service offers. A precise semantics of service contracts permits to mechanically
verify that a composition of contracts admits an agreement.

Process algebras, Petri Nets and Event Structures are some of the formalisms
that have been adopted to specify behavioural contracts, their composition, and
their agreement property (also known as compliance or conformance). Modal
Service Contract Automata (MSCA) have been introduced in [7,10] to formalise
service contracts and analyse contract agreement from a language-theoretic per-
spective. A contract automaton represents either a single service (in which case
it is called a principal) or a multi-party composition of services. Service requests
can be either necessary or permitted, where necessary requests must be matched
whilst permitted requests can be optionally discarded without affecting the
agreement. In a composition of contract automata, the goal of each principal
is to reach a final state such that all its necessary requests and a subset of
permitted requests are matched by complementary offers of other principals.

With the aim of narrowing the gap between the formalism and real-world
SOC systems, in this paper we propose Correlation-based Modal Contract
Automata (CMCA). CMCA extend MSCA with a mechanism for correlating
interactions among each other. Whilst still oblivious of their partners, CMCA
can indeed prescribe to whom their actions are directed depending on their pre-
vious interactions. A principal can establish conversations with other principals
by exploiting variables within actions, firstly, to capture the ‘identity’ of the
principal executing the complementary action matching the one starting a con-
versation and, then, to enforce that the same interacting principal do perform
the complementary actions of the other actions belonging to the conversation. A
principal can execute many such long-running conversations in parallel, as well

www.manaraa.com

Automata-Based Behavioural Contracts with Action Correlation 133

as conversations formed of one interaction only that is not constrained to take
place with a specific principal. Indeed, similarly to MSCA, a principal may also
perform actions involving no variables at all so that they are not affected by
previous interactions and do not affect future interactions.

Structure of the Paper. Further motivations on the advantages of introducing cor-
relation in contract automata are illustrated through a motivating scenario pre-
sented in Sect. 2. Afterwards, CMCA and their composition are formally defined
in Sect. 3. Results about CMCA validity are presented in Sect. 4, and an illustra-
tive application of CMCA is described in Sect. 5. Finally, related work is discussed
in Sect. 6, while concluding remarks and future work are sketched in Sect. 7.

2 Motivating Scenario

In this section we motivate the need for extending MSCA [7] to CMCA, which
are equipped with a mechanism for correlating the interactions belonging to the
same conversation. In MSCA all possible matches between offers and requests are
dictated by the composition of contracts. In particular, a principal (i.e., a con-
tract representing a single entity) cannot indicate on its own to which principal
its offer or request is directed. Indeed, MSCA are oblivious of their commu-
nicating partners. Consider the following MSCA, each representing a different
principal:

0 1 2
a b

Alice

0 1 2
a b

Bob

0 1
b

Carol

As usual, states and final states are depicted with a circle or two nested circles,
respectively. The labels of MSCA are their actions, i.e. requests and offers. Thus,
Alice prescribes to perform a request a and then an offer b (offers are overlined
while requests are not). Bob offers a and then it can either terminate or require
b. Finally, Carol either requires b or immediately terminates. Their composition,
denoted by Alice ⊗ Bob ⊗ Carol, is the following MSCA:

0 0 0

1 1 0

2 2 0

2 1 1

0 0 1 1 1 1

2 2 1
(a, a, •)

(b, b, •)

(b, •, b)

(•, •, b) (a, a, •)
(b, b, •)

(•, •, b)

(•, b, •)

Since we are interested in contract agreement, we only focus on match actions,
that is actions produced by a synchronisation between complementary offers
and requests. Each state of the composed MSCA is characterised by a tuple
indicating the current local state of each involved principal. In the initial state

www.manaraa.com

134 D. Basile et al.

of the composition, the only enabled match action is (a, a, •), which results
from the matching between the request a of Alice and the offer a of Bob. In
this action Carol is idle, denoted by •. Afterwards, Alice may match her offer b
either with the request b of Bob, denoted by the match action (b, b, •), or with the
request b of Carol, denoted by the match action (b, •, b). Non-matching actions,
corresponding to requests or offers of a single entity, are not relevant and, hence,
are coloured grey in the composition; the same applies to states reached by non-
matching actions, and consequently to all transitions and states originating from
them. Thus, in the composition above, the request b of Carol from the initial
state is grey, as well as all transitions and states reachable through this action.

Assume now, for the sake of the example, that Alice would like to constrain
her offer b to be provided to the principal who has previously fulfilled her request
a (Bob in this case). In the composition, Alice should have a way to somehow
correlate the match (a, a, •) with the match (b, b, •), thus preventing (b, •, b) from
happening. This scenario, however, is not expressible through standard MSCA.

Instead CMCA can express and enforce the constraint above in the composi-
tion by exploiting a sort of correlation variables. Consider the following CMCA:

0 1 2
(true, a(x), {}) (true, b(x), {})

Alice′

The labels of CMCA are triples composed of a boolean guard, an action and a
variable valuation. Moreover, all labels of principals CMCA must have true as a
guard and the (empty) {} variable valuation. Thus, in the first label of Alice′,
true is the boolean guard, a(x) is the action, and {} is the variable valuation.
Also, the request action a(x) binds the variable x (denoted by the underline
notation) in the continuation contract. The subsequent offer action b(x), instead,
uses the variable x previously bound. As explained in more detail below, the
resulting effect is that, in a composition involving Alice′, the variable x is first
used to capture the ‘identity’ of the principal that executes the complementary
action a and then to enforce that the complementary action b be executed by
the same interacting principal. The variable x provides a sort of context that
correlates the two actions a(x) and b(x), which are now constrained to be both
matched by the same principal. Thus, Alice′ establishes a conversation with
an interacting partner formed of two interactions involving the two actions and
their complementary ones.

Similarly to MSCA, actions of a CMCA may also involve no variables at
all. As a matter of fact, these actions belong to a conversation formed of one
interaction only. This is the case of the actions of the CMCA Bob′ and Carol′

corresponding to the MSCA Bob and Carol, respectively. We do not explicitly
report these two CMCA as they are trivially obtained from the original MSCA
by simply extending the transition labels with the true guard and the empty
valuation.

www.manaraa.com

Automata-Based Behavioural Contracts with Action Correlation 135

The composed CMCA Alice′ ⊗ Bob′ ⊗ Carol′ is:

0 0 0

1 1 0

2 2 0

2 1 1

0 0 1 1 1 1

2 2 1(true, (a(x), a, •), {(x, 2)})

(x == 2, (b(x), b, •), {})

(x == 3, (b(x), •, b), {})

(true, (•, •, b), {}) (true, (a(x), a, •), {(x, 2)})

(x == 2, (b(x), b, •), {})

(true, (•, •, b), {})

(true, (•, b, •), {})

It is worth to notice that the composition assigns some indexes to the com-
ponent principals according to the position they occupy. Thus, in the CMCA
above, Alice′ gets index 1, Bob′ index 2 and Carol′ index 3. Now, the first label
(true, (a(x), a, •), {(x, 2)}) accounts for the matching between the request a(x)
of Alice′ and the offer a of Bob′. Since the request of Alice′ binds the variable
x, the effect is to assign to x the index of Bob′. Thus, the valuation {(x, 2)} is
produced. After that, the composition has a choice between two labels. The label
(x == 2, (b(x), b, •), {}) is generated by the matching between the offer b(x) of
Alice′ and the request b of Bob′. This match can only take place if previously x
has been bound to 2; this is checked by the guard x == 2. Similarly, the label
(x == 3, (b(x), •, b), {}) is produced by the matching between the offer b(x) of
Alice′ and the request b of Carol′; this time the guard is x == 3.

Hence, (a(x), a, •)(b(x), b, •) and (a(x), a, •)(b(x), •, b) are the only sequences
of match actions that the CMCA Alice′ ⊗ Bob′ ⊗ Carol′ can potentially per-
form. However, the second sequence is not actually enabled because the guard of
the second action requires that x is bound to 3 whilst the first, binding, action
assigns 2 to x. This is instead not the case for the sequence (a(x), a, •)(b(x), b, •),
which is then the only sequence that satisfies the constraint on the interactions
specified by the contract Alice′.

Finally, consider the following CMCA David

0 1
(true, b, {})

and the CMCA resulting from the composition of Alice′, Bob′, Carol′ and David
shown below (where, for the sake of simplicity, we only show the match actions):

www.manaraa.com

136 D. Basile et al.

With respect to the CMCA Alice′ ⊗ Bob′ ⊗ Carol′, further interactions are
now possible because, through action b not involving variables, David can syn-
chronize with either Bob′ or Carol′, performing the complementary action b.
Note in passing that taking place of the first interaction could prevent Alice′

to complete its conversation with Bob′.

3 The Formalism

In this section, we formalise CMCA, as an extension of MSCA with a correlation-
based coordination mechanism, and their composition.

3.1 Formal Definition and Semantics

Intuitively, a CMCA represents a multi-party composition of principals, which
represent contracts that are not further decomposable. The number of principals
of a CMCA is called its rank. The states of a CMCA are vectors of states of
principals. In the following, notation �v stands for a vector (whose indexes always
start from 1), �v(i) is the ith element, •m denotes a vector (•, . . . , •) of rank m, and
the concatenation of two vectors �v1 = (a1, a2, . . . , an) and �v2 = (b1, b2, . . . , bm)
is denoted by �v1 · �v2 = (a1, a2, . . . , an, b1, b2, . . . , bm). This definition is extended
to the concatenation of n vectors �v�, with � ∈ 1 . . . n, denoted by ⊕n

�∈1 �v�.
We let R be a set of requests (depicted as non-overlined labels, e.g. a), O

be a set of offers (depicted as overlined labels, e.g. a) and • be a distinguished
symbol representing the idle action. We assume that R ∩ O = ∅ and • �∈ R ∪ O.
To establish if a pair of a request and an offer are complementary, we use the
involution function co : (R∪O) → (R∪O) defined as follows: ∀a ∈ R : co(a) ∈ O
and ∀a ∈ O : co(a) ∈ R and co·co = id. We also let Var be a finite set of variables
(whose elements are x, y, z, ...). A basic action can be the idle action, or a request
or an offer possibly with a variable argument. A variable occurring as an action
argument can either be used by the action or bound by the action; in the second
case it is underlined. Thus, for instance, a(x) denotes request a using the variable
x, a(x) denotes request a binding variable x, and a denotes request a without
a variable argument. For convenience, sometimes we will use the distinguished
element ◦ �∈ Var as action argument to explicitly denote absence of variable
argument, so a and a(◦) are equivalent. Moreover, let X = {x | x ∈ X ⊆ Var}.

An action is a vector�a whose elements belong to the set L given below such that
there is either a single offer, or a single request, or a single pair of complementary
request and offer, i.e. there exist i and j such that �a(i) is an offer and �a(j) is the
complementary request; all other elements of the vector are the symbol •. Such an
action is called request , offer , or match, respectively. Formally:

Definition 1 (Actions). Given a vector �a ∈ Ln, where L = {•}∪R∪O∪ ((R∪
O) × (Var ∪ Var)), if

– �a = •n1α(u)•n2 , n1, n2 ≥ 0, n1 + n2 + 1 = n, u ∈ (Var∪ Var∪ {◦}), then �a is
a request (action) on α(u) if α ∈ R, whereas �a is an offer (action) on α(u) if
α ∈ O;

www.manaraa.com

Automata-Based Behavioural Contracts with Action Correlation 137

– �a = •n1α(u1) •n2 co(α)(u2)•n3 , n1, n2, n3 ≥ 0, n1 + n2 + n3 + 2 = n, u1, u2 ∈
(Var ∪ Var ∪ {◦}) then �a is a match (action) on α(u1) and co(α)(u2), where
α ∈ R ∪ O.

Actions �a and �b are complementary, denoted by �a � �b, iff the following holds:
(i) ∃α ∈ R ∪ O s.t. �a is either a request or an offer on α(u); (ii) �a is an offer
(request, resp.) on α(u) implies that�b is a request (offer, resp.) on co(α). Given an
offer or request action �a on α(u), uv(�a) denotes {u} if u ∈ Var and ◦ otherwise,
bv(�a) denotes {u} if u ∈ Var and ◦ otherwise, and pos(�a) = i iff �a(i) �= •.
Example 1. The action �a1 = (•, •, a(x)) is a request on a of rank 3. The action
�a2 = (a, •) is an offer on a of rank 2. It holds that �a1 � �a2 because co(a) = a.
The action �a3 = (•, •, a(x), a, •) is a match on actions a(x) and a. Moreover,
uv(�a1) = {x}, bv(�a1) = ◦, uv(�a2) = bv(�a2) = ◦, pos(�a1) = 3 and pos(�a2) = 1.

Actions of CMCA can be classified using the permitted (�) and necessary (�)
modalities. Intuitively, permitted actions represent optional behaviour and offers
are always implicitly considered as permitted. With abuse of notation, modalities
can be attached to basic actions or to their action vector (e.g. (a�, a) ≡ (a, a)�),
and if not specified otherwise, an action is assumed to be permitted.

In the following, we let � ∈ {�,�}. We let B(Var) denote the set of con-
straints g generated by the grammar g ::= true | (x==k) | g ∧ g, where k ∈ N.
A valuation of the variables in Var is a partial function v from Var to N that is
written v ∈ NVar.

Given g ∈ B(Var) and v ∈ NVar, the relation v |= g, meaning that v satisfies
g, is defined by structural induction over the syntax of constraints through the
following rules:

v |= true is always true
v |= (x==k) if v(x) = k
v |= g1 ∧ g2 if v |= g1 and v |= g2

We let v0 = {} denote the valuation with empty domain, and v[v′] denote
the valuation {(x, k) | v′(x) = k ∨ (v(x) = k ∧ v′(x) undefined)}. The function
shiftv() : NVar × N �→ NVar is used to shift the values occurring within a
valuation. Formally, shiftv(v, n) = v′ where v′ = {(x,m + n) | x ∈ Var,m ∈
N, (x,m) ∈ v}. Similarly, the function shiftg() : B(Var) ×N �→ B(Var) is used
to shift the values occurring within a constraint. Formally, shiftg(g, n) = g′

where g =
∧

(x,m)∈I

(x==m) and g′ =
∧

(x,m)∈I

(x==m+n) for some set I ⊆ Var×N.

Example 2. The valuation v = {(x, 3), (y, 2)} does not satisfy the guard g =
(x==1)∧(y==2) because x is mapped to 3 in v. Let v′ = {(x, 1)}, the valuation
v[v′] = {(x, 1), (y, 2)} satisfies g, i.e. v[v′] |= g. Moreover, shiftv(v[v′], 4) =
{(x, 5), (y, 6)} and shiftg(g, 4) = (x==5) ∧ (y==6).

We now formally define CMCA.

www.manaraa.com

138 D. Basile et al.

Definition 2 (Correlation-based Modal Contract Automata (CMCA)).
Assume as given a finite set of states Q = {q1, q2, . . .}. Then a correlation-based
modal contract automaton A of rank n ≥ 1 is a tuple 〈Q, �q0, A

r, Ao, X, T, F 〉, where

– Q ⊆ Qn;
– �q0 ∈ Q is the initial state;
– Ar = A� ∪ A� ⊆ R is the finite set of requests partitioned into permitted and

necessary requests, resp.;
– Ao ⊆ O is the finite set of offers;
– X ⊆ Var is a finite set of variables;
– T = T� ∪ T� ⊆ Q × B(X) × A × NX × Q, where A = ({•} ∪ [(Ar ∪ Ao) ×

(X ∪ X ∪ {◦})])n, is the set of transitions partitioned into permitted transitions
T� and necessary transitions T� and constrained as follows: given t = (�q, g,�a,
v, �q ′) ∈ T ,
* �a is either a request or an offer or a match,
* ∀i ∈ 1 . . . n, �a(i) = • implies �q(i) = �q ′

(i),
* t ∈ T� iff �a is either a request or a match on a ∈ A� or an offer on a ∈ Ao,

otherwise t ∈ T�;
* if n = 1 then g = true and v = {}.

– F ⊆ Q is the set of final states.

A principal is a CMCA of rank 1 with actions partitioned into offers or
requests, formally ∀a ∈ Ar, � ∃b ∈ Ao : co(a) = b, and ∀b ∈ Ao, � ∃a ∈ Ar :
co(b) = a.

From now on, we only consider automata where all states are connected (by
sequence of transitions) to both the initial state and at least one final state.

Moreover, we assume as given the CMCA A of rank n defined as A =
〈QA , �q0A , A

r
A , Ao

A , X, TA , FA〉. Subscripts A may be omitted if no confusion can
arise. We may write a transition t as a request, offer or match if its label is such.
Similarly, the functions pos(), uv() and bv(), and the relation � are extended
from actions to labelled transitions in the obvious way.

Example 3. Let t = (�q1, [(y==3), (a(y), a(x)), {(x, 3)}], �q2). We have uv(t) = {y}
and bv(t) = {x}.

We now define the traces of CMCA and its trace semantics, i.e. a language,
over actions and their modalities.

Definition 3 (CMCA semantics). Let (C, c0,→) be the labelled transition
system associated to A, where C = Q × NX is the set of configurations, c0 =
(�q0, v0) is the initial configuration, and the transition relation is such that there is
a step (�q1, v1) �a�−−→(�q2, v2) iff (�q1, g,�a, v3, �q2) ∈ T�, where v1 |= g and v2 = v1[v3].

The semantics of A is the language L (A) = {w | (�q0, v0) w−→∗(�q, v), �q ∈ F },
where w−→∗ is the reflexive and transitive closure of �a�−−→. Any w ∈ L (A) is called
a trace recognised by A, where L (A) ⊆ A�∗.

www.manaraa.com

Automata-Based Behavioural Contracts with Action Correlation 139

3.2 Composition

A distinctive aspect of CMCA, w.r.t other automata-based models of services,
is the composition operator ⊗ (formally defined in Definition 4), which gen-
erates statically an ensemble of service contracts by correlating their actions.
Intuitively, the states of the composite automaton are elements of the cartesian
product of the states of the component automata. The set of (used and bound)
variables is the union of the set of variables of the component automata, that
are assumed to be pairwise disjoint. The set of actions (requests and offers) is
the union of the sets of actions of the component automata. The initial state is
the concatenation of the initial states of the component automata, and similar
for the final states.

Example 4. Let A be such that (transitions are discussed in the next example):

– QA = {(q4, q5, q6), (q4, q7, q6)},
– �q0A

= (q4, q5, q6),
– Ar

A = {d�, b�},
– Ao

A = {},
– XA = {y},
– FA = {(q4, q7, q6)}.

Moreover, let B be such that

– QB = {(q0, q1), (q0, q2), (q9, q3)},
– �q0B

= (q0, q1),
– Ar

B = {a�},
– Ao

B = {d, a, b},
– XB = {x, z},
– FB = {(q9, q3)}.

The composition A ⊗ B will have the following components:

– QA⊗B = {(q4, q5, q6, q0, q1), (q4, q5, q6, q0, q2), (q4, q5, q6, q9, q3), (q4, q7, q6, q0,
q1), (q4, q7, q6, q0, q2), (q4, q7, q6, q9, q3)};

– �q0A⊗B
= (q4, q5, q6, q0, q1);

– Ar
A⊗B = {a�, b�, d�};

– Ao
A⊗B = {d, a, b};

– XA⊗B = {x, y, z};
– FA⊗B = {(q4, q7, q6, q9, q3)}.

We now discuss the set of transitions of the composite automaton. Intuitively,
the composition interleaves the transitions of all component automata, unless two
such automata are ready to execute two complementary transitions in which
case only their match is allowed (and their interleavings are prevented). The
match inherits the modality of the involved request. More in detail, a transition
t = (�q, g,�a, v, �q ′) ∈ T� of the composed automaton can be obtained in one of
the following two different ways.

www.manaraa.com

140 D. Basile et al.

The first way (case 1 of Definition 4) is when we consider two transi-
tions of two component automata ti = (�qi, gi,�ai, vi, �q

′
i) ∈ T�

i and tj =
(�qj , gj ,�aj , vj , �q

′
j) ∈ T�

j ∪ T�
j and the following three conditions hold: (i) the

actions of ti and tj are complementary, i.e. �ai � �aj ; (ii) the source states �qi and
�qj of ti and tj are within the source state �q; (iii) the transition ti has the same
type � as the transition t, whilst tj can possibly have the modality permitted. If
ti is necessary, so is also t (note that in this case tj is an offer). Otherwise, if ti
is permitted then so is t (and tj). The action �a of t is a match between the two
principals inside �ai and �aj with due care of their position in the vector �a. The
guard g is true if �ai and �aj do not use variables previously bound. Otherwise,
each used variable is constrained to be equal to the index of the other princi-
pal performing the complementary action. Similarly, the variable valuation v is
empty if �ai and �aj do not bind variables. Otherwise, to each bound variable the
index of the other principal performing the complementary action is assigned.
Finally, the target state �q′ is obtained from �q by only replacing the component
states �qi and �qj with �q ′

i and �q ′
j .

The second way (case 2 of Definition 4) is when only one transition of a
component automaton is considered, namely ti = (�qi, gi,�ai, vi, �q

′
i) ∈ T�

i , and
the following three conditions hold: (i) there exist no transitions of another com-
ponent automaton that paired with ti satisfy the three conditions of case 1 of
Definition 4; (ii) the source states �qi is within the source state �q; (iii) the transi-
tion ti has the same type � as the transition t. The action �a is the concatenation
of the action �ai with idle moves for all the other principals. The guard g and vari-
able valuation v are defined by applying the functions shiftg() and shiftv() to,
respectively, gi and vi, so to adjust their indexes. The target state �q′ is obtained
from �q by only replacing the component state �qi with �q ′

i.

Example 5. Let A and B as in the Example 4. Suppose that the set TA contains
the following transitions (square brackets are used to enhance readability):

– t1 = ((q4, q5, q6), [true, (•, d�, •), {}], (q4, q7, q6)),
– t2 = ((q4, q7, q6), [true, (•, •, b(y)�), {}], (q4, q7, q6)),

and the set TB contains the following transitions:

– t3 = ((q0, q1), [true, (•, d(x)), {}], (q0, q2)),
– t4 = ((q0, q2), [true, (a(z)�, a), {(z, 2)}] , (q9, q3)),
– t5 = ((q9, q3), [true, (•, b(x)), {}], (q9, q3)).

The transitions of the composition are computed as follows.
First consider the state (q4, q5, q6, q0, q1) ∈ QA⊗B. Call t1 the transition of

the composition we are building. Transitions t1 and t3 fall within the first
case discussed above. In particular, the source states of t1 and t3 occur in
(q4, q5, q6, q0, q1) and it holds that (•, d�, •) � (•, d(x)). Hence, the action of
t1 will be �at1 = (•, d�, •, •, d(x)). Since transition t3 binds variable x, t1 has
assignment vt1 containing (x, 2), where �at1 (2) = d�. There are no used variables,

www.manaraa.com

Automata-Based Behavioural Contracts with Action Correlation 141

thus the guard is true. The target state will be (q4, q7, q6, q0, q2) ∈ QA⊗B, that is
the concatenation of target states of t1 and t3. Overall, we have

t1 = ((q4, q5, q6, q0, q1), [true, (•, d�, •, •, d(x)), {(x, 2)}], (q4, q7, q6, q0, q2))

Now consider the state (q4, q7, q6, q0, q2) ∈ QA⊗B and build the transition
named t2 of the composition. Transition t4 falls within the second case discussed
above. Indeed, (a(z)�, a) is neither a request nor an offer, hence no transitions of
another component exist complementary to t4. Moreover, the source state of t4
occurs in (q4, q7, q6, q0, q2). The action of t2 will thus be �at2 = (•, •, •, a(z)�, a).
Note that all principals belonging to the operand A are idle in �at2 . The guard
of t4 is true and so will be the guard of t2. The variable assignment is obtained
by shiftv({(z, 2)}, 3) = {(z, 5)} as 3 is the rank of A. Indeed, the principal at
position 2 in B is shifted in position 5 in A ⊗ B. Finally, the target state of t2

is (q4, q7, q6, q9, q3), that is, only the principals involved in t4 are moving to the
target state of t4 whilst the others remain in their source state. Overall we have

t2 = ((q4, q7, q6, q0, q2), [true, (•, •, •, a(z)�, a), {(z, 5)}], (q4, q7, q6, q9, q3))

Finally, we build the transition t3 with source state (q4, q7, q6, q9, q3) ∈ QA⊗B.
Transitions t2 and t5 fall within the first case discussed above. Indeed, their
states occur in (q4, q7, q6, q9, q3) and their actions match. The action of t3 is
�at3 = (•, •, b(y)�, •, b(x)). Since t5 uses the variable x previously bound, t3

will contain the guard (x==3) because the third principal in the composition
is matching the basic action b(x). Since the transition t2 binds variable y, the
variable valuation of t3 will be {(y, 5)}. The target state of t3 is (q4, q7, q6, q9, q3).
Overall we have

t3 = ((q4, q7, q6, q9, q3), [(x==3), (•, •, b(y)�, •, b(x)), {(y, 5)}], (q4, q7, q6, q9, q3))

All remaining states in QA⊗B, namely (q4, q5, q6, q0, q2), (q4, q5, q6, q9, q3),
(q4, q7, q6, q0, q1), are not connected to either initial or final state and thus are
ignored.

The formalisation of the composition operator follows.

Definition 4 (CMCA Composition). Let Ai be CMCA of rank ri, i ∈
1, . . . , n, with pairwise disjoint set of variables, and let � ∈ {�,�}. The com-
position

⊗
i∈1...n Ai is the CMCA A of rank m =

∑
i∈1...n ri, where

– Q = Q1 × · · · × Qn,
– �q0 = ⊕n

�∈1 �q0�,
– Ar =

⋃n
i∈1 Ar

i ,
– Ao =

⋃n
i∈1 Ao

i ,
– X =

⋃
i∈1...n Xi,

– T� ⊆ Q×B(X)×A×NX ×Q s.t. (�q, g,�a, v, �q ′) ∈ T� for a given �q = ⊕n
�∈1 �q�

iff

www.manaraa.com

142 D. Basile et al.

1. either ∃i, j ∈ 1 . . . n, i �= j s.t. (�qi, gi,�ai, vi, �q
′
i) ∈ T�

i , (�qj , gj ,�aj , vj , �q
′
j) ∈

T�
j ∪ T�

j , �ai � �aj and

– �a = •
∑i−1

�=1 r� �ai •
∑j−1

�=i+1 r� �aj •
∑n

�=j+1 r� ,
– �q ′ = ⊕i−1

�∈1 �q� · �q ′
i · ⊕j−1

�∈i+1 �q� · �q ′
j · ⊕n

�∈j+1 �q�,
–

– v = {(x, (
∑k2−1

�=1 r�) + pos(�ak2)) | k1, k2 ∈ {i, j}, k1 �= k2, bv(�ak1) =
{x} for x ∈ Xk1},

2. or ∃ 1 ≤ i ≤ n such that (�qi, gi,�ai, vi, �q
′
i) ∈ T�

i , �ai � �aj does not hold
∀(�qj , gj ,�aj , vj , �q

′
j) ∈ T�

j ∪ T�
j with j �= i and 1 ≤ j ≤ n, and

– �a = •
∑i−1

�=1 r� �ai •
∑n

�=i+1 r� ,
– �q ′ = ⊕i−1

�∈1 �q� · �q ′
i · ⊕n

�∈i+1 �q�,

– ,
– ,

– F = {⊕n
�∈1 �q� ∈ Q | �q� ∈ F�, � ∈ 1 . . . n }

4 Validity

In this section we introduce the notion of validity of a CMCA. Intuitively, an
automaton is not valid if it uses variables that have not been previously bound.
We define two different notions, a semantic one and a syntactic one. We show
that generally syntactic validity over-approximates semantic validity, and that
they are equivalent under proper assumptions. In practice, checking syntactic
validity can be done efficiently through static analyses, whilst this is not the
case for semantics validity.

In the following, assume as given a CMCA A = 〈QA , �q0A , A
r
A , Ao

A , X, TA , FA〉.
The following definition states that a trace w ∈ L (A) is valid if each action using
a variable x is preceded by an action binding x, for any variable x. Formally:

Definition 5 (Semantic Validity). Let w ∈ L (A) be a trace of length n.
Then w is valid iff ∀i ∈ 1 . . . n, if w(i) = �a on action α(x) for some α ∈ R ∪ O

and x ∈ X then ∃j < i such that w(j) = �b on action β(x) for some β ∈ R ∪ O; w
is not valid otherwise. A is semantically valid if ∀w ∈ L (A), w is valid.

Example 6. The trace w1 = (a, a�, •)(•, b, b(x)�) and the trace w2 =
(a, a�, •)(•, •, b(x)�) are both valid traces, whilst w3 = (a, a�, •)(•, •, b(x)�) is
not. Also the trace w4 = (•, c(x), •)(a, a�, •)(•, •, b(x)�) is valid. The automa-
ton A whose language is L (A) = {w1, w2, w4} is valid, whilst the automaton B
whose language is L (B) = {w1, w2, w3, w4} is not valid.

Recall that the semantics of a CMCA is based on its configurations, which are
tuples containing states and variable valuations. We are interested in analysing
validity without computing all possible configurations. Indeed, even if it is pos-
sible to decide semantic validity (because the set of configurations of a CMCA is

www.manaraa.com

Automata-Based Behavioural Contracts with Action Correlation 143

finite), the number of configurations is in general much bigger than the number
of states. Therefore, we now introduce the notion of syntactic validity that only
relies on the transitions of an automaton. Thus to establish it, we do not need to
compute the automaton configurations. We first introduce the notion of a path.

Definition 6 (Path). A path π within A from a state �q1 to a
state �qn is a finite sequence of transitions (�q1, g1, �a1, v1, �q2) (�q2, g2, �a2,
v2, �q3) · · · (�qn−1, gn−1, �an−1, vn−1, �qn) with (�qi, gi, �ai, vi, �qi+1) ∈ TA for all 1 ≤
i ≤ n − 1; it is minimal if no transition occurs more than once. Given a transi-
tion t ∈ TA , we let be the finite set of minimal paths from the initial
state of A to the source state of t.

Notice that those paths where a cycle of transitions is unfolded more than once
are not minimal. It is then easy to see that, while the set of all possible paths (from
the initial state) leading to a given state could be infinite (because of cycles), the
set of minimal paths is guaranteed to be finite. Differently from a trace, a minimal
path can be computed by only considering the transitions of a CMCA.

Example 7. Consider the automaton A ⊗ B of Example 5 and its transitions
t1, t2 and t3. Let π1 = t1, π2 = t1t2, π3 = t1t2t3 and π4 = t1t2t3t3. We have
mpathA⊗B(t

1) = {}, mpathA⊗B(t
2) = {π1}, and mpathA⊗B(t

3) = {π2,π3}. We also
have π4 �∈ mpathA⊗B(t

3) since π4 is not minimal.

The notions of a path and a trace of a CMCA differ. Indeed, no evaluation
at all on guards or bindings on variables occur in determining a path, and only
a check is done that states of transitions are correctly concatenated. Instead,
variable bindings are updated while building a trace, and guards are to be true
under those bindings. Therefore, any actual sequence of steps in the semantics
(i.e. trace) corresponds to a path, whilst the contrary does not hold.

Example 8. Consider an automaton A with the following transitions t1 =
(�q0, [true, (a, a(x)), {(x, 1)}], �q1), t2 = (�q1, [(y==2), (b(y), b), {}], �q1), and assume
that �q0 is the initial state whilst �q1 is a final state. There are two possible
paths, i.e. π1 = t1 and π2 = t1t2. Instead, the only trace recognised by A is
w = (a, a(x)). Indeed, the guard of t2 is not satisfied in the configuration (�q1, {})
reached from the initial configuration through the transition t1 corresponding to
the action (a, a(x)). Hence, the path π1 corresponds to the trace w, whilst π2

does not correspond to any trace.

Definition 7 (Syntactic Validity). A is syntactically valid if and only if

Example 9. Continuing Example 6. Let us focus on trace w3 and let t1 and t2 be
the transitions having respectively actions (a, a�, •) and (•, •, b(x)�). We have
mpathB(t2) = {t1}. Since uv(t2) = {x} but x �∈ bv(t1) the automaton B is not
valid.

www.manaraa.com

144 D. Basile et al.

We are now able to state the relation between syntactic and semantic validity.
In particular, syntactic validity over-approximates semantic validity. Formally:

Theorem 1 (Syntactic Validity implies Semantic Validity). If a CMCA
is syntactically valid then it is semantically valid.

Proof. Assume that A is syntactically valid and, by contradiction, that it is not
semantically valid. This means that there exists a trace w of some length n and
an index i ∈ 1 . . . n with w(i) = �a on action α(x) for some α ∈ R ∪ O and x ∈ X,
such that for all j < i we have that w(j) = �b on action β(u) for some β ∈ R ∪ O
and u �= x. Let t be the transition corresponding to the action �a in w and,
similarly, let π be the path formed of the transitions corresponding to the actions
in w′, where w = w′�aw′′. By definition, it holds that ∀t′ ∈ π, x �∈ bv(t′). If
π �∈ mpatht(A), we take the minimal path π′ ∈ mpatht(A) obtained by removing
from π all multiple occurrences of any transition. Of course, for such π′ we
have that ∀t′ ∈ π′, x �∈ bv(t′). Hence A is not syntactically valid, which is a
contradiction. ��

The converse of Theorem 1 does not hold. For instance, the CMCA A of
the Example 8 is semantically valid but not syntactically valid. In other words,
by performing the proposed static analysis it is possible to reject (because not
syntactically valid) a contract which turns out to only have valid traces.

However, in the case of principal automata, the next theorem proves that the
two notions of validity do coincide. It is thus possible to avoid wrong rejections.

Theorem 2 (Validity Coincidence for Principals). A principal CMCA is
syntactically valid if and only if it is semantically valid.

Proof. The ‘if ’ part follows from Theorem 1. The ‘only if ’ part follows from the
fact that by Definition 2 all transitions of principals have guards equal to true,
and therefore there is a one-to-one correspondence between traces and paths. ��

The next lemma relates composition and syntactic validity.

Lemma 1 (Composition Preserves Syntactic Validity). Let A be a CMCA
obtained by composing the principals Ai, i ∈ 1 . . . n. Then, A is syntactically valid
if and only if all Ai, i ∈ 1 . . . n are syntactically valid.

Proof. The statement directly follows from the fact that all principals have disjoint
sets of variables and that the composition does not add any new variable. ��

From the above results it is possible to prove a correspondence between
syntactic validity and semantics validity of principals from whom a composite
automaton is computed.

Corollary 1 (Validity Correspondence for Composed CMCA). Let A be
an automaton obtained by composing the principals Ai where i ∈ 1 . . . n. Then,
A is syntactically valid if and only if all Ai, i ∈ 1 . . . n are semantically valid.

www.manaraa.com

Automata-Based Behavioural Contracts with Action Correlation 145

Proof. The ‘if ’ part follows from Theorem 1 and Lemma 1. For the ‘only if ’
part, assume by contradiction that A is not syntactically valid. By Lemma 1
this means that some principal from whom A has been obtained by composition
is not syntactically valid, and by Theorem 2 a contradiction is reached. ��
Example 10. Continuing Example 8, the automaton A is of rank 2 and it is com-
posed of two principals, say A and B. A is not syntactically valid because principal
A has transitions t3 = (q0, (true, a, {}), q1) and t4 = (q1, (true, b(y), {}), q2) and
it is not syntactically valid because in the path t3t4 the variable y used in t4
has not been previously bound in t3. Moreover, A is also not semantically valid
because of the trace a b(y).

5 CMCA at Work on a Hotel Booking Scenario

To show the effectiveness of our approach, in this section we use CMCA to
model a hotel booking scenario, involving a number of clients, hotels and booking
services. Each client makes use of a booking service to select and book a room for
a given destination. When invoked, a booking service contacts a given number
of hotels and proposes to the client only a limited number of the received offers
(for the sake of presentation, in our example each booking service contacts five
hotels and proposes three offers). A client can be of two different types, say A
or B, according to his willingness of concluding the interaction with the booking
service by sending or not the hotel review.

The CMCA of the four kinds of principals are in Fig. 1, where, for the sake
of readability, we have omitted guards and variable valuations from labels, as
they are true and {}, respectively, for all labels. Moreover, we use solid arrows
for denoting transitions labelled by necessary actions, and dotted arrows for the
permitted ones.

The overall scenario is rendered by the following composition:

ClientA1 ⊗ ...⊗ ClientAn ⊗ ClientB1 ⊗ ...⊗ ClientBm

⊗ HotelBooking1 ⊗ ...⊗ HotelBookingp ⊗ Hotel1 ⊗ ...⊗ Hotelr

Considered the large number of states of the full automaton, we omit its full
graphical representation and just report in Fig. 2 an excerpt for the composition
of one client of type A, one client of type B, two hotel booking services, and
eight hotels.

Specifically, a client firstly contacts one booking service among those that
are not currently serving another client (i.e., those HotelBooking CMCA that
are in the state 0). Indeed, a booking service that is already engaged in a con-
versation cannot synchronise with the initial action of the client, at least until
the conversation terminates and the service goes back to its initial state. The
contacted booking service checks room availability of five hotels, each of which
tries to send back its room offer. Once the booking service has received three
out of five replies, it resets via the timeout action the other two hotels (bringing
their CMCA back to the initial state) and sends the three room offers to the
client, who selects one. Then, the booking service confirms the reservation to the

www.manaraa.com

146 D. Basile et al.

Fig. 1. Hotel booking scenario: CMCA of Client, HotelBooking and Hotel

www.manaraa.com

Automata-Based Behavioural Contracts with Action Correlation 147

selected hotel and rejects the other two offers. Finally, the payment takes place
and the client optionally sends a review about his stay to the service. In fact,
since hotelReview is a permitted action, the booking service can interact with
clients of both type A and B.

The scenario shows how correlation variables are used to prevent undesired
matchings in the contract composition. Hotel uses x to ensure that, once con-
tacted, it will always interact with the same booking service until it will come
back to the initial state (where a new binding for x can be done). HotelBooking
uses c to continue to interact with the same client, and h1, h2 and h3 to send
the confirmation/rejection only to the three hotels that have made the offers,
until it will come back to the initial state. Finally, ClientA and ClientB do not
need to specify any correlation variable.

Consider the validity of the involved CMCA. The automata of both kinds
of clients are trivially (syntactically and semantically) valid, as they do not
use any correlation variable. The hotel automata are syntactically valid,
because transitions labelled by actions timeout(x), offer(x), confirm(x) and
reject(x), which use variable x, are properly bound by the transition labelled
by checkAvailability(x) that occurs on the paths leading to the former transi-
tions. By Theorem 1, the hotel automata are also semantically valid. In the
same way, we can easily check that also the hotel booking service automata are
syntactically, and hence semantically, valid. Finally, since all these CMCA are
semantically valid principals, by Corollary 1 their composition is syntactically
valid, and also, by Theorem 1, semantically valid.

6 Related Work

In the literature, there exist many formalisms for modelling and analysing (ser-
vice) contracts, ranging from behavioural type systems, including behavioural
contracts [1,15,22] and session types [13,14,17,20,24], to automata-based for-
malisms, including interface automata [2] and (timed) (I/O) automata [3,16,23].
Foundational models for service contracts and session types are surveyed
in [4,11,21].

In [1,15,22], behavioural contracts of web services are described by CCS-
like process algebrae, which model service features through input and output
actions that synchronise. They have different, generally weaker notions of con-
tract compliance than ours, e.g. only involving two parties. Sessions and session
types [13,14,17,20,24] have been introduced to reason over the behaviour of ser-
vices in terms of their interactions. Compared to CMCA, behavioural contracts
and session types use process-algebraic frameworks, whilst CMCA are based on
finite state machines. Indeed, CMCA are similar to other software engineering-
based formalisms such as I/O automata [3,16,23], or semi-formal UML state
machine diagrams, from which they benefit by being easily adaptable into the
design phase of a software life-cycle. Different from CMCA, behavioural con-
tracts are either bi-party or they do not use correlation variables to track their
conversations, whilst session types have knowledge about other communicating
partners.

www.manaraa.com

148 D. Basile et al.

Fig. 2. Hotel booking scenario: CMCA of a composition

CMCA builds upon contract automata [7] that have been used to study
several issues arising in a composition of service contracts. Contract automata
have been related to two intuitionistic logics introduced for modelling circular
dependencies among contracts in [7], and have been related to session types
in [8]. Moreover, contract automata have been extended to express real-time
features in [6] and different necessary requests in [5,9]. Differently from CMCA,
all these extensions do not include the possibility of specifying conversations
between principals by using correlation variables.

Some form of correlation for directing a message to the correct interacting
partner has already been used by a few formalisms aiming at providing a founda-
tional understanding of the SOC paradigm among which COWS [26], SOCK [19],
and SocL [18]. COWS is a process calculus whose design has been influenced by
WS-BPEL. Correlation in COWS relies on a sophisticated pattern-matching
mechanism that allows an input operation to selects the message to receive and,
in case a message matches several input patterns, to direct the message to the
input operation that requires fewer substitutions. Differently from COWS, the
SOCK calculus was developed trying to be strongly related to the web services
technology. This principle is also reflected in the used correlation mechanism. In
SOCK, every process has a state consisting of valued variables. Some of them,
called correlation variables, are explicitly indicated as those driving the corre-
lation so that a message is directed to the process that contains in its corre-
lation variables the same correlation values included in the message. SocL is a
branching-time temporal logic that has been specifically designed to effectively

www.manaraa.com

Automata-Based Behavioural Contracts with Action Correlation 149

express distinctive aspects of services, such as, e.g., acceptance of a request,
provision of a response, and correlation among service requests and responses.
The actions of the logic, that correspond to the actions performed by service
providers and consumers, have correlation data among their attributes. More-
over, as in CMCA, the actions can use variables to capture correlation data.
Differently from all the three formalisms mentioned above, where correlation
data can be any sort of values that services can exchange in communication,
the CMCA correlation mechanism only allows a principal to first introduce a
variable for capturing the identity of an interacting partner and then use that
variable for constraining further interactions to take place with the same part-
ner. Indeed, the correlation data are implicitly generated as indexes of partners
that are generated automatically.

7 Conclusion and Future Work

We have presented the foundational theory of Correlation-based Modal Contract
Automata (CMCA). This formalism expresses behavioural contracts equipped
with modalities (necessary and permitted actions) as well as a mechanism for
correlating different actions. The correlation mechanism enables each interacting
partner to use its past interactions to drive the future ones.

The original Contract Automata [7,10] are equipped with an algorithm that
permits the synthesis of the orchestration of multiple contracts. This orchestra-
tion represents the largest portion of behaviour of the composition that is in
agreement. We plan to define the orchestration of CMCA. For this, it is first
necessary to extend to CMCA the refinement relationship defined for Contract
Automata. We also wish to extend the tool [9] supporting the design of Contract
Automata and the automated calculation of their orchestration to include the
correlation mechanism introduced in this paper.

The CMCA correlation mechanism, although expressive enough to enhance
the original formalism and make it able to model interesting service scenarios
and properties, is somehow more restrictive than that used by the foundational
formalisms for SOC discussed in the previous section. Therefore, for modelling
more complex interactions, we plan to integrate within CMCA a more general
mechanism supporting explicit choice of correlation data, as well as their trans-
mission to third party contracts.

Our long-term goal is to devise a methodology for verifying services against
their contracts. Services could be expressed both as source code (e.g. WS-BPEL
processes) or at a more abstract level (e.g. as COWS terms), while contracts
would be expressed as CMCA. We want then to develop methods to automati-
cally derive a contract out of a service and, vice versa, to derive a service (schema)
out of a contract, while of course guaranteeing compliance of the service with its
contract. This is at the base of a contract-based methodology to develop service
applications that are safe by design.

www.manaraa.com

150 D. Basile et al.

Acknowledgements. We are pleased to point out that different subsets of authors
of this paper have co-authored with Stefania Gnesi both the work on Service oriented
computing Logic (SocL) [18] and on Modal Service Contract Automata (MSCA) [7,10].
Our paper is in fact an attempt to import the benefits of SocL (in particular, the
correlation mechanism) into MSCA. Stefania has a long standing research history on
both temporal logics and modal formalisms. Working with her on these subjects has
been a great opportunity of growth. We also thank the anonymous reviewers for their
useful comments.

References

1. Acciai, L., Boreale, M., Zavattaro, G.: Behavioural contracts with request-response
operations. Sci. Comp. Program. 78(2), 248–267 (2013)

2. de Alfaro, L., Henzinger, T.: Interface automata. In: ESEC/FSE, pp. 109–120.
ACM (2001)

3. Alur, R., Dill, D.: A theory of timed automata. Theoret. Comp. Sci. 126(2), 183–
235 (1994)

4. Bartoletti, M., Cimoli, T., Zunino, R.: Compliance in behavioural contracts: a brief
survey. In: Bodei, C., Ferrari, G.-L., Priami, C. (eds.) Programming Languages
with Applications to Biology and Security. LNCS, vol. 9465, pp. 103–121. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25527-9 9

5. Basile, D., ter Beek, M.H., Di Giandomenico, F., Gnesi, S.: Orchestration of
dynamic service product lines with featured modal contract automata. In: SPLC,
pp. 117–122. ACM (2017)

6. Basile, D., ter Beek, M.H., Legay, A., Traonouez, L.-M.: Orchestration synthesis for
real-time service contracts. In: Atig, M.F., Bensalem, S., Bliudze, S., Monsuez, B.
(eds.) VECoS 2018. LNCS, vol. 11181, pp. 31–47. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-00359-3 3

7. Basile, D., Degano, P., Ferrari, G.L.: Automata for specifying and orchestrating
service contracts. Log. Meth. Comput. Sci. 12(4) (2016)

8. Basile, D., Degano, P., Ferrari, G.L., Tuosto, E.: Relating two automata-based
models of orchestration and choreography. J. Log. Algebr. Meth. Program. 85(3),
425–446 (2016)

9. Basile, D., Di Giandomenico, F., Gnesi, S.: FMCAT: supporting dynamic service-
based product lines. In: SPLC, pp. 3–8. ACM (2017)

10. Basile, D., Di Giandomenico, F., Gnesi, S., Degano, P., Ferrari, G.L.: Specify-
ing variability in service contracts. In: Proceedings 11th International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS 2017), pp. 20–27.
ACM (2017)

11. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Web service composition approaches:
from industrial standards to formal methods. In: ICIW. IEEE (2007)

12. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60(4), 64–72 (2017)

13. Bruni, R., Lanese, I., Melgratti, H., Tuosto, E.: Multiparty sessions in SOC. In:
Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 67–82.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68265-3 5

14. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party sessions. Log. Meth. Comp. Sci. 8(1:24), 1–45 (2012)

15. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5), 19:1–19:61 (2009)

https://doi.org/10.1007/978-3-319-25527-9_9
https://doi.org/10.1007/978-3-030-00359-3_3
https://doi.org/10.1007/978-3-030-00359-3_3
https://doi.org/10.1007/978-3-540-68265-3_5

www.manaraa.com

Automata-Based Behavioural Contracts with Action Correlation 151

16. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: HSCC, pp.
91–100. ACM (2010)

17. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: an overview.
In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14458-5 1

18. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.:
A logical verification methodology for service-oriented computing. ACM Trans.
Softw. Eng. Methodol. 21(3), 16:1–16:46 (2012). https://doi.org/10.1145/2211616.
2211619

19. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: a calculus
for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006). https://doi.org/10.
1007/11948148 27

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008)

21. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

22. Laneve, C., Padovani, L.: An algebraic theory for web service contracts. Form.
Asp. Comp. 27(4), 613–640 (2015)

23. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI Q. 2,
219–246 (1989)

24. Michaux, J., Najm, E., Fantechi, A.: Session types for safe web service orchestra-
tion. J. Log. Algebr. Program. 82(8), 282–310 (2013)

25. OASIS WSBPEL TC: Web Services Business Process Execution Language Version
2.0. Technical report, OASIS, April 2007. http://docs.oasis-open.org/wsbpel/2.0/
OS/wsbpel-v2.0-OS.html

26. Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. J. Applied
Logic 10(1), 2–31 (2012). https://doi.org/10.1016/j.jal.2011.11.002

https://doi.org/10.1007/978-3-642-14458-5_1
https://doi.org/10.1145/2211616.2211619
https://doi.org/10.1145/2211616.2211619
https://doi.org/10.1007/11948148_27
https://doi.org/10.1007/11948148_27
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://doi.org/10.1016/j.jal.2011.11.002

www.manaraa.com

Logical Support for Bike-Sharing System
Design

Ionuţ Ţuţu1,2(B), Claudia Elena Chiriţă2, Antónia Lopes3,
and José Luiz Fiadeiro2

1 Simion Stoilow Institute of Mathematics of the Romanian Academy,
Bucharest, Romania
ittutu@gmail.com

2 Department of Computer Science,
Royal Holloway University of London, Egham, UK

claudia.elena.chirita@gmail.com, jose.fiadeiro@rhul.ac.uk
3 LASIGE and Faculdade Ciências, Universidade de Lisboa, Lisbon, Portugal

malopes@ciencias.ulisboa.pt

Abstract. Automated bicycle-sharing systems (bss) are a prominent
example of reconfigurable cyber-physical systems for which the locality
and connectivity of their elements are central to the way in which they
operate. These features motivate us to study bss from the perspective
of Actor-Network Theory – a framework for modelling cyber-physical-
system protocols in which systems are networks of actors that are no
longer limited to programs but can also include humans and physical
artefacts. In order to support logical reasoning about information-flow
properties that occur in bss, we use a logical framework that we have
recently developed for actor networks, which results from a two-stage
hybridization process. The first stage corresponds to a logic that captures
the locality and connectivity of actors in a given configuration of the
network; the second stage corresponds to a logic of possible interactions
between actors, which captures the dynamics of the system in terms of
network reconfigurations. To illustrate the properties that can be checked
using this framework, we provide an actor-network specification of a
particular bss, and use a recently developed tool for hybridized logics to
highlight and correct an information-flow vulnerability of the system.

1 Introduction

Bike-sharing systems (bss) facilitate urban transport by allowing users to borrow
bicycles from a location and return them at the destination of their journey. The
journeys are usually short, and the loan of a bicycle is conditioned by a fee.

The bss model appeared in the 1960s and has since evolved through several
generations. The last decade in the history of bss stands out for a rapid growth:
each year, they are more widespread and their number, sheer size and complexity,
keep increasing. This has led to reshaping cities, and has promoted bike-sharing
systems as one of the main means of urban transportation. If the first genera-
tions of bss were vulnerable to vandalism and incorrect usage, the recent third
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 152–171, 2019.
https://doi.org/10.1007/978-3-030-30985-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_10

www.manaraa.com

Logical Support for Bike-Sharing System Design 153

generation has tackled issues concerning accessibility, automated payment, and
bike and station distribution across cities.

We are now witnessing a major step forward through which dockless and elec-
tric bicycles feature as solutions to a more balanced distribution, more responsi-
ble parking and more equitable use of the public space. These features have con-
tributed to the success of the fourth-generation bss; from the few small schemes
available in 2015, users can now benefit from city-scale systems with more than
17 million bikes across the globe [23]. In fact, one may even argue that bss have
become a victim of their own success: communities and owning organisations
were not prepared for such a rapid spread. From the oversupply of bike-sharing
systems in China that led to vast bicycle graveyards, to frequent attacks on the
cyber-security of the systems and users’ privacy breaches, fourth generation bss
are facing various new problems and threats.

In this paper, inspired by Stefania Gnesi’s work on bike-sharing systems [2,3]
(which is just one of her extensive contributions to formal methods in software
engineering), we propose to model a bss using tools and techniques that are
specific to our field of work. We develop a formal specification of a bss using an
actor-network framework based on hybrid logic that we have recently presented
in [14], and show how the logics advanced therein can be used in conjunction with
off-the-shelf formal-specification tools and theorem provers in order to reason
about the design of a bss. To that end, we rely on H [7,10,11], a tool that
extends the Heterogeneous Tool Set (Hets) [24] with support for hybridized
logics based on theoretical developments presented in [12]. Through this, we hope
to demonstrate how the development and analysis of such models can contribute
towards the implementation of a viable bss transport network. The analysis
process could be part of the feasibility studies and project design processes that
precede the implementation of a bss, or part of the monitoring and evaluation
that needs to be conducted throughout its operation

The bss Model Under Consideration. The case study that we consider in this
paper is simple. We focus on a fourth generation bike-sharing system operating
in a city that is divided into several geographic regions (e.g., by geo-fencing). The
regions of the city are connected through infrastructure elements such as roads,
pathways, and bridges. To borrow a bicycle, users must connect to the system
and make a request from the region where they are located. Once they collect
a bicycle, users must input the destination of their journey before travelling. If,
at any time during their travel, the destination region becomes full, with no free
parking spaces, the system automatically offers rewards at that region. Rewards
are an alternative to the usual (external) redistribution of bicycles across the
city; they could be free rides or credit, and are meant to encourage nearby users
to borrow bicycles from that region in order to make room for incoming bicycles.
Once users reach their destination, they must secure their bicycles to physical
docks or in designated parking spaces in order to end their journeys.

The Specification and Verification Process. In the following sections, we grad-
ually formalize the bss presented above using notions of actor-network theory
and hybrid logic. Concepts and background information about the logics used are

www.manaraa.com

154 I. Ţuţu et al.

introduced on the fly as we progress towards the full specification of the system.
In Sect. 2, we provide an informal overview of the main concepts involved in actor
networks, which we illustrate with the bss. This is continued with the presentation
of the two hybrid-logic formalisms that we use in the paper, LNC (in Sect. 3) and
LAN (in Sect. 4). Then, in Sect. 5, we discuss the hybrid-logic specification of the
bss. Lastly, in Sect. 6, we analyse the design and show that any implementation of
the bss has the following properties:

– If a region has a free dock, then no rewards are offered at that region.
– If a reward is offered at a region, then a user is expected to arrive there.

Whilst the first property is desired to hold, the second indicates a vulnerability
because it discloses private information about the movement of users. We show
how to address this through small changes in the design.

2 Actor Networks

Actor Networks (ants) are a framework for modelling cyber-physical-system pro-
tocols originally proposed in [25] in the context of physical security. They are
based on Latour’s Actor-Network Theory [19] in recognition of the fact that such
protocols involve a number of entities (called actors, which in concrete situations
may correspond to people, devices, locations, etc.) that have shared agency, and
for which interaction, rather than computation, is the major concern. Beyond
that, ants make location a primary concern, which is essential for physical secu-
rity as well as other protocols. This brings ants in line with spatial logics and
frameworks that deal with the physical distribution of systems [1,6]; in contrast
with those studies, which offer extensive support for topological properties, in
ants we only record the locality of actors in relation to other actors.

The Structure of Actor Networks. There are three major steps to follow when
modelling a cyber-physical protocol using ants. The first one requires the iden-
tification of the structural aspects of an actor network:

– The relevant sorts (or kinds) of actors.
For the bss case study that we consider in this paper, we distinguish the
human users of the system, the bicycles that they can use to travel, the docks
where the bicycles can be locked, as well as the various regions where docks
are available for users to borrow or return bicycles.

– The means through which actors can store state attributes, knowledge or
data, which for simplicity we capture through propositional symbols.
For instance, in our running example, we use a propositional symbol (which
may be regarded as a Boolean flag) specific to regions to indicate whether
users are offered rewards (free rides) for borrowing bicycles at a given region.

– Channel types, which account for the ability of actors to connect to other
actors. Every channel type has a source and a target, both of which are (actor)
sorts, and can capture transfer of knowledge, intent, or specific actions.

www.manaraa.com

Logical Support for Bike-Sharing System Design 155

For the bss, we consider channels of type: ask through which users (the
source of the channel) may request to borrow a bicycle at particular regions
(the target of the channel); and path between regions (i.e. with the same
source and target) to indicate the fact that users can travel directly between
two given regions (if they choose to do so) – in other words, we use path to
capture the physical topology of the bss network.

Interactions in Actor Networks. In order to model cyber-physical-system proto-
cols, we also need to consider the network configurations in which an ant may
find itself. Every such configuration gives a detailed account of:

– The exact channels that are available between every two actors – that is, the
actor interconnectivity in a particular configuration.

– How each actor is located in relation to other actors. For instance, this can
capture the fact that, at a given moment in the ‘execution’ of the bss, a
bicycle is locked in a specific dock in a region; or that a user is travelling on
a specific bicycle, and that both the user and the bicycle are in a region.

– For every actor, the propositional symbols that are true for that actor.

Network configurations can change as a result of interactions taking place.
Through an interaction, we identify specific conditions that should be met for a
reconfiguration to occur, and we describe the effects of that reconfiguration. For
the bss, we consider four kinds of interactions, which correspond to:

– borrowing/taking a bicycle from a dock (in a region);
– travelling (on a bicycle) between two regions connected by a path;
– returning a bicycle (to a dock) once the destination is reached; and
– offering rewards (which is done automatically by the system) at full regions.

As an example of the conditions associated with interactions, we assume that a
user can borrow a bicycle only if both the user and the bicycle are in the same
region; moreover, the user must have requested to travel from that region, and
the bicycle should be available in a dock in that region, where it is locked.

Specification for Actor Networks. Building on the above ingredients, the third
major step in the development of an ANt-based design consists in describing
the structure and the dynamics of the system by means of axioms written in a
hybrid-logic language that is suitable for actor networks.

Through such axioms, we specify which configurations are well defined: for
example, users can return bicycles at a region only if they are physically present
at that region, on their bicycles, and if there are free docks available. Moreover,
we also specify how networks evolve in time (as a result of reconfigurations) and
the way their evolution is related to the interactions between actors.

We formalize and describe all these steps in detail, and give concrete examples
of actors, channels, configurations, interactions, etc., in the following sections.

www.manaraa.com

156 I. Ţuţu et al.

Logical Support for Actor Networks. The mathematical structures that support
the development and analysis of ants are provided by a kind of hybrid logic
(which we have recently proposed in [14]) whose models are hierarchical Kripke
structures with two layers:

1. a base layer, specific to the states/configurations of a network; in this case, the
possible worlds correspond to the actors of the network, which are the same
for all configurations, while the accessibility relations capture their locality
and connectivity, which may vary from one configuration to another;

2. an upper layer, specific to the dynamics of a network; in this case, the possible
worlds correspond to network configurations (i.e., base-layer structures), and
the accessibility relations capture the transitions that are possible between
configurations (i.e., discrete reconfigurations of the network).

There are several defining features of actor networks that distinguish them
from ordinary two-layered Kripke structures:

– Firstly, as mentioned above, all configurations of a given network share the
same underlying set of actors; this means that the cyber-physical systems
modelled using actor networks are closed. However, structures can be of arbi-
trary size, even infinite.

– Secondly, the base-layer accessibility relation that corresponds to the locality
of actors is necessarily functional and acyclic; this means that, for every con-
figuration, the locality of actors in relation to one another is given by a forest
(typically of finite depth) whose nodes are the actors of the network.

– Thirdly, every network reconfiguration is determined by a specific interaction
between the actors at the source of that reconfiguration, where by interaction
we mean a pre-defined set of locality and connectivity constraints.

The logic of actor networks, hereafter denoted LAN, can be obtained by way
of a double constrained-hybridization process, along the lines of the original
construction presented in [14]. In a nutshell, a hybridization of a logic, regarded
as a base logic, consists in an exogenous enrichment of that logic (in the sense
of [22]) with features that are characteristic of hybrid logic (see [4,5]); this is done
both at the syntactic level – by introducing nominals, modalities, and hybrid-
logic operators – and at the semantic level, through Kripke structures whose
possible worlds are labelled with models of the base logic.

In many cases, this process is constrained, in the sense that the Kripke struc-
tures of the resulting hybridized logic are subject to additional semantic con-
straints. For instance, the base-logic models that label the possible worlds of
a Kripke structure may share certain information (through what are usually
referred to as rigidity constraints); or some of the accessibility relations may be
required to be reflexive, preorders or, moreover, equivalences, as in the T, S4,
and S5 variants, respectively, of hybrid propositional logic.

As this short introduction to hybridization suggests, the process is applicable
to a broad spectrum of logics, and its result is not a single, definite logical system,
but a class of logical systems, where variations arise from tuning hybridization

www.manaraa.com

Logical Support for Bike-Sharing System Design 157

parameters such as the precise hybrid features added to the base logic, or the
semantic constraints imposed on Kripke structures. This idea is explored in [9,
21], where hybridization is formalized in the context of Goguen and Burstall’s
theory of institutions [17].1 Actor-network logic(s) can be developed much in the
same way: the main parameter is the base logical system, which by hybridization
gives rise to a formalism for reasoning about the base layer of actor networks;
and by hybridizing that logic further, we obtain an even richer logical system
that provides support for both levels of actor networks.

Despite the logic-independent nature of the construction, for the purpose of
this contribution, and to make the paper more accessible to readers who may
not be familiar with hybridization or institution theory, we choose to focus on a
concrete logical system. We build this logic in two steps: first, we define a logic
of network configurations, called LNC, as a hybridization of propositional logic;
then, we introduce the logic of actor networks (LAN) as a hybridization of LNC.

A short comparison with the developments reported in [14] is in order. Our
previous work also deals with a two-stage constrained hybridization aimed at
developing logics for actor networks, but there are subtle and important differ-
ences to consider. One is that the base logical system corresponds in that case to
the three-valued �Lukasiewicz logic. Another is that the presentation relies heav-
ily on the graph-theoretic notion of an actor-network schema, which determines
an upper bound for the size of the models considered – in [14], all models are
finite. Last but not least, the use of quantifiers over state variables is no longer
restricted to the base layer of the logic of actor networks; instead, we can combine
such quantifiers freely with any of the other sentence-building operators.

3 Network Configurations

In what follows, we define the main building blocks of LNC: its signatures (struc-
tured collections of symbols), models (providing interpretations for the symbols
declared in signatures), sentences (built from symbols declared in signatures),
and satisfaction relations (establishing whether a property, formalized as a sen-
tence, holds at a given model). All are interspersed with relevant fragments of
the bss specification that we are progressively building.

Definition 1. An LNC-signature is a tuple Σ = 〈S, P,N,K〉, where:

– S is a set whose elements we call sorts or kinds of actors,
– P = {Ps}s∈S is an S-indexed family of sets of propositional symbols,
– N = {Ns}s∈S is an S-indexed family of sets of actor names, and
– K = {Ks t}s,t∈S is an S × S-indexed family of sets of channel types.

BSS Sorts. In line with the informal description of the actor-network model2

of the bss from Sect. 2, the LNC-signature that we consider here contains the
following four sorts: User, Bike, Dock, and Region.
1 The papers [15] and [13] can be regarded as precursors of [21]; both deal with enrich-

ing abstract logics – one with temporal features, and the other with modal features.
2 Not to be confused with the formal concepts of model from Definitions 2 and 6.

www.manaraa.com

158 I. Ţuţu et al.

BSS Propositional Symbols. We also declare four propositional symbols:

travelling : User3 to indicate if a user is travelling or not towards some region;
freeDock : Dock to indicate that there is no bicycle locked in a particular dock;
fullRegion : Region to indicate that all docks in a region have bicycles in place;
rewardOffered : Region to capture the fact that users are offered free rides when

borrowing bicycles from docks located in a particular region.

BSS Actor Names. At this stage, we use no actor names. However, actor
names may be introduced on the fly when dealing with quantified sentences –
and in that case they are sourced from variables. In LNC, a state variable (or
variable, for short) for a signature Σ = 〈S, P,N,K〉 is a triple (x, s,Ns), usually
denoted simply by x : s, where x is the name of the variable, and s is its sort.4

Variables determine extensions of signatures as follows: for every S-sorted set X
of Σ-variables, Σ[X] = 〈S, P,N ∪ X,K〉 is an LNC-signature that includes Σ.

BSS Channel Types. We consider five channel types:

ask : User Region to signal a user’s intent to borrow a bicycle at a given
region;
choose : User Bike to capture the selection of a bicycle (to borrow) by a user;
choose : User Dock for the selection of a dock (to return a bicycle) by a user;
travelTo : User Region to specify the region towards which a user is travelling;
path : Region Region to indicate that two regions are connected by a path.

The models of an LNC-signature Σ are Kripke structures that interpret the
actor names in Σ as possible worlds, and the channel types as relations on worlds.

Definition 2. Let Σ = 〈S, P,N,K〉 be an LNC-signature. A model, or Kripke
structure, of Σ is a triple 〈A,�,M〉, where 〈A,� 〉 is a Kripke frame defining,
for every two sorts s, t ∈ S, actor name n ∈ Ns, and channel type κ ∈ Ks t:

– a set As of possible worlds, or actors, of sort s,
– an element As,n of As, i.e., an actor of sort s corresponding to the name n,
– an accessibility relation, or channel, As t,κ between the sets As and At,
– a functional and acyclic relation � on

⊎{As | s ∈ S} that captures the locality
of actors, and for which a � a′ reads as a is in/on/at a′,

and M is a family of sets Ms,a ⊆ Ps (the propositions of sort s that hold at a)
indexed by sorts s ∈ S and actors a ∈ As. When there is no risk of confusion,
we may drop the sorts from the notations of As,n, As t,κ, and Ms,a.

3 We use this colon notation to separate a propositional symbol from its sort, and also
to separate a channel type from the two sorts on which it is defined.

4 We annotate the variables of sort s with the set of actor names of sort s in order to
ensure that there are no accidental clashes between variables and actors names.

www.manaraa.com

Logical Support for Bike-Sharing System Design 159

Note the properties of the second component of an LNC-model: � is a special
kind of accessibility relation that is used here to capture the placement (loca-
tion) hierarchy on actors. Equivalently, it could be presented as a (rooted) forest
structure over the set of all actors. We denote its inverse by �.

A typical example of a Kripke structure for the LNC-signature of the bss can
be seen in Fig. 1. We use graphical representations of LNC-models to make the
correspondence between these semantic structures and the actual configurations
of the bss easier to perceive. The model is finite; it consists of six actors, depicted
using circles, which are distributed and related as follows:

– AUser = {U}, ABike = {B}, ADock = {D1,D2}, and ARegion = {R1,R2};
– the channels are represented using labelled arrows, and they are all singletons

in this case; for instance, Aask = {(U,R1)} and Apath = {(R1,R2)};
– the relation � is depicted through the nesting of nodes; we have, for example,

U � R1 to capture the fact that U is currently in the region R1, D1 � R1 to
capture the fact that D1 is a dock in that region, and B � D1 to capture the
fact that the bicycle B is currently locked in D1;

– the propositions that hold at given actors are indicated in a more coded way,
by symbolic decorations placed on their corresponding circles; we use the sym-
bols > for travelling, − for freeDock, + for fullRegion, and � for rewardOffered;
for instance, MR1 = {rewardOffered}, and MD2 = {freeDock}.

U B
D1

R1�

D2 −

R2

ask

choose path

Fig. 1. An LNC-model for the bss

The fact that the actors of a network are sorted has important consequences
on the way we define the sentences of the logic of network configurations.

Definition 3. Consider an LNC-signature Σ = 〈S, P,N,K〉 and let s be a sort
in S. The sentences of sort s over Σ are defined by the following grammar:

ϕ ::= p | n | ¬ϕ | ϕ → ϕ | @n′ ϕ′ | 〈κ〉 ϕ∗ | 〈π〉 ϕ† | ∃X · ϕ§

where p ∈ Ps and n ∈ Ns are propositional symbols and actor names of sort
s, n′ ∈ Ns′ is an actor name (of any sort s′), ϕ′ is a Σ-sentence of sort s′,
κ ∈ Ks s∗ is a channel type with source sort s and target sort s∗, ϕ∗ is a Σ-
sentence of sort s∗, π is a distinguished and new parent modality, ϕ† is a Σ-
sentence (of any sort), X is a finite set of Σ-variables, and ϕ§ is a Σ[X]-sentence
of sort s.

www.manaraa.com

160 I. Ţuţu et al.

Other propositional connectives such as conjunction (∧), disjunction (∨), and
equivalence (↔) can be defined as usual. The dual modal operators [κ], where
κ is a channel type, and [π] for the parent modality, as well as the universal
quantifier over state variables can also be defined in the conventional way:

[κ] ϕ = ¬ 〈κ〉 ¬ϕ [π] ϕ = ¬ 〈π〉 ¬ϕ ∀x · ϕ = ¬∃x · ¬ϕ

The satisfaction relation between LNC-models and sentences is defined, as for
many logical systems, by induction on the structure of sentences, and is param-
eterized by actors (i.e., possible worlds of the Kripke structures considered).

Definition 4. Let 〈A,�,M〉 be a Σ-model and a an actor of sort s in A. Then:

– 〈A,�,M〉 �a p if p ∈ Ma, when p is a propositional symbol of sort s;
– 〈A,�,M〉 �a n if a = An, when n is an actor name of sort s;
– 〈A,�,M〉 �a ¬ϕ if 〈A,�,M〉 �

a ϕ;
– 〈A,�,M〉 �a ϕh → ϕc if 〈A,�,M〉 �a ϕh implies 〈A,�,M〉 �a ϕc;
– 〈A,�,M〉 �a @n′ ϕ′ if 〈A,�,M〉 �a′

ϕ′, where a′ = An′ ;
– 〈A,�,M〉 �a 〈κ〉 ϕ∗ if there exists (a, a∗) ∈ Aκ such that 〈A,�,M〉 �a∗

ϕ∗;
– 〈A,�,M〉 �a 〈π〉 ϕ† if there exists a† � a such that 〈A,�,M〉 �a†

ϕ†; this
implicitly means that the actor a† is of the same sort as ϕ†;

– 〈A,�,M〉 �a ∃X · ϕ§ if there is a Σ[X]-expansion 〈A§,�,M〉 of 〈A,�,M〉
such that 〈A§,�,M〉 �a ϕ§, where by expansion of 〈A,�,M〉 we mean a
Σ[X]-model that interprets all symbols in Σ in the same way as 〈A,�,M〉.

Notice that the satisfaction relation is also sorted: we evaluate LNC-sentences ϕ
of sort s only at actors whose sort is s. Given such a sentence ϕ of sort s, we
write 〈A,�,M〉 � ϕ when 〈A,�,M〉 �a ϕ for all actors a ∈ As.

As an example, consider the following sentence, which is satisfied by the bss
model in Fig. 1. Concerning the parsing of sentences, we rely on the usual prece-
dence rules (e.g. unary sentence-building operators have a higher precedence
than binary operators) and on parentheses to make sure no ambiguities arise.

∃{u : User; b : Bike; d : Dock; r : Region} ·
@u (〈π〉 (r ∧ rewardOffered))

(1)

∧ 〈ask〉 r

(2)

∧ 〈choose〉 (b ∧ 〈π〉 (d ∧ 〈π〉 r)))
(3)

Intuitively, this sentence captures situations where a user (indicated by the oper-
ator @u) is in a region r (in the sense that u and r are connected through the
parent modality) where free rides are offered (as per part 1 of the sentence); the
user u has requested to travel from that region (part 2 of the sentence), and has
selected a bicycle available there (part 3 of the sentence).

www.manaraa.com

Logical Support for Bike-Sharing System Design 161

4 Network Dynamics

The signatures, models, and sentences of the logic of actor networks (LAN) are
obtained through a hybridization of LNC. In this case, we add nominals that
identify initial configurations of networks, and interactions that act as modalities
and are interpreted as transition relations between configurations.

By interaction for an LNC-signature Σ we mean a pair consisting of a name
ι and an existentially quantified sentence ∃X ·ϕ over Σ such that ϕ is quantifier-
free. Intuitively, the sentence ϕ describes specific locality and connectivity rela-
tionships between the actors named in X (such as the fact that various regions of
the bss may be connected by paths). We usually denote interactions by ι : ∃X ·ϕ.

Definition 5. A LAN-signature is a tuple Ω = 〈S, P,N,K, I, Λ〉, where:

– 〈S, P,N,K〉 is an LNC-signature,
– I is a set of (names of) initial configurations, and
– Λ is a set of interactions (with distinct names) for 〈S, P,N,K〉.

In the context of the bss, we extend the signature presented in Sect. 3 by
adding a single name init for initial configurations, and four interactions. For each
interaction, we also present a graphical representation (LNC-model) in Fig. 2.

Take : ∃{u : User; b : Bike; d : Dock; r : Region} · ϕ
where ϕ = @u (〈π〉 r ∧ 〈ask〉 r ∧ 〈choose〉 b) ∧ @b 〈π〉 (d ∧ 〈π〉 r)
This means that users can begin their journeys at a region only if they have
requested to travel from that region (through an ask channel) and there are
bicycles available there that they could borrow (through a choose channel).

Travel : ∃{u : User; b : Bike; r1, r2 : Region} · ϕ
where ϕ = @u (travelling ∧ 〈π〉 (b ∧ 〈π〉 r1)) ∧ @r1 〈path〉 r2
That is, travellers can move only between regions that are connected by paths,
and in order to do so, they must use bicycles.

Return : ∃{u : User; b : Bike; d : Dock; r : Region} · ϕ
where ϕ = @u (〈π〉 (b ∧ 〈π〉 r) ∧ 〈travelTo〉 r ∧ 〈choose〉 (d ∧ freeDock ∧ 〈π〉 r))
This means that, in order to return a bicycle, a traveller should be in control
of that bicycle and should have reached already the destination; moreover,
there should be a free dock available at that region (to lock the bicycle).

Reward : ∃{u : User; r : Region} · @u 〈travelTo〉 (r ∧ fullRegion)
That is, in order to pre-emptively free some of the docks in a region, that
region should be full, and there should be a user travelling towards it.

Similarly to LNC, the models of a LAN-signature Ω are also Kripke structures,
but the nominals are interpreted as configurations (i.e., LNC-models) and the
interactions as transition relations between configurations.

Definition 6. Consider a LAN-signature Ω = 〈S, P,N,K, I, Λ〉. A Kripke
model 〈D,C〉 of Ω consists of a domain |D|, i.e., a plain set of worlds, together
with

www.manaraa.com

162 I. Ţuţu et al.

u b

d

r

ask

choose

u
>

b

r1

r2
path

u

b

d
−

r

travelTo

choose

u

r
+

travelTo

Take Travel Return Reward

Fig. 2. Graphical representations of the four bss interactions

– a possible world Di ∈ |D| for each configuration name i ∈ I,
– a transition relation Dι ⊆ |D| × |D| for each interaction name ι in Λ,

and a family of 〈S, P,N,K〉-models Cw = 〈Aw,�w,Mw〉, for w ∈ |D|, such that

– for all possible worlds w,w′ ∈ |D| and sorts s ∈ S we have (Aw)s = (Aw′)s;
– for every possible world w ∈ |D| and interaction ι : ∃X · ϕ in Λ, there exists

a transition (w,w′) ∈ Dι if and only if Cw � ∃X · ϕ.

When there is no risk of confusion, we may also denote (w,w′) ∈ Dι by w
ι−−→ w′.

Figure 3 depicts a model for the bss that corresponds to the journey of a
user from one region (R1) to another (R2). This model has four possible worlds,
C0 − C3, of which C0 is the interpretation of init; and it has three transitions,
one for each of the following interactions: Take, Travel, and Return.

Fig. 3. A possible LAN-model for the bss

www.manaraa.com

Logical Support for Bike-Sharing System Design 163

In order to define the syntax of the logic of actor networks, we consider a
different kind of extension of a signature: not only with state variables, but
with network variables as well. In LAN, a network variable for a signature Ω =
〈S, P,N,K, I, Λ〉 is a pair (y, I), where y is the name of the variable.5 For any S-
sorted set X of state variables for 〈S, P,N,K〉 and any set Y of network variables
for Ω, we obtain the extended signature Ω[X;Y] = 〈S, P,N ∪ X,K, I ∪ Y,Λ〉.
Definition 7. The LAN-sentences over Ω = 〈S, P,N,K, I, Λ〉 are given by:

ψ ::= ϕ | i | ¬¬ψ | ψ ⇒ ψ | i : ψ | 〈|ι|〉ψ | ∃∃X;Y · ψ′

where ϕ is an LNC-sentence over 〈S, P,N,K〉, i ∈ I is a configuration name, ι is
an interaction name in Λ, X and Y are finite sets of state and network variables,
respectively, and ψ′ is a LAN-sentence over the extended signature Ω[X;Y].

For quantified sentences, when the set Y is empty, we also write ∃∃X · ψ′ in
place of ∃∃X;Y · ψ′. Similarly, when X is empty, we write∃∃Y · ψ′.

Notice that, similarly to LNC-sentences, LAN-sentences are built using hybrid-
logic operators, but in this case we use a distinct double-symbol notation; more-
over, the local-satisfaction operators (represented as @n in LNC) are denoted
here by means of a colon. We extend the use of this notation to other Boolean
connectives (∧∧, ∨∨, ⇔), to the dual modal operators ([[]]), and to the universal
quantifier (∀∀), which are defined as in Sect. 3.

Definition 8. Let 〈D,C〉 be a LAN-model for a signature Ω = 〈S, P,N,K, I, Λ〉,
and w ∈ D a possible worlds. The local satisfaction of Ω-sentences by 〈D,C〉 at
w is defined by structural induction, as follows:

– 〈D,C〉 ��w ϕ if Cw � ϕ, when ϕ is an LNC-sentence over 〈S, P,N,K〉;
– 〈D,C〉 ��w i if w = Di, when i is a configuration name;
– 〈D,C〉 ��w ¬¬ψ if 〈D,C〉 ��w ψ;
– 〈D,C〉 ��w ψh ⇒ ψc if 〈D,C〉 ��w ψh implies 〈D,C〉 ��w ψc;
– 〈D,C〉 ��w i : ψ if 〈D,C〉 ��w′

ψ, where w′ = Di;
– 〈D,C〉 ��w 〈|ι|〉ψ if there exists a transition w

ι−−→ w′ such that 〈D,C〉 ��w′
ψ;

– 〈D,C〉 ��w ∃∃X;Y · ψ′ if there exists a Ω[X;Y]-expansion 〈D′, C ′〉 of 〈D,C〉
such that 〈D′, C ′〉 ��w ψ′, where by expansion of 〈D,C〉 we mean a Ω[X;Y]-
model 〈D′, C ′〉 such that (a) D′ has the same domain as D and gives the
same interpretation as D for configuration names and interactions in Ω, and
(b) for every world w ∈ |D′|, C ′

w is an 〈S, P,N ∪ X,K〉-expansion of Cw.

We write 〈D,C〉 �� ψ when 〈D,C〉 ��w ψ for all possible worlds w ∈ |D|.
The definition above justifies the use of different notations for the sentence-

building operators of LAN. Formally, the relationship between the two kinds of
operators is described in the list below, where 〈D,C〉 is an Ω-model with non-
empty sets of actors for each sort, w ∈ |D| is a possible world, ϕ, ϕh, ϕc, ϕ1, ϕ2

are 〈S, P,N,K〉-sentences, and ϕ′ is an 〈S, P,N ∪ X,K〉-sentence.
5 Similarly to the logic LNC, we annotate LAN-variables with the set of configuration

names in order to avoid accidental name clashes when building the extension.

www.manaraa.com

164 I. Ţuţu et al.

– 〈D,C〉 ��w ¬ϕ only if 〈D,C〉 ��w ¬¬ϕ
– 〈D,C〉 ��w ϕh → ϕc only if 〈D,C〉 ��w ϕh ⇒ ϕc

– 〈D,C〉 ��w ϕ1 ∧ ϕ2 if and only if 〈D,C〉 ��w ϕ1 ∧∧ ϕ2

– 〈D,C〉 ��w ϕ1 ∨ ϕ2 if 〈D,C〉 ��w ϕ1
∨∨ ϕ2

– 〈D,C〉 ��w ϕ1 ↔ ϕ2 only if 〈D,C〉 ��w ϕ1 ⇔ ϕ2

– 〈D,C〉 ��w ∃X · ϕ′ if 〈D,C〉 ��w ∃∃X · ϕ′

– 〈D,C〉 ��w ∀X · ϕ′ if and only if 〈D,C〉 ��w ∀∀X · ϕ′

Most of the above properties are one-way implications (‘if’, or ‘only if’),
because the global satisfaction of LNC-sentences relies on an implicit universal
quantification (over actors). Equivalences are guaranteed to hold only for those
sentence-building operators that commute with universal quantifiers.

5 On the Design of a Bike-Sharing System

The two logical systems presented in this paper, LNC and LAN, enable us to
give a detailed formal account of the way in which bike-sharing systems operate,
hence opening the possibility for formal verification (using suitable proof tech-
niques) at a later stage of development. To that end, in this section we discuss
a formal specification of the bss. By formal specification we mean a pair 〈Ω,Γ 〉,
where Ω is a LAN-signature and Γ is a finite set of LAN-sentences over Ω. The
actual bike-sharing networks defined by 〈Ω,Γ 〉 correspond to the Ω-models that
satisfy all sentences in Γ . A specification of this kind is commonly known as a
flat, or unstructured, specification. There are several ways to build structured
specifications from these; for that purpose, various modularization techniques
have been explored in the literature, especially around the notion of institution
(see, e.g., the monograph [27]) – and they can be used in conjunction with LNC
and LAN without special intervention. However, for the purpose of this work,
and for simplicity, we describe the specification as a plain set of sentences over
the LAN-signature for the bss discussed in Sect. 4.

We consider three categories of sentences: (a) sentences that ensure that
the base-layer Kripke structures (LNC-models) are actual, well-defined configu-
rations of the bss; (b) sentences that define the potential initial configurations of
the bss; (c) sentences that describe the effects that interactions have on the struc-
ture and properties of the configurations; and (d) sentences that deal with the
frame problem6 by specifying non-effects of the interactions in terms of attributes
of the configurations that are preserved or reflected along transitions. For each
category, we discuss below a few important examples. The full specification of
the bss is available in [29] through the repository engine Ontohub [8].

In order to make the following LNC and LAN-sentences easier to read, we
make explicit all quantifiers over state variables; cf. Definition 8, where the sat-
isfaction of a LNC-sentence at a world is implicitly quantified over actors of
suitable sort.
6 This problem is notorious for axiomatizing the way in which states change when an

event occurs; various solutions have been proposed in connection to formalisms such
as the situation calculus, event calculus, or default logic, among others; see, e.g. [28].

www.manaraa.com

Logical Support for Bike-Sharing System Design 165

Well-Defined Configurations. The sentences in this category concern the
locality and connectivity of the actors, as well as the way in which these
structural aspects are related to propositional attributes such as travelling and
rewardOffered.

Take, for instance, the following two LNC-sentences, which ensure that at
most one traveller can use a bicycle at a given time (1), and that, in any config-
uration, at most one bicycle can be locked in one of the docks (2).

∀{u1, u2 : User; b : Bike} · @u1 〈π〉 b ∧ @u2 〈π〉 b → @u1 u2 (1)
∀{b1, b2 : Bike; d : Dock} · @b1 〈π〉 d ∧ @b2 〈π〉 d → @b1 b2 (2)

In regard to connectivity, there is a special relationship between the channels
of type ask : User Region and those of type choose : User Bike. The aim is to
ensure that whenever a user requests to travel from a region (through a channel
of type ask), if there is a bicycle available in that region (i.e., a bicycle locked in
a dock, and not claimed by another traveller), then the user can obtain a bicycle
(perhaps even that bicycle) through a choose channel.

We specify this requirement in two steps: first, in (3) and (4) we provide pre-
conditions for the existence of ask and choose channels; then, in (5) we describe
choose as an injective partial mapping from users to bicycles (all in the same
region), and in (6) we ensure that the interpretation of choose is maximal.

∀{u : User; r : Region} · @u (〈ask〉 r → 〈π〉 r) (3)
∀{u : User; b : Bike} · @u (〈choose〉 b

→ ∃{d : Dock; r : Region} · (〈ask〉 r ∧ @b 〈π〉 (d ∧ 〈π〉 r))) (4)
∀{u1, u2 : User; b1, b2 : Bike} ·

@u1 〈choose〉 b1 ∧ @u2 〈choose〉 b2 → (@u1 u2 ↔ @b1 b2) (5)
∀{u : User; b : Bike; d : Dock; r : Region} ·

(@u 〈ask〉 r → ∃{b1 : Bike} · @u 〈choose〉 b1)
∨ (@b 〈π〉 (d ∧ 〈π〉 r) → ∃{u1 : User} · @u1 〈choose〉 b) (6)

There is a similar relationship between the channels of type travelTo : User
Region and the channels of type choose : User Dock. For space considerations,
and because the entire specification is available in [29], we do not present it
explicitly here.

For propositional attributes, we consider the following characterizations:

∀{u : User} · @u travelling ↔ ∃r : Region · @u 〈travelTo〉 r (7)
∀{d : Dock} · @d freeDock ↔ ¬∃b : Bike · @b 〈π〉 d (8)
∀{r : Region} · @r fullRegion ↔ ∀d : Dock · @d (〈π〉 r → ¬ freeDock) (9)

www.manaraa.com

166 I. Ţuţu et al.

Initiality Constraints. The only restriction that we impose on the interpreta-
tion of init is that no user is travelling at that configuration, and no reward is
offered.

init : (¬∃{u : User} · @u travelling ∧ ¬∃{r : Region} · @r rewardOffered) (10)

Interaction Effects. To axiomatize the effects of interactions, we make use of
LAN-sentences of the form ψh ⇒ 〈|ι|〉ψc or ψh ⇒ [[ι]]ψc, where ι is an interaction,
ψh is a precondition for ι, and ψc is postcondition for ι – which holds either at one
of the configurations reached through a ι-transition, or at all such configurations,
depending on whether we use the possibility or the necessity operator.7

∀∀{u : User; b : Bike; d : Dock; r : Region} ·
@u (〈π〉 r ∧ 〈ask〉 r ∧ 〈choose〉 b) ∧ @b 〈π〉 (d ∧ 〈π〉 r)
⇒ [[Take]] @u (〈π〉 (b ∧ 〈π〉 r) ∧ ∃{r1 : Region} · 〈travelTo〉 r1) (11)

∀∀{u : User; b : Bike; r1, r2 : Region} ·
@u (travelling ∧ 〈π〉 (b ∧ 〈π〉 r1)) ∧ @r1 〈path〉 r2

⇒ 〈|Travel|〉@u 〈π〉 (b ∧ 〈π〉 r2) (12)
∀∀{u : User; b : Bike; d : Dock; r : Region} ·

@u (〈π〉 (b ∧ 〈π〉 r) ∧ 〈travelTo〉 r ∧ 〈choose〉 (d ∧ freeDock ∧ 〈π〉 r))
⇒ [[Return]] (@b 〈π〉 (d ∧ 〈π〉 r) ∧ @u (〈π〉 r ∧ ¬ travelling)) (13)

∀∀{r : Region} · ∃{u : User} · @u 〈travelTo〉 (r ∧ fullRegion)
⇒ [[Reward]] @r rewardOffered (14)

Consider, for instance, the sentence (12) describing the effects of the interaction
Travel. By the definition of Travel (on page 10), we know that the interaction can
lead to a change of any configuration where a traveller u, currently in a region r1,
can follow a path in order to reach another region, r2. The axiomatization of Travel
ensures that there exists indeed a reconfiguration of the system (as per the seman-
tics in LAN of the possibility operator) such that u reaches the region r2.

The Frame Problem. The sentences (11)–(14) above capture successfully the
direct effects that the interactions may have, but convey no information about
their non-effects. For example, Travel does not affect the relative locality of
bicycles with respect to the docks. We specify this property in (15) and (16).

∀∀{b : Bike; d : Dock} · @b 〈π〉 d ⇒ [[Travel]] @b 〈π〉 d (15)
∀∀{b : Bike; d : Dock} · 〈|Travel|〉@b 〈π〉 d ⇒ @b 〈π〉 d (16)

7 For (11), note that 〈ask〉 r entails 〈π〉 r; moreover, under the hypothesis @u 〈choose〉 b,
and by (3), (4) and the functionality of π, @u 〈ask〉 r and ∃{d : Dock} · @b 〈π〉 (d ∧
〈π〉 r) are semantically equivalent. Still, to give a better picture of the configurations
affected by Take (or by any of the other interactions), we write the precondition in
full.

www.manaraa.com

Logical Support for Bike-Sharing System Design 167

A considerable number of other trivial sentences of this kind need to be added to
the bss specification; see [29]. In addition, some of the sentences describing non-
effects are necessarily conditional. For instance, the reward offered at a region is
preserved by Take if no dock in that region can be freed by the interaction.

∀∀{r : Region} · @r rewardOffered

∧ ¬∃{u : User; b : Bike; d : Dock} · @u 〈choose〉 (b ∧ 〈π〉 (d ∧ 〈π〉 r))
⇒ [[Take]] @r rewardOffered (17)

A different situation arises when considering the ‘reflection’ of the rewardOffered
properties. If, say, a reward is offered at a region r after a Reward-transition, then
either the reward is also offered (at the same region r) at the source configuration
of the transition (in which case, the property is preserved by the interaction), or
it is generated by the transition as an effect of Reward.

∀∀{r : Region} · 〈|Reward|〉@r rewardOffered

⇒ @r rewardOffered ∨ ∃{u : User} · @u 〈travelTo〉 (r ∧ fullRegion) (18)

It is important to highlight the fact that, under the current specification, Reward
is the only interaction through which rewards can be offered at given regions.
That is, for any interaction ι different from Reward, we have:

∀∀{r : Region} · 〈|ι|〉@r rewardOffered ⇒ @r rewardOffered (19)

6 Information-Flow Properties

Generally, in the context of actor networks, by information flow we refer to
the transfer of information from one configuration to another as a result of a
reconfiguration process. A particular application of information-flow properties is
to characterize invariants. For that purpose, suppose 〈Ω,Γ 〉 is the actor-network
specification of the bss described in Sect. 5. We say that a LAN-sentence ψ
over some extension Ω[X;Y] of Ω is an invariant for 〈Ω,Γ 〉 when, for every
interaction ι, ∀∀X;Y · ψ ⇒ [ι] ψ is a semantic consequence of Γ – that is, when
〈D,C〉 �� ∀∀X;Y · ψ ⇒ [ι] ψ for all models 〈D,C〉 that satisfy all sentences in Γ .8

We analyse the following two invariants of the bss, denoted by FD and RO.

FD : If a region has a free dock, then no reward is offered at that region.

∀{d : Dock} · @d (freeDock → [π] ¬ rewardOffered) (20)

RO : If a reward is offered at a region, then a traveller is expected to arrive there.

∀{r : Region} · @r rewardOffered → ∃{u : User} · @u 〈travelTo〉 r (21)

8 When both X and Y are empty, we can further prove that ψ holds at all reachable
configurations of the model of 〈Ω, Γ 〉 by verifying that Γ entails init : ψ.

www.manaraa.com

168 I. Ţuţu et al.

To verify that the sentences FD ⇒ [[ι]]FD and RO ⇒ [[ι]]RO are indeed con-
sequences of the actor-network specification 〈Ω,Γ 〉, where ι is any of the four
interactions of the bss, we use a recently developed extension of the Heteroge-
neous Tool Set (Hets) [24], called H [7,10,11], that provides support for formal
specification and reasoning in hybridized logics.

In particular, for reasoning purposes, H implements a verification-by-trans-
lation method based on theoretical results presented in [12]. This involves three
main steps: (1) translating the verification problem to first-order logic using a
suitable encoding of the hybridized logic, (2) solving the problem there using
automated-theorem-proving technologies that have already been developed for
first-order logic (such as SPASS [30] or Vampire [26]), and (3) transferring the
result of the verification process back to the hybridized logic.

Details of this process, including intermediate results that assist the theorem
provers in establishing that FD and RO are invariants, can be found in [29].

Dealing with Vulnerabilities. As the two invariants discussed above show,
the analysis of information-flow properties can be used to validate the design of
the bss by providing formal guarantees of desired properties such as FD; but the
same process can also be used to prove the existence of vulnerabilities: by RO,
it follows that any implementation of the current bss design may inadvertently
disclose information about the users’ whereabouts.

What we briefly demonstrate next is that we can emend the design pre-
sented in Sect. 5 to prevent the vulnerability described by RO while maintain-
ing the desired property FD. For that purpose, it suffices to examine the proof
of RO (as provided through the H extension of Hets), which reveals that the
invariant hinges on the fact that rewards are deterministically offered by Reward-
transitions, and only by Reward-transitions. This suggests that one way to correct
the design is by dropping the sentences described in (19), or by replacing them
with sentences that express the fact that rewards can also be offered by Take,
Travel, or Return when the region is full. Intuitively, the effect of the change is
that rewards may now be non-deterministically offered by any of the four inter-
actions. As a final verification, we have checked that the change does not affect
FD.

To prove that RO is no longer deducible from the specification, all we need
is to find a model of the specification that does not satisfy RO. We obtain such
a model from the Kripke structure depicted in Fig. 3, by letting the Return-
transition generate a reward at R2 in the configuration C3. This model satisfies
all bss axioms presented in Sect. 5 except (19), and does not satisfy RO.

7 Conclusions and Further Work

In this paper, we have presented an actor-network approach to the design and
analysis of a bike-sharing system. We have shown how various aspects of the bss
can be formalized using a combination of two hybrid-logic formalisms: a logic of
network configurations, which deals with static aspects of the bss, and a logic
of actor networks, which is defined on top of the logic of network configurations

www.manaraa.com

Logical Support for Bike-Sharing System Design 169

and deals with dynamic aspects of the system – i.e., the way reconfigurations
occur as a result of interactions between actors.

The full specification of the bss has been analysed using a recently developed
extension of Hets that provides support for hybrid(ized) logics. This includes
support for parsing, static analysis, as well as formal verification – which relies on
a general encoding of hybridized logics into first-order logic. Using the toolset,
we have confirmed two information-flow properties of the bss: first, that the
rewards at a region automatically cease to be offered when one of the docks
in that region becomes free; and second, that all regions where rewards are
offered have users travelling towards them. The latter shows that the system is
vulnerable by design; we have used Hets again to identify (and then correct)
the part of the specification that is responsible for the vulnerability.

Beyond the actual analysis of the bss, one of the benefits of conducting a case
study of this kind is that it confirms that the formal specification & verification
tools that we have available today (thanks to a decades-long series of theoretical
developments on the foundations of algebraic specification) are already well capa-
ble of dealing with complex, real-world reconfigurable systems. At the same time,
it shows some of the limitations of the current technology – or, at least, of the
one discussed in this paper. Currently, for the bss, there is no way to ensure that
all travellers can actually reach their destination (or that they eventually do).
This is due to the limited expressive power of hybrid logics. A simple and elegant
solution that we aim to pursue further is to consider dynamic-logic operators as
in [16,18,20]. This raises a series of new and interesting challenges because some
of the key results on hybrid logics, such as their encoding into first-order logic,
cannot be generalized in a straighforward way to dynamic logics.

References

1. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially
distributed cyber-physical systems. In: Proceedings of the 15th ACM-IEEE Inter-
national Conference on Formal Methods and Models for System Design, MEM-
OCODE 2017, Vienna, Austria, 29 September–2 October 2017, pp. 146–155. ACM
(2017)

2. ter Beek, M.H., Fantechi, A., Gnesi, S.: Challenges in modelling and analyzing
quantitative aspects of bike-sharing systems. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014, Part I. LNCS, vol. 8802, pp. 351–367. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45234-9 25

3. ter Beek, M.H., Gnesi, S., Latella, D., Massink, M.: Towards automatic decision
support for bike-sharing system design. In: Bianculli, D., Calinescu, R., Rumpe,
B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 266–280. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-49224-6 22

4. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic J. IGPL 8(3), 339–365 (2000)

5. Braüner, T.: Hybrid Logic and its Proof-Theory. Applied Logic Series, vol. 37.
Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0002-4

6. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for
closure spaces. Log. Methods Comput. Sci. 12(4), 1–51 (2016)

https://doi.org/10.1007/978-3-662-45234-9_25
https://doi.org/10.1007/978-3-662-49224-6_22
https://doi.org/10.1007/978-94-007-0002-4

www.manaraa.com

170 I. Ţuţu et al.

7. Codescu, M.: Hybridisation of institutions in Hets. In: 8th Conference on Algebra
and Coalgebra in Computer Science, CALCO 2019, London, 3–6 June 2019

8. Codescu, M., Kuksa, E., Kutz, O., Mossakowski, T., Neuhaus, F.: Ontohub: a
semantic repository engine for heterogeneous ontologies. Appl. Ontol. 12(3–4), 275–
298 (2017)

9. Diaconescu, R.: Quasi-varieties and initial semantics for hybridized institutions. J.
Log. Comput. 26(3), 855–891 (2016)

10. Diaconescu, R.: Introducing H, an institution-based formal specication and veri-
cation language. CoRR abs/1908.09868 (2019)

11. Diaconescu, R., Codescu, M.: The H system. Developed in the project Formal Veri-
cation of Recongurable Systems (PN-III-P2-2.1-PED-2016-0494) at Simion Stoilow
Institute of Mathematics of the Romanian Academy, Romania (2017–2018). http://
imar.ro/∼diacon/forver/forver.html

12. Diaconescu, R., Madeira, A.: Encoding hybridized institutions into first-order logic.
Math. Struct. Comput. Sci. 26(5), 745–788 (2016)

13. Diaconescu, R., Stefaneas, P.S.: Ultraproducts and possible worlds semantics in
institutions. Theor. Comput. Sci. 379(1–2), 210–230 (2007)

14. Fiadeiro, J.L., Ţuţu, I., Lopes, A., Pavlovic, D.: Logics for actor networks: a
two-stage constrained-hybridisation approach. J. Log. Algebraic Methods Program.
106, 141–166 (2019)

15. Finger, M., Gabbay, D.M.: Adding a temporal dimension to a logic system. J. Logic
Lang. Inf. 1(3), 203–233 (1992)

16. Găină, D., Ţuţu, I.: Birkhoff completeness for hybrid-dynamic first-order logic. In:
Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS, vol. 11714, pp. 277–293.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29026-9 16

17. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

18. Hennicker, R., Madeira, A., Knapp, A.: A hybrid dynamic logic for event/data-
based systems. In: Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS,
vol. 11424, pp. 79–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
16722-6 5

19. Latour, B.: Reassembling the Social: An Introduction to Actor-Network Theory.
Oxford University Press, Oxford (2005)

20. Madeira, A., Barbosa, L.S., Hennicker, R., Martins, M.A.: A logic for the stepwise
development of reactive systems. Theor. Comput. Sci. 744, 78–96 (2018)

21. Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of insti-
tutions. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol.
6859, pp. 283–297. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22944-2 20

22. Mateus, P., Sernadas, A., Sernadas, C.: Exogenous semantics approach to enriching
logics. In: Essays on the Foundations of Mathematics and Logic. Advanced Studies
in Mathematics and Logic, vol. 1, pp. 165–194. Polimetrica (2005)

23. Moon-Miklaucic, C., Bray-Sharpin, A., de la Lanza, I., Khan, A., Re, L.L., Maassen,
A.: The evolution of bike sharing: 10 questions on the emergence of new technolo-
gies, opportunities, and risks. Technical report. World Resources Institute, Wash-
ington, DC (2019). http://www.wri.org/publication/evolution-bike-sharing

24. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set (Hets). In:
Proceedings of 4th International Verification Workshop in connection with CADE-
21, vol. vol. 259. CEUR-WS.org (2007)

http://imar.ro/~diacon/forver/forver.html
http://imar.ro/~diacon/forver/forver.html
https://doi.org/10.1007/978-3-030-29026-9_16
https://doi.org/10.1007/978-3-030-16722-6_5
https://doi.org/10.1007/978-3-030-16722-6_5
https://doi.org/10.1007/978-3-642-22944-2_20
https://doi.org/10.1007/978-3-642-22944-2_20
http://www.wri.org/publication/evolution-bike-sharing

www.manaraa.com

Logical Support for Bike-Sharing System Design 171

25. Pavlovic, D., Meadows, C.: Actor-network procedures (extended abstract). In:
Ramanujam, R., Ramaswamy, S. (eds.) ICDCIT 2012. LNCS, vol. 7154, pp. 7–
26. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28073-3 2

26. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI
Commun. 15(2–3), 91–110 (2002)

27. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Monographs in Theoretical Computer Science. An EATCS
Series. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-17336-3

28. Shanahan, M.: Solving the Frame Problem – A Mathematical Investigation of the
Common Sense Law of Inertia. MIT Press, Cambridge (1997)

29. Ţuţu, I., Chiriţă, C., Lopes, A., Fiadeiro, J.: A hybrid-logic specification of a BSS.
Ontohub (2019). https://ontohub.org/forver/BSS.dol

30. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski,
P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol.
5663, pp. 140–145. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02959-2 10

https://doi.org/10.1007/978-3-642-28073-3_2
https://doi.org/10.1007/978-3-642-17336-3
https://ontohub.org/forver/BSS.dol
https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/978-3-642-02959-2_10

www.manaraa.com

A Generic Dynamic Logic
with Applications to Interaction-Based

Systems

Rolf Hennicker(B) and Martin Wirsing(B)

Ludwig-Maximilians-Universität München, Munich, Germany
{hennicker,wirsing}@ifi.lmu.de

Abstract. We propose a generic dynamic logic with the usual dia-
mond and box modalities over structured actions. Instead of using reg-
ular expressions of actions our logic is parameterised by the form of
the actions which can be given by an arbitrary language for complex,
structured actions. In particular, our logic can be instantiated by lan-
guages that describe complex interactions between system components.
We study two instantiations of our logic for specifying global behaviours
of interaction-based systems: one on the basis of global session types
and the other one using UML sequence diagrams. Moreover, we show
that our proposed generic logic, and hence all its instantiations, satisfy
bisimulation invariance and a Hennessy-Milner theorem.

Keywords: Propositional dynamic logic · Interaction-based systems ·
Global session types · UML sequence diagrams ·
Hennessy-Milner theorem

1 Introduction

Dynamic logic [8] is an established formalism to analyse, specify and verify prop-
erties of sequential programs represented by regular expressions over a set of
atomic programs. It has been recognised in previous work [10,11] that a dynamic
logic specification style can also be a useful tool to reason about systems of inter-
acting, concurrent components if instead of atomic program statements atomic
interactions are used to build complex, structured interactions. That way it is
possible to specify abstract properties, like safety and liveness, of the global
behaviour of ensemble-based systems, but it is also possible to specify desired
and forbidden interaction scenarios. Our previous proposals were based on the
assumption that complex interactions are built in accordance with the operators
of regular expressions which are typical in dynamic logic. This assumption did
impose some significant limitations. For instance, it was not possible to express
parallel executions based on interleaving or other powerful structuring operators
for interactions like weak sequencing and weak loops used in UML sequence dia-
grams. Thus we are interested to overcome these restrictions which leads to the
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 172–187, 2019.
https://doi.org/10.1007/978-3-030-30985-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_11

www.manaraa.com

A Generic Dynamic Logic with Applications to Interaction-Based Systems 173

proposal of a generic dynamic logic with interaction-based systems as a partic-
ular application domain.

Generic dynamic logic abstracts from the particular rules for the formation of
actions and their interpretation which need not to be regular anymore. Thus the
parameters of our logic are, additionally to a basic set A of atomic actions, an
arbitrary set Act(A) of structured actions over A and an interpretation function
L : Act(A) → P(A∗) which assigns to any α ∈ Act(A) a language L(α) ⊆ A∗.
Then formulae of the logic may involve diamond and box modalities, like 〈α〉ϕ
and [α]ϕ resp., expressing possibility and necessity for an arbitrary structured
action α ∈ Act(A). Since the construction of α is generic, the satisfaction of a
formula in a state s of a labelled transition system M must be reformulated.
The idea is that M, s |= 〈α〉ϕ holds if there is a state u of M reachable by a
sequence w of atomic actions such that w ∈ L(α) and ϕ is satisfied in u. We show
that this generalisation indeed coincides with the standard satisfaction relation
of propositional dynamic logic if we use for Act(A) regular expressions of actions
with the usual language interpretation. As a general result we show that generic
dynamic logic, and hence all its instantiations, enjoy bisimulation invariance and
satisfy a Hennessy-Milner theorem.

In the second part of this work we consider the application domain of inter-
action-based systems and two prominent specification formats for describing
global behaviours: global types used for specifying global behaviours of session
types [4], and UML sequence diagrams used in software engineering for speci-
fying scenarios of distributed systems. Both languages offer operators to build
structured interactions from smaller ones. As concrete formalisms we use [2] for
global types and [13] for a formalisation of UML sequence diagrams. Our goal
is to build on top of these formalisms a dynamic logic which allows us to use
expressions of the respective specification styles inside the modalities of the logic.
For instance, for a given global type G, we can write [G]ϕ to express that after
any execution of a sequence of interactions allowed by G property ϕ is valid;
and similarly for sequence diagrams. That way we obtain powerful, logic-based
specification languages on the basis of global types and sequence diagrams to
specify properties of interaction-based systems which are not specifiable solely by
expressions of the underlying formalisms. In the case of global types the result-
ing dynamic logic goes syntactically beyond regular expressions since it allows
to specify unconstrained orders of interactions by interleaving. For the semantic
interpretation a shuffling operator is used which is, however, still regular. Thus
the logic is decidable. The situation is different when sequence diagrams are con-
sidered. Sequence diagrams can be structured by sequencing and by loops which
both rely semantically on a weak sequencing operator which is not regular and
not even context-free. Therefore our dynamic logic based on sequence diagrams
is not decidable.

The paper is structured as follows: We start in Sect. 2 by recalling the basic
definitions of (regular) propositional dynamic logic. In Sect. 3 generic dynamic
logic is introduced and several instantiations, still parametric in the underlying
sets of atomic actions, are discussed. Section 4, instantiates the generic logic by

www.manaraa.com

174 R. Hennicker and M. Wirsing

considering basic interactions as atomic actions. Two variants are considered:
(structured) interactions expressed by global types (Sect. 4.1) and those specified
by UML sequence diagrams (Sect. 4.2). We finish with some concluding remarks
in Sect. 5.

Personal Note. Stefania and Martin know each other for many years and have
closely collaborated in two EU projects AGILE [1] and SENSORIA [22] Martin
was coordinating in 2002 - 2010. Rolf did not directly work with Stefania but has
an ongoing cooperation with Maurice ter Beek who is a member of Stefania’s
team [19].

In AGILE Stefania and her team at ISTI started the design, implementation
and experimentation of the verification system UMC for analysing and model
checking UML state machines and used UMC for modelling the main “airport”
case study [1]. The development of UMC [5] was continued in SENSORIA for
supporting SRML modeling language and for modeling and verifying the main
automotive and finance case studies. Stefania and her team developed also the
model checker CMC [5] for verifying properties of service-oriented applications
modeled in the Calculus for Orchestration of Web Services (COWS) [18]. These
developments which had started in the end of the nineties and continue until
now resulted in a family of model checkers, called KandISTI [20]. The name
refers to the painter Wassily Kandinsky and was inspired by a visit of Stefania,
Martin and other SENSORIA members to the museum Lenbachhaus1 in Munich
as part of a project meeting. In the SENSORIA project, Stefania performed also
an excellent task in coordinating the work on the case studies and in this way
assessing the applicability of the foundational results, giving feedback for refining
the tools and methodologies developed in the project and bringing together the
academic and industrial partners.

Cooperating and working with Stefania is always a pleasant experience. We
are looking forward to many further inspiring exchanges with her.

2 Regular Propositional Dynamic Logic

In this section we recall the basic definitions of propositional dynamic logic
(PDL) over regular expressions of actions as described in [8]. We use the test-free
variant of dynamic logic and omit atomic propositions. Thus the logic described
below is a Hennessy-Milner logic such that regular expressions of actions can be
used in the diamond and box modalities.

In the following let A be a set of atomic actions. The set of structured (regular)
actions Actrg(A) over A is defined by the grammar

α:: = skip | a | α;α | α + α | α�

where a ∈ A. Thereby skip denotes the empty sequence of actions, “;” denotes
sequential composition, “+” the union of actions and the Kleene star denotes

1 Städtische Galerie im Lenbachhaus, München, https://www.lenbachhaus.de/?L=1.

https://www.lenbachhaus.de/?L=1

www.manaraa.com

A Generic Dynamic Logic with Applications to Interaction-Based Systems 175

iteration. If the set A of atomic actions is finite, i.e. A = {a1, . . . , an}, we write
all for the structured action a1 + . . . + an. If, moreover, B = {b1, . . . , bm} is a
finite subset of A, then −(b1 + . . . + bm) denotes the sum (union) of all actions
in A which do not belong to B.

The set of sentences over A is defined by the grammar

ϕ:: = true | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ
where α ∈ Actrg(A). We use the usual abbreviations false = ¬true, ϕ ∧ ψ =
¬(¬ϕ ∨ ¬ψ), [α]ϕ = ¬〈α〉¬ϕ etc.

Sentences 〈α〉ϕ with diamond operator denote possibility in the sense that
in a current state an action described by α is possible and afterwards ϕ holds;
sentences [α]ϕ with box operator denote necessity in the sense that whenever in
the current state an action denoted by α is executed then afterwards ϕ holds.
For the precise formalisation the semantics of PDL uses Kripke frames over A
which we introduce in the following using the terminology of labelled transition
systems.

Let A be a set of atomic actions. An A-LTS is a pair M = (S,R) where S is
a set of states and R = (Ra ⊆ S × S)a∈A is a family of transition relations, one
for each atomic action a ∈ A. The interpretation of structured, regular actions
α in an A-LTS M extends the interpretation of atomic actions by the relations

– Rrg
skip = {(s, s) | s ∈ S},

– Rrg
a = Ra for each a ∈ A,

– Rrg
α;α′ = Rrg

α · Rrg
α′ ,

– Rrg
α+α′ = Rrg

α ∪ Rrg
α′ ,

– Rrg
α� = (Rrg

α)∗,

with the operations ·, ∪ and ∗ standing for relational composition, union and
reflexive-transitive closure.

For any A-LTS M = (S,R) and state s ∈ S the satisfaction of sentences in
state s of M is inductively defined by

– M, s |= true holds;
– M, s |= ¬ϕ if M, s |= ϕ does not hold;
– M, s |= ϕ ∨ ϕ′ if M, s |= ϕ or M, s |= ϕ′;
– M, s |= 〈α〉ϕ if there is a state u ∈ S with (s, u) ∈ Rrg

α and M,u |= ϕ.

An A-LTS M = (S,R) satisfies a sentence ϕ, written M |= ϕ, if for any
s ∈ S: M, s |= ϕ.

Note that regular PDL is decidable; see [8].

3 A Generic Dynamic Logic

In this section we abstract from the particular rules for the formation of actions
and their interpretation. Thus we define a generic (propositional) dynamic logic
which is parameterised by the following ingredients:

www.manaraa.com

176 R. Hennicker and M. Wirsing

– a set A of atomic actions (as before),
– a set Act(A) of structured actions such that A ⊆ Act(A),
– an interpretation function L : Act(A) → P(A∗) which assigns to any struc-

tured action α ∈ Act(A) a language L(α) ⊆ A∗ such that L(a) = {a} for
each a ∈ A.

The logic PDL(A,Act(A),L) with parameters A,Act(A) and L has the sen-
tences

ϕ:: = true | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ
as before but now α ∈ Act(A). Of course, we use the same abbreviations as
above for false, ϕ ∧ ψ, [α]ϕ etc.

For the semantics of PDL(A,Act(A),L) we use again labelled transition sys-
tems M = (S,R) with transition relations R = (Ra ⊆ S × S)a∈A. The inter-
pretation of structured actions α ∈ Act(A) in the generic logic is given by the
relations

Rg
α = {(s, u) | ∃w ∈ L(α) : s

w−−→∗ u},

where w−−→∗ ⊆ S × S is inductively defined for words w ∈ A∗ by

– s
ε−−→∗ s for all s ∈ S,

– if s
w−−→∗ v and (v, u) ∈ Ra for some a ∈ A, then s

wa−−−→∗ u.

Hence Rg
α relates states s and u whenever u is reachable from s by some

sequence w = a1 . . . an of atomic actions such that w is a word in the language
of α. Note that, for all a ∈ A we have: a ∈ Act(A) and (*) Rg

a = Ra which
follows from the assumption that L(a) = {a} for each a ∈ A.

For any A-LTS M = (S,R) and state s ∈ S the satisfaction of sentences in
state s of M is defined in the same way as in Sect. 2 with the difference that in
the case of a diamond modality 〈α〉 the relation Rg

α is used instead of Rrg
α , i.e.

– M, s |= 〈α〉ϕ if there is a state u ∈ S with (s, u) ∈ Rg
α and M,u |= ϕ.

As before, an A-LTS M = (S,R) satisfies a sentence ϕ, written M |= ϕ, if
for any s ∈ S: M, s |= ϕ.

As a semantic variant we may also consider A-LTSs with initial state s0, i.e.
triples M = (S, s0, R) with s0 ∈ S. Then M |= ϕ means that M, s0 |= ϕ.

Remark 1. Chapter 9 of [8] considers different nonregular variants of PDL. For
a given language L, [8] defines the logic PDL+L “exactly as PDL, but with the
additional syntax rule stating that for any formula ϕ, the expression 〈L〉ϕ is a
new formula. . . . Note that PDL+L does not allow L to be used as a formation
rule for new programs or to be combined with other programs. It is added to
the programming language as a single new stand-alone program only”. It is
shown in [8] (Theorem 9.3) that if L is any nonregular test-free language, then
PDL+L is strictly more expressive than PDL. Moreover, for different variants
of L decidability and undecidability results are provided.

www.manaraa.com

A Generic Dynamic Logic with Applications to Interaction-Based Systems 177

We will now discuss some particular cases for the choice of structured actions
Act(A) with interpretation function L.

Example 1. First, let us take Act(A) = Actrg(A) and let Lrg : Actrg(A) →
P(A∗) be the standard interpretation of regular expressions. Note that the
assumptions A ⊆ Actrg(A) and L(a) = {a} for all a ∈ A are satisfied. Then
the instantiation of generic PDL yields regular PDL.

For the proof we have to show that the satisfaction relation of
PDL(A,Actrg(A),Lrg) coincides with the one of regular PDL as defined in
Sect. 2. The critical case concerns the satisfaction of 〈α〉ϕ. For this case we have
to show that for any A-LTS M = (S,R) and for all α ∈ Actrg(A),

Rg
α = Rrg

α .

Proof. The proof of this equality is performed by structural induction on the
form of α ∈ Actrg(A):

If α = a ∈ A,Rg
a = (see (*) above) Ra = (by definition) Rrg

a .
If α = skip we have that (s, u) ∈ Rg

a iff s
ε−−→∗ u iff s = u iff (s, u) ∈ Rrg

skip.
If α = β; γ we have that (s, u) ∈ Rg

β;γ iff there exists w ∈ Lrg(β; γ) with
s

w−−→∗ u. Now we note that w must be of the form w1w2 with w1 ∈ Lrg(β) and
w2 ∈ Lrg(γ) and therefore there must exist v ∈ S with s

w1−−−→∗ v and v
w2−−−→∗ u.

Hence (s, v) ∈ Rg
β and (v, u) ∈ Rg

γ . Then, by induction hypothesis for β and γ

we get (s, v) ∈ Rrg
β and (v, u) ∈ Rrg

γ which implies (s, u) ∈ Rrg
β;γ . The proof can

be easily conversed.
If α = β + γ we have that (s, u) ∈ Rg

β+γ iff there exists w ∈ Lrg(β + γ) with
s

w−−→∗ u. W.l.o.g. assume that w ∈ Lrg(β) and thus (s, u) ∈ Rg
β . By induction

hypothesis, Rg
β = Rrg

β . Hence (s, u) ∈ Rrg
β and thus (s, u) ∈ Rrg

β+γ . The proof can
be easily conversed.

If α = β� we have that (s, u) ∈ Rg
β� iff there exists w ∈ Lrg(β�) with

s
w−−→∗ u. The result follows by induction on the number of iterations to construct

w ∈ Lrg(β�). Conversely, let (s, u) ∈ Rrg
β� . Then the result follows again by induc-

tion, this time on the number of relational compositions to get (s, u) ∈ Rrg
β� . �

Example 2. Let us extend the syntax of structured regular actions by a shuffle
operator � to express arbitrary interleavings of action sequences. The set of
structured (regular) actions Actrg+�(A) over A is defined by the grammar

α:: = skip | a | α;α | α + α | α� | α� β

where a ∈ A. The interpretation Lrg+� : Actrg+�(A) → P(A∗) extends the
interpretation function Lrg for regular expressions by the case

Lrg+�(α� β) = Lrg+�(α)� Lrg+�(β)

where for languages L1, L2 ⊆ A∗,

www.manaraa.com

178 R. Hennicker and M. Wirsing

L1 � L2 =
⋃

w1∈L1,w2∈L2

w1 � w2,

and the shuffling w1 � w2 of two words w1, w2 ∈ A∗ is inductively defined by

– ε� w = w� ε = {w},
– a1w1 � a2w2 = {a1w | w ∈ w1 � a2w2} ∪ {a2w | w ∈ a1w1 � w2}.

Now we can instantiate generic dynamic logic by taking Act(A) =
Actrg+�(A) and L(A) = Lrg+�(A) for any arbitrary set A of atomic actions thus
obtaining PDL(A,Actrg+�(A),Lrg+�). Note that regular languages are closed
under shuffling and therefore our instantiation is still decidable. It just comes
with a convenient and compact notation to denote interleaving which would be
cumbersome to write down by using regular expressions only. As an example
consider the structured action (ab)�

� c� whose language could be equivalently
expressed by the complex and non-intuitive regular expression (c�; a; c�; b; c�)�.
The practical usefulness of the shuffle operator to specify interactions of dis-
tributed computing entities will be shown in the next section.

Example 3. As a last general example we consider context-free PDL which is
obtained by taking for Act(A) the set of context-free grammars over A and for
L(A) the usual interpretation in terms of context-free languages. In this case we
can write, for instance, sentences of the form 〈G〉ϕ with a context-free grammar
G. It has been shown in [8] (Theorem 9.4) that validity of context-free PDL (and
hence also the dual notion of satisfiability) is undecidable.

As an equivalence notion for labelled transition systems over A we use
(strong) bisimulation. Let M = (S,R) and M ′ = (S′, R′) be two A-LTSs. A
bisimulation relation between M and M ′ is a relation B ⊆ S × S′ that satisfies
for any a ∈ A and (s, s′) ∈ B:

(zig) if there exists u ∈ S and a transition (s, u) ∈ Ra, then there is a u′ ∈ S′

such that (s′, u′) ∈ R′
a and (u, u′) ∈ B;

(zag) if there exists u′ ∈ S′ and a transition (s′, u′) ∈ R′
a, then there is a u ∈ S

such that (s, u) ∈ Ra and (u, u′) ∈ B.

Two states s ∈ S and s′ ∈ S′ are bisimilar if there exists a bisimulation
relation B ⊆ S × S′ between M and M ′ such that (s, s′) ∈ B.

We can show that independently of the chosen set Act(A) of structured
actions and their language interpretation L the satisfaction of dynamic logic
formulae is invariant under bisimulation. For this we need the following technical
lemma.

Lemma 1. Let M = (S,R) and M ′ = (S′, R′) be two A-LTSs and let B ⊆ S×S′

be a bisimulation relation between M and M ′. Then the following holds for all
α ∈ Act(A) and for all (s, s′) ∈ B:

(zigα) if there exists u ∈ S and (s, u) ∈ Rg
α, then there is a u′ ∈ S′ such that

(s′, u′) ∈ R′g
α and (u, u′) ∈ B;

www.manaraa.com

A Generic Dynamic Logic with Applications to Interaction-Based Systems 179

(zagα) if there exists u′ ∈ S′ and (s′, u′) ∈ R′g
α, then there is a u ∈ S such that

(s, u) ∈ Rg
α and (u, u′) ∈ B.

Proof. We prove case (zigα). The other case is similar.
As an auxiliary step we show:

(aux) For all w ∈ A∗ and for all (s, s′) ∈ B: If there exists u ∈ S such that
s

w−−→∗ u then there exists u′ ∈ S′ such that s′ w−−→∗ u′ and (u, u′) ∈ B.
The proof of (aux) is by induction on the length of w:
If w = ε then u = s. Then we can take u′ = s′ and obtain s′ ε−−→∗ u′ and

(u, u′) = (s, s′) ∈ B.
If w = w1a with a ∈ A then there must exist a state v ∈ S such that

s
w1−−−→∗ v and (v, u) ∈ Ra. By induction hypothesis, there exists v′ ∈ S′ such

that s′ w1−−−→∗ v′ and (v, v′) ∈ B. Since B satisfies (zig) there is a u′ ∈ S′ such that
(v′, u′) ∈ R′

a and (u, u′) ∈ B. Hence, s′ w−−→∗ u′ and (u, u′) ∈ B. This completes
the proof of (aux).

Now let α ∈ Act(A) and (s, s′) ∈ B. Assume that u ∈ S and (s, u) ∈ Rg
α.

Then there exists w ∈ L(α) such that s
w−−→∗ u. By (aux) there exists u′ ∈ S′

such that s′ w−−→∗ u′ and (u, u′) ∈ B. Hence, since w ∈ L(α), (s′, u′) ∈ R′g
α and

(u, u′) ∈ B. �
Theorem 1. Let M = (S,R) and M ′ = (S′, R′) be two A-LTSs and let s ∈ S
and s′ ∈ S′.

1. If s and s′ are bisimilar, then for any sentence ϕ: M, s |= ϕ iff M ′, s′ |= ϕ.
2. If M and M ′ are image-finite2 then the converse of (1) holds: If for any

sentence ϕ, M, s |= ϕ iff M ′, s′ |= ϕ, then s and s′ are bisimilar.

Proof. The proof of (1) is, as usual, by induction on the form of the sentences.
For the case 〈α〉ϕ Lemma 1 is used. The proof of (2) is just the usual one since
generic dynamic logic subsumes Hennessy-Milner logic [9]. �

4 Specification of Interaction-Based Systems

In [11] and [10] we have shown that (propositional) dynamic logic on the basis
of regular expressions of actions can be a useful tool for the specification of
scenarios and other properties of interaction-based systems. In this section we
go further and apply our generic dynamic logic to two well-known formalisms:
global types and UML sequence diagrams.

For illustration purposes we use the UML sequence diagram in Fig. 1 which
is based on an example in [2]. It models a bargaining interaction between a
seller and a buyer making use of several interaction operators like par for parallel
execution, loop for iteration, and alt for alternatives. Moreover there is implicitly
a sequential composition operator combining the single fragments. The idea of

2 This means that for any atomic action a and any state s there are at most finitely
many outgoing transitions labelled with a.

www.manaraa.com

180 R. Hennicker and M. Wirsing

the bargaining interaction is that first the seller sends, in an arbitrary order,
a description and a price of the product to sell. Then the buyer can negotiate
sending arbitrarily often an offer to which the seller reacts by sending a (new)
price. When the negotation is finished two alternative continuations are possible:
Either the buyer pays the price and then the seller sends the product or the buyer
quits the bargaining.

Fig. 1. Sequence diagram for a bargaining interaction

4.1 A Dynamic Logic for Global Types

Global types are a family of formalisms, see, e.g., [2,4,15,21], for the formal
description of the global behaviour of interacting, distributed computing enti-
ties, often called participants or roles. They play a major role for the speci-
fication of multi-party session types [12]. In this section we follow the global
type specification framework of [2]. We propose a dynamic logic built on top of
global types which is particularly useful for formal requirements specifications to
express abstract properties like safety and liveness. For this purpose we instanti-
ate generic dynamic logic with the sets of atomic actions Agt, structured actions
Actgt(Agt) and interpretation Lgt explained in the following.

[2] assumes given a set Π of participants (roles) and a set of message types,
let’s call it M. An atomic action is an interaction, i.e. a triple π

m−−→ p expressing

www.manaraa.com

A Generic Dynamic Logic with Applications to Interaction-Based Systems 181

that all participants in a finite (nonempty) subset π ⊆ Π send a message m ∈ M
to participant p ∈ Π. Self messages are not allowed, i.e. it is assumed that p /∈ π.
If π = {s} is a singleton set then s

m−−→ p stands for π
m−−→ p. The set Agt is the

set of all interactions.
The set Actgt(Agt) of structured actions over Agt is the set of gobal types

defined by the grammar

G:: = skip | π
m−−→ p | G;G | G orG | G andG | G�

where (π m−−→ p) ∈ Actgt(Agt).
In the global type expressions “;” denotes sequential composition, or alterna-

tiveness, and denotes unconstrained order, and * iteration. The original syntax
in [2] uses ∨ for or and ∧ for and . We have changed the notation here to
avoid confusion with the disjunction and conjunction symbols used in dynamic
logic. According to [2] “global types denote languages of legal interactions that
can occur in a multi-party session”. Hence, the semantics of a global type G is
given in terms of the set of (finite) traces of interactions associated to G. The
interpretation function Lgt : Actgt(Agt) → P((Agt)∗) is inductively defined as
follows

– Lgt(skip) = {ε},
– Lgt(π m−−→ p) = {π

m−−→ p},
– Lgt(G1;G2) = Lgt(G1) · Lgt(G2),
– Lgt(G1 orG2) = Lgt(G1) ∪ Lgt(G2),
– Lgt(G1 andG2) = Lgt(G1)� Lgt(G2),
– Lgt(G�) = Lgt(G)∗.

with the operations ·, ∪ and ∗ standing for sequential composition, union
and reflexive-transitive closure of languages and � stands for the shuf-
fling of languages as defined in Example 2. In particular, a global type

s
m−−→ p and s′ m′

−−−→ p′ allows any order for exchanging messages m and m′.
Obviously, the assumptions for building a generic dynamic logic over global

session types are satisfied since Agt ⊆ Actgt(A) and Lgt(a) = {a} for all a ∈ Agt.
Thus, we obtain the dynamic logic PDL(Agt,Actgt(Agt),Lgt) where diamond
and box modalities are equipped with global types. This is the same logic as
PDL(Agt,Actrg+�(Agt),Lrg+�) in Example 2 if we take interactions as atomic
actions, or for + and and for �. Hence dynamic logic for global types is
decidable. For the semantics we use the semantic variant mentioned in Sect. 3
where models M = (S, s0, R) are labelled transition systems with initial state
s0. Hence M |= ϕ means that M, s0 |= ϕ.

Example 4. Let us assume that we want to specify some abstract requirements
for a bargaining interaction with participants Π = {seller, buyer} and with mes-
sage types M = {descr, price, offer, pay, send, quit}. Then the set Agt is finite and
therefore we can use the shorthand notation all to express the disjunction (i.e.
semantically the union) of all interactions in Agt. Thus, with a sentence of the

www.manaraa.com

182 R. Hennicker and M. Wirsing

form [all∗]ϕ we can require that a sentence ϕ is satisfied in all reachable states
of an LTS M , i.e. in all states of M reachable from the initial state by a finite
set of interactions in Agt. For interactions a1, . . . , ak ∈ Agt we will also use the
shorthand notation −{a1, . . . , ak} to denote the (finite) union of all interactions
in Agt which are different from any ai (i = 1, . . . , k). For a bargaining session
we require the following properties. Thereby we use the following abbreviations:

m stands for seller
m−−→ buyer if m ∈ {descr, price, send},

m stands for buyer
m−−→ seller if m ∈ {offer, pay, quit}.

– “Whenever the seller has sent a description and a price, it is eventually pos-
sible that the buyer pays for the product and it is also eventually possible
that the buyer quits the interaction.”

[all�; descr and price](〈all�; pay〉true ∧ 〈all�; quit〉true) (1)

– “Whenever the buyer has paid, it is possible that the seller sends immediately
the product and no other interaction is allowed.” (Hence the seller must send
the product when the price has been paid.)

[all�; pay](〈send〉true ∧ [(−send)�]false) (2)

– “Whenever the seller has sent the product or the buyer has quit the interac-
tion, the bargaining process is finished.”

[all�; sendor quit;all]false (3)

– “The interaction cannot stop before either the product is sent or the buyer
has quit.”

[(−{send, quit})�]〈all〉true (4)

– “A product cannot be sent before the price has been paid.”

[(−pay)�; send]false (5)

– “When the interaction starts the seller can send a description and a price to
the buyer.”

〈descr and price〉true (6)

�
Dynamic logic is a powerful tool to express abstract requirements which

cannot be expressed by global types. (Well-formed) global types, however, can
be considered as more concrete specifications from which by projection to local
session types, a correct implementation can be derived. Methodologically this
means that dynamic logic specifications may be used for requirements while
global types may be used for designs and the definition of a refinement relation
between the two may be worth to be investigated in future research.

www.manaraa.com

A Generic Dynamic Logic with Applications to Interaction-Based Systems 183

4.2 A Dynamic Logic Based on UML Sequence Diagrams

UML sequence diagrams are a popular tool in software engineering to model
requirements for communications between several components (and also users)
of a system. In particular they are used to model scenarios that an intended sys-
tem should realise. The semantics of sequence diagrams is informally described
in the UML specification [7]. A survey on different choices for a formal seman-
tics of UML sequence diagrams is given in [16]. In this section we follow the
formalisation of [13] as a basis for instantiating our generic dynamic logic with
the sets of atomic actions Asd, structured actions Actsd(Asd) and interpretation
Lsd defined in the following.

In UML lifelines represent the partners of interaction. Therefore [13] assumes
given a set L of lifelines and a set M of messages. The following atomic actions
are used: snd(s, r,m) expresses that lifeline s sends message m to lifeline r and
action rcv(s, r,m) denotes that lifeline r receives m from lifeline s. Hence, in con-
trast to global types, sending and receiving are separate events. UML sequence
diagrams can also model open systems where messages are sent to the environ-
ment or received from the environment represented by atomic actions snd(s,m)
and rcv(r,m) respectively. Thus the grammar defining the set Asd of atomic
actions is

a:: = snd(s, r,m) | rcv(s, r,m) | snd(s,m) | rcv(r,m)

where s, r ∈ L and m ∈ M.
Complex interactions are constructed by combining interaction fragments.

The UML specification contains a series of operators to form complex inter-
actions. We restrict here to those considered in [13] and add the formation of
loops; for a more comprehensive treatment (including loops) see [3]. Interaction
fragments (and hence complex interactions) are formed in accordance with the
following grammar which defines the set Actsd(Asd)

F :: = skip | a | strict(F1, F2) | seq(F1, F2) | alt(F1, F2) | par(F1, F2) | loop(F)

where a ∈ Asd. The following explanations of the structuring operators are due
to [13]: “strict(F1, F2) is strict sequencing of interactions, i.e., all events in F1

must occur before those in F2. seq(F1, F2) is weak sequencing, only imposing the
restriction that events keep their lifeline-wise order. par(F1, F2) allows for any
parallel interleaving of F1 and F2. alt(F1, F2) chooses either F1 or F2.” More-
over, loop(F) expresses arbitrarily many iterations of F with a weak sequencing
interpretation in each iteration; see below. Therefore we may call these loops
“weak” loops.

[13] provides a trace-based semantics for interactions. The interpretation
function Lsd : Actsd(Asd) → P((Asd)∗) is inductively defined as follows

– Lsd(skip) = {ε},
– Lsd(a) = {a},
– Lsd(strict(F1, F2)) = Lsd(F1) · Lsd(F2),
– Lsd(seq(F1, F2)) = Lsd(F1) ·<> Lsd(F2),

www.manaraa.com

184 R. Hennicker and M. Wirsing

– Lsd(alt(F1, F2)) = Lsd(F1) ∪ Lsd(F2),
– Lsd(par(F1, F2) = Lsd(F1)� Lsd(F2),
– Lsd(loop(F)) = Lsd(F)�<> .

There are two operators for languages not considered yet. The first one is the
operator ·<> for weak sequencing. It allows, like �, interleaving of atomic actions
but only for those actions which are not in conflict. For actions a1, a2 which are
in conflict, denoted by a1 <> a2, strict sequencing is applied. Two atomic actions
are in conflict if they have the same active lifeline. The active lifeline of a send
event is the sender and the active lifeline of a receive event is the receiver. Weak
sequencing is formally defined, for any two languages L1, L2 ⊆ (Asd)∗, by

L1 ·<> L2 =
⋃

w1∈L1,w2∈L2

w1 ·<> w2,

where weak sequencing w1 ·<> w2 of two words w1, w2 ∈ (Asd)∗ is inductively
defined by

– ε ·<> w = w ·<> ε = {w},
– a1w1 ·<> a2w2 = {a1w | w ∈ w1 ·<> a2w2}∪{a2w | w ∈ a1w1 ·<> w2,¬(a1 <> a2)}.

The second new operator �<> , defined in [3], computes iterations using weak
sequencing instead of standard concatenation in each iteration. It is defined, for
any language L ⊆ (Asd)∗, by

T �<> =
⋃

0≤i

T (i)<> where T (0)<> = {ε}, T (i+1)<> = T ·<> T (i)<> .

Note that the languages for sequence diagrams go beyond regular languages.
For instance, the interaction fragment

loop(strict(snd(s, r,m), rcv(s, r,m)))

expresses words of send and receive actions such that in any prefix no more
receptions can occur than sends. This example models a typical buffered asyn-
chronous communication. The languages obtained by loops with weak sequencing
are even not context-free (if more than two communication partners are involved)
but they are context-sensitive; see [17].

Obviously, the assumptions for building a generic dynamic logic over sequence
diagrams are satisfied since Asd ⊆ Actsd(A) and Lsd(a) = {a} for all a ∈ Asd.
Thus, we obtain the dynamic logic PDL(Asd,Actsd(Asd),Lsd) where diamond
and box modalities can be equipped with interaction fragments. As a conse-
quence of Example 3 this logic is not decidable. As semantic models we use
again labelled transition systems with initial states such that M |= ϕ means
M, s0 |= ϕ.

Example 5. Let us come back to the bargaining interaction, now with lifelines
L = {seller, buyer} and with messages M = {descr, price, offer, pay, send, quit} as
before. Since the set Asd is finite we can again use shorthand notations like all to
denote finite alternatives, similarly to what has been done in Example 4. For a
bargaining interaction we require similar properties as in Example 4 but now we
must distinguish between send and receive events. Therefore the specifications
become more complex.

www.manaraa.com

A Generic Dynamic Logic with Applications to Interaction-Based Systems 185

– “Whenever the seller has sent a description and a price to the buyer, it is
eventually possible that the seller receives a payment for the product from
the buyer and it is also possible that the seller receives a notification that the
buyer has quit the interaction.”

[strict(loop(all), par(snd(seller, buyer, descr), snd(seller, buyer, price)))]
(〈strict(loop(all), rcv(buyer, seller, pay))〉true∧
〈strict(loop(all), rcv(buyer, seller, quit))〉true)

We omit specifications of the other properties in Example 4 which can be
formulated in a similar way. �

Dynamic logic sentences allow us to express abstract requirements which
cannot be expressed by sequence diagrams. Let us now discuss whether require-
ments stated by sequence diagrams can be expressed by sentences of our logic.
For this it is necessary to clarify when a system is considered as a correct real-
isation of a sequence diagram, or, formally, of an interaction fragment F . In
accordance with [13] a realisation can be given by a system of communicating
state machines. By asynchronous composition such a system is formalised as a
labelled transition system with a set of initial states thus corresponding to the
models of dynamic logic (when we restrict, for simplicity, to one initial state
only). [13] compute the traces of such an LTS. If the intersection of these traces
with the language associated to F is not empty then the realisation is consid-
ered to be correct w.r.t. F . In other words, there must exist a trace w of the
LTS (representing the realisation) such that w ∈ Lsd(F). This can, however,
be easily expressed by the sentence 〈F 〉true of our logic. Thus correct models
of an interaction fragment F are exactly those LTS which satisfy the sentence
〈F 〉true.

Let us remark that in this way a correct realisation can have traces which
do not comply to F . To eliminate undesirable traces the general syntax of UML
sequence diagrams offers a neg construct such that neg(F) declares all words in
Lsd(F) as invalid and therefore not allowed by a realisation. This requirement
can be again easily formalised with our logic by the sentence ¬〈F 〉true or,
equivalently, [F]false.

5 Conclusion

We have proposed a generic dynamic logic which allows to go beyond regular
expressions of actions. In contrast to temporal logics our approach uses explicit
(structured) actions which is particularly useful for specifying collaborations
in interaction-based systems. As a proof of concept we have considered two
instantiations of our logic, one based on global types and the other one based on
(a formalisation of) UML sequence diagrams. In both cases there are operators to
build complex interaction expressions from smaller ones, which can be used inside
diamond and box modalities but go beyond regular expressions. In the global
type case, however, the semantic interpretation is still regular since the shuffling
operator which interprets unconstrained order of interactions preserves regularity

www.manaraa.com

186 R. Hennicker and M. Wirsing

of languages. Thus dynamic logic on the basis of global types is decidable. This
is not the case if sequence diagrams are used inside the modalities since the
interpretation of loops uses weak sequencing in each iteration.

In future work we are interested to apply our logics in a systematic develop-
ment process for interaction-based systems. In particular this concerns notions of
refinement, proof methods and the development of tools. A formal proof system
for generic dynamic logic would use those axioms and rules of the (sound and
complete) calculus for propositional dynamic logic presented in [8], Chap. 5.5,
which are independent of the form of the actions. If they are regular, the
proof system in [8] could be reused as it is. Otherwise it must be appropri-
ately adjusted, for instance to deal with weak sequencing of UML interactions.
Appropriate tools for model checking would also depend on the form of struc-
tured actions at hand. In the case of regular actions the toolset of mCRL2 [6]
would be appropriate. In particular, it could also be applied for the global type
instance of our logic if occurrences of unconstrained order are first resolved by
a preprocessor to their equivalent regular forms. Concerning the dynamic logic
based on UML sequence diagrams the model checking approach described in [14]
would be an appropriate candidate. It allows to check “whether an interaction
can be satisfied by a given set of message exchanging UML state machines”.
Hence, it allows us to verify formulas of the form 〈F 〉true with an arbitrary
interaction fragment F . An interesting task would be to extend [14] in order to
verify more complex formulas of our logic.

Acknowledgement. We would like to thank Alexander Knapp for very helpful com-
ments and remarks concerning the interpretation of UML sequence diagrams and cor-
responding tools.

References

1. Andrade, L., et al.: AGILE: software architecture for mobility. In: Wirsing, M., Pat-
tinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 1–33. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40020-2 1

2. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party sessions. Log. Methods Comput. Sci. 8(1), 1–45 (2012)

3. Cengarle, M.V., Knapp, A., Mühlberger, H.: Interactions. In: Lano, K. (ed.) UML
2-Semantics and Applications, pp. 205–248. Wiley, Hoboken (2009)

4. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 10

5. Gnesi, S., Mazzanti, F.: An abstract, on the fly framework for the verification of
service-oriented systems. In: Wirsing and Hölzl [22], pp. 390–407

6. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

7. Object Management Group. Unified Modeling Language 2.5. http://www.omg.
org/spec/UML/2.5. Accessed 21 May 2019

8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

https://doi.org/10.1007/978-3-540-40020-2_1
https://doi.org/10.1007/978-3-642-28869-2_10
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5

www.manaraa.com

A Generic Dynamic Logic with Applications to Interaction-Based Systems 187

9. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
Assoc. Comput. Mach. 32, 137–162 (1985)

10. Hennicker, R.: Role-based development of dynamically evolving esembles. In:
Fiadeiro, J.L., Ţuţu, I. (eds.) WADT 2018. LNCS, vol. 11563, pp. 3–24. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23220-7 1

11. Hennicker, R., Wirsing, M.: Dynamic logic for ensembles. In: Margaria, T., Stef-
fen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 32–47. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03424-5 3

12. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL 2008), pp. 273–284. ACM (2008)

13. Knapp, A., Mossakowski, T.: UML interactions meet state machines-an institu-
tional approach. In: Bonchi, F., König, B. (eds.) 7th Conference on Algebra and
Coalgebra in Computer Science, CALCO 2017, 12–16 June 2017, Ljubljana, Slove-
nia, LIPIcs, vol. 72, pp. 15:1–15:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2017)

14. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: Kühne, T.
(ed.) MODELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69489-2 6

15. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL 2015, pp. 221–232 (2015)

16. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 sequence diagrams: a
survey. Softw. Syst. Model. 10(4), 489–514 (2011)

17. Morin, R.: Recognizable sets of message sequence charts. In: Alt, H., Ferreira, A.
(eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45841-7 43

18. Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. J. Appl. Log.
10(1), 2–31 (2012)

19. ter Beek, M.H., Carmona, J., Hennicker, R., Kleijn, J.: Communication require-
ments for team automata. In: Jacquet, J.-M., Massink, M. (eds.) COORDINA-
TION 2017. LNCS, vol. 10319, pp. 256–277. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-59746-1 14

20. ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a family of model
checkers. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems.
LNCS, vol. 8950, pp. 312–328. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15545-6 20

21. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Log.
Algebr. Meth. Program. 95, 17–40 (2018)

22. Wirsing, M., Hölzl, M. (eds.): Rigorous Software Engineering for Service-Oriented
Systems. LNCS, vol. 6582. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-20401-2

https://doi.org/10.1007/978-3-030-23220-7_1
https://doi.org/10.1007/978-3-030-03424-5_3
https://doi.org/10.1007/978-3-540-69489-2_6
https://doi.org/10.1007/3-540-45841-7_43
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.1007/978-3-642-20401-2
https://doi.org/10.1007/978-3-642-20401-2

www.manaraa.com

Requirements Engineering

www.manaraa.com

Ambiguity in Requirements Engineering:
Towards a Unifying Framework

Vincenzo Gervasi1,3(B), Alessio Ferrari2, Didar Zowghi3, and Paola Spoletini4

1 Dipartimento di Informatica, University of Pisa, Pisa, Italy
gervasi@di.unipi.it

2 Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo”, CNR,
Pisa, Italy

3 Faculty of Engineering and IT, University of Technology, Sydney, Australia
4 SWEGD, Kennesaw State University, Kennesaw, USA

Abstract. A long stream of research in RE has been devoted to analyzing the
occurrences and consequences of ambiguity in requirements documents. Ambi-
guity often occurs in documents, most often in natural language (NL) ones,
but occasionally also in formal specifications, be it because of abstraction, or
of imprecise designation of which real-world entities are denotated by certain
expressions. In many of those studies, ambiguity has been considered a defect to
be avoided. In this paper, we investigate the nature of ambiguity, and advocate
that the simplistic view of ambiguity as merely a defect in the document does
not do justice to the complexity of this phenomenon. We offer a more extensive
analysis, based on the multiple linguistic sources of ambiguity, and present a list
of real-world cases, both in written matter and in oral interviews, that we analyze
based on our framework. We hope that a better understanding of the phenomenon
can help in the analysis of practical experiences and in the design of more effec-
tive methods to detect, mark and handle ambiguity.

1 Introduction

The study of properties of software requirements specifications (SRS) has been an
important and recurring theme throughout the evolution of requirements engineering
(RE) research. Fundamental issues concerning the contents of requirements, such has
how to avoid or detect inconsistencies in SRS (and whether to remove or tolerate them),
or how to ensure completeness of the requirements, have been a mainstay in RE. The
reasons are clear: no implementation can satisfy an inconsistent SRS, and an incomplete
SRS, once implemented, will not satisfy all the needs of the users of the corresponding
software system. In fact, consistency and completeness have been regarded in our ear-
lier work [1,2] as the two main factors for requirements correctness, i.e. as two quality
features that an SRS must, eventually, possess.

Another related stream of research has been concerned with properties of the form
of requirements, rather than of their content. Properties such as understandability, con-
ciseness, etc. have been studied and discussed, and techniques to ensure an SRS exhibits
such properties (or to identify and fix their negative dual properties) have been proposed.

In this paper, we focus mainly on ambiguity, i.e. the phenomenon by which multiple
distinct meanings can be assigned to the same requirement (or, more generally, sets
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 191–210, 2019.
https://doi.org/10.1007/978-3-030-30985-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_12

www.manaraa.com

192 V. Gervasi et al.

of requirements), and discuss the relationships between ambiguity and certain related
phenomena which are often observed in requirements. The process of transforming
an intended meaning into a set of signs (the documented form of a requirement), and
then back from signs to meanings, is complex enough – even in the case of formal
or diagrammatic languages – that an accurate understanding of its different facets is
needed for an effective management of the requirements. Given the complexity of the
ambiguity phenomenon and of its relationship with requirements, this work does not
have the ambition of being a comprehensive analysis of neither of the two. Certain
areas, such as for example how interactions between certain requirements can generate
ambiguity that were not present in the requirements in isolation, are not dealt with in
the paper.

We do not provide in this work advice on how to avoid introducing ambiguity in an
SRS, nor on how to remedy it when it is detected. Rather, we focus on understanding
what ambiguity is (with particular reference to its role in requirements engineering), on
how, when and by whom it is introduced in SRS, and on what the effects of its vari-
ous forms are. We posit that ambiguity is not necessarily a defect, and in fact can play
an important positive role both in the requirements as a document, and in the require-
ments elicitation process. In short, this paper is not about a solution to a problem, but
rather about exploring and characterizing the nature of a phenomenon, with supporting
evidence from real-world practice.

At the same time, the paper constitutes a call to fellow researchers to draw more
freely on the vast amount of knowledge that scholarly work in semiotics and linguistics
has produced in the past. While requirements specifications are a very peculiar type of
document, with very specific uses, and often the language employed in them is highly
stylized when not entirely formalized, yet the fundamental situation is still that of two
parties communicating through some form of language, and most results from estab-
lished discourse theories in linguistics apply equally well to requirements engineering.

The rest of this paper is organized as follows: Sect. 2 discusses our basic model
of ambiguity in the interpretation of RE documents (e.g., SRS); this is followed by an
analysis and classification of the different levels at which ambiguity can be introduced.
Section 3 presents a discussion on linguistic sources of ambiguity. Section 4 then dis-
cusses the relationships between ambiguity, abstraction and absence, and presents both
a theoretical framework and a classification of different forms of ambiguity. Sections 5
and 6 present a number of real-world cases of ambiguity, in written text and in oral
interviews respectively, which are characterized according to our framework. This is
followed by a short survey of related works (where we restrict ourselves to the RE
literature) and by some conclusion.

The present paper is a substantially extended and revised version of our previous
work in [3].

2 Ambiguity and Interpretation in Requirements Engineering

As has been recognized in the literature (see Sect. 7), ambiguity is a complex, multi-
level phenomenon. While the general concept of “having multiple meanings” is rela-
tively easy to describe, locating the original source – or root cause – of the ambiguity

www.manaraa.com

Ambiguity in Requirements Engineering: Towards a Unifying Framework 193

may be challenging. Moreover, ambiguity may or may not be detected by the several
parties involved in requirements elicitation or analysis, and be intentional or acciden-
tal; its extent can be confined to a minor detail or encompass some major aspect of the
system.

It is clear that the simple intuitive definition of “having multiple meanings” is insuf-
ficient for a deep understanding of ambiguity. We will instead use as reference frame
that of the classical denotational approach, where semantics is given by a function
mapping from a source domain (the text of the requirements) to a target domain (the
denotation of their semantics). Which particular semantics we want to observe (e.g.,
input/output semantics, performances, labeled transition system, development cost esti-
mates, etc.) is immaterial for our discussion, and we can imagine that the semantics
domain will in fact be different for different purposes1. Of course we will not insist
on all the properties that characterize domains according to the Scott-Strachey defini-
tion [4] (e.g., that domains are partial orders, or that the mapping is Scott-continuous),
nor on the compositionality of the mapping function. In requirements engineering, all
these three elements — source domain, target domain, mapping function—are fuzzy at
best. The source domain can include, in addition to written text, spoken information,
observed behavior, references to pre-existing systems or work practices, etc. The target
domain (i.e. the semantics of the requirements) should in theory be such that it is pos-
sible to determine if a given specification or implementation satisfies the requirements,
but in practice it is often in itself vague. And finally, the mapping is ill-defined, and often
– even when a strict formal definition exists – may well be misunderstood by at least
some of the stakeholders (e.g., an end-user will probably be incapable of understanding
the meaning of a fragment of Z [5] from a complex requirements specification). This
last point is worth stressing. For the purpose of assessing the effects of ambiguity, it is
not the intrinsic meaning of a requirement or set thereof that is of interest (even when
we have such a thing, e.g. in formal languages), but the interpretation placed on it by a
cognitive agent or interpreter.

We will thus accept the fuzziness of all our elements, while still keeping the general
framework of denotational semantics, and asking only that any semantics, in order to
be considered acceptable, must allow for testing an implementation for satisfaction of
the requirements. This is in keeping with Dana Scott’s position [6] that

It is not necessary for the semantics to determine an implementation, but it should
provide criteria for showing that an implementation is correct.

Figure 1 shows an overview of how we define the various steps and transformations
which can lead to multiple meanings. The details will be elucidated in the next section;
for now it suffices to say that the meaning of a stated requirement is determined on a
purely symbolic base, based on which symbols constitute the requirement, and on the

1 In fact, a statement can be ambiguous or not depending on which particular semantics we
observe. For example, a requirement asking for a given feature in ambiguous terms could be
interpreted in several different ways for the purpose of implementing the feature, and thus be
ambiguous; however, if the possible interpretations all have the same implementation costs,
the meaning would be unique for cost-estimate purposes, and thus no ambiguity would arise
in that particular denotation.

www.manaraa.com

194 V. Gervasi et al.

The system shall
delete the user and
send the notification
within a month

Text Syntax Denotation

gnippamscitnameSgnippamcitcatnyS

The Real World

Im
plem

entation

Notification

Month

System
User

Correctness

Symbols

Reality

Fig. 1. The theoretical framework for the occurrence of ambiguity.

grammar and interpretation rules of the language used (in Fig. 1 we are using natural
language as an example, but the same holds for any other notation used to express the
requirements). The denotation of the semantics of the requirements is then what drives
the implementation, whose purpose is to build a computer-based system (in the real
world) which will interact with its environment and modify it in such a way that the
original intention expressed through the requirements is satisfied.

In the following, we outline a more structured analysis of ambiguity, with particular
reference to its potential sources, and the roles that ambiguity can play in requirements
specifications.

3 Linguistic Sources of Ambiguity

Different forms of ambiguity are introduced in a requirements document at different
levels. As ambiguity is essentially a linguistic phenomenon, in that it pertains to how
meaning is associated to a certain statement or set of statements in some language, it is
appropriate to analyze sources of ambiguity according to the usual linguistics paradigm
of lexicon, syntax, semantics. In this paper, we will not explicitly consider the fourth
possible source of ambiguity, namely pragmatics, which could generate ambiguity due
to contextual information (e.g. about the nature or intent of a document), or to the
identities or roles of the actors in the exchange, or based on the stated or presumed
intentions of the author or speaker, etc. However, these are informally addressed in the
examples presented in Sect. 6.

The distinction is not new; in relation to requirements quality it has been introduced
in [7] and maintained in subsequent studies, such as [8–10]. We will briefly outline the
main issues that occur at different levels here, not delving into all the details since our
main interest is only on one particular form, as will be discussed in the following.

www.manaraa.com

Ambiguity in Requirements Engineering: Towards a Unifying Framework 195

3.1 Levels of Ambiguity

Lexical Level. Ambiguity in lexicon occurs typically when the same term is used to
denote different things. This can be an inherent feature of the language being used (for
example: homonyms in natural language, as in bank account vs. bank of a river), or
happen even in more formal languages due to lack of or imprecise designations [11]. In
fact, even in formal languages such designations are invariably rooted in the informal
real world, and all stakeholders must a-priori agree on their meaning (thus establishing
a common base of reference). Of course, this rarely happens in practice; even when
using a particular domain’s jargon, it is often the case that certain terms are found to be
ambiguous.

It is worth remarking that even approaches based on lexical semantics (e.g., Word-
net [12]) or ontologies (e.g., LEL [13]) cannot rule out the risk of lexical ambiguity:
in these approaches, relations between terms are spelled out, but the meaning of a term
is only given by other terms. And after all, words are conventional and do not derive
from things as Cratylus used to believe [14]. The only thing keeping Humpty Dumpty
from really going by his statement “When I use a word, it means just what I choose it
to mean – nothing more nor less.” is the need of making himself clear to Alice [15]—
unfortunately, not something to rely upon when analyzing software requirements.

In Fig. 1, terms appearing in the requirement (in the Text circle), such as “user”
or “month” are just lexical tokens. They can correspond to different designations, e.g.
“month” could mean a 30-days period, or a 31-days period, or till the same-numbered
day in the next month, or go with the moon phases, or even some fancier period2. With-
out a more precise designation, the term “month” is seriously ambiguous: for example,
which date is “a month after January 30”?

Syntactic Level. Ambiguity on the syntactic level is in a sense easier to define. It stems
from there existing multiple parse trees for a single sentence (or, more generally, a given
segment of the linear stream of language); to each possible parse tree, a different mean-
ing is attached, hence the ambiguity. Berry, Kamsties and Krieger in [8] have provided
a large number of delightful examples of ambiguities in several natural languages (and
guidelines on how to avoid the most common pitfalls).

In Fig. 1, multiple possible parse trees exist for our sample requirement. In fact, the
sentence could be parsed as “The system shall delete the user and (send the notification
within a month)” (Fig. 2, left) or as “The system shall (delete the user and send the
notification) within a month” (Fig. 2, right), where the parentheses have been used to
indicate the two critically different parsings.

Interestingly, syntactic ambiguity can be avoided by design in certain languages,
and in fact most formal languages are so designed that their grammar does not allow
ambiguous parsing (this allows the construction of simple and efficient parsers). This
is the case in fact of almost all programming and formal specification languages, but is
also claimed of some engineered spoken language, e.g. Loglan [16].

2 The Bahá’ı́ calendar, for example, has 19months of 19 days each, plus 4 intercalary days (5 in
leap years) which are not part of any month. How would our requirement be interpreted in a
Bahá’ı́ community?

www.manaraa.com

196 V. Gervasi et al.

shall

delete

theuser

within

send

the notification

a month

shall

The system and The system within

and

delete

the user

send

the notification

a month

Fig. 2. Two different parse trees for our sample requirement: a case of syntactic ambiguity. This
situation is termed coordination ambiguity.

Semantic level. Semantic ambiguity is our main concern in this paper. This happens
when the source text is uniquely determined in both lexicon and syntax, i.e. the exact
meaning of all terms is established, and there is only one correct parsing of the text.
Nevertheless, multiple meanings can be assigned to the sentence. In this case, the ambi-
guity lies not in the source, but in the function assigning meaning to the source, labeled
in Fig. 1 as the semantics mapping function.

In holding this view we differ from [8,10,17], where semantic ambiguity is ascribed
to coordination ambiguity (properly deciding the operands of and, or or other sentence
constructors), referential ambiguity (resolving pronominal references and anaphora),
and scope ambiguity (delimiting the scope of quantifiers). We rather consider that these
phenomena stem from the syntax of the language: in fact, if natural language had some
form of parentheses (for scoping) and indexing (for references), these problems would
disappear (as shown, accidentally, by our previous example in Fig. 2 about syntactic
ambiguity). In practice, typography and layout can at times serve to mark parenthetical
structure when the language does not offer it: for example, we could have written our
requirement as:

The system shall:
– delete the user, and
– send the notification within a month.

or rather

The system shall:
– delete the user, and
– send the notification

within a month.

to make our intention clear. In fact, some systems for the automated analysis of NL
requirements such as [18] have used layout to help infer parenthetical structure in such
cases.

Another proof that types of ambiguity cited above are syntactic phenomena lies in
the fact that semantic ambiguity can also happen in formal languages, where the lexi-
con and syntax are perfectly defined. In this case, the understanding of the semantics

www.manaraa.com

Ambiguity in Requirements Engineering: Towards a Unifying Framework 197

of the language on the part of a reader can cause a certain statement to be interpreted
ambiguously. Whether a standard semantics for the language exist or not is somewhat
irrelevant to the phenomenon itself (e.g., it is often the case that even skilled program-
mers ignore some subtle point of the formal semantics of a programming language3

or that the description of the semantics in itself is ambiguous). In practice, the stan-
dardized semantics of some language can be, and often is, so large and complex that it
can be considered for all practical purposes to be cognitively inaccessible to the reader:
hence, the semantics mapping function really used by a reader can be different from
the official one, of which it will be just one of many possible approximations. And of
course, different approximations by different readers, or at different times, will produce
different meanings.

In Fig. 1, even if we have precise designations for “month”, “system”, “user” etc.,
and even if we are told in some way which of the two syntactic interpretation to take,
we could still have doubts on the intended semantics. For example, “shall send a noti-
fication” means the system will attempt to do it, but how? Is it sufficient to print out a
form and hope that some operator will put it in an envelope and give to the Post Office
for delivery? What if the notification is sent, but not delivered? Is there some sort of
acknowledgment to be expected? Maybe the notification could be sent via a text mes-
sage to the user’s mobile phone? Or maybe, the notification is not intended for the user,
but for his manager? And so on (endlessly).

We will devote the rest of the paper to semantic ambiguity: that is, the form of
ambiguity which arises irrespective of lexicon and syntax. We will have much to say
about its role in requirements elicitation and analysis.

3.2 Ambiguity vs. Vagueness

It is important not to unduly conflate ambiguity with vagueness, a different (yet related)
linguistic phenomenon. Ambiguity denotes the existence of multiple distinct meanings,
with an implicit assumptions that they are individually well-defined – so that solving
the ambiguity means making a choice between a discrete set of possible interpretations,
eventually leading to a certain implementation. In contrast, vagueness refer instead to
cases where the meaning itself is fuzzily defined (Fig. 3); the possible implementations
form a continuous space, no longer a discrete set. Consequently, requirements cannot
be said to be satisfied or not; rather, the notion of degree of satisfaction comes into play.
This is often the case with non-functional requirements, and the topic has been exten-
sively researched in requirements literature: in fact, both techniques to explicitly model
the vagueness (e.g. by using fuzzy logic or the concept of satisficing in goal models)
and recommendations to avoid vagueness (e.g., by substituting every non-functional
requirement of this kind with some measurable proxy, as in service level agreements)
have been advocated [19].

In natural languages, ambiguity and vagueness are often intertwined, due to one of
the parties assuming a vague meaning, and the other assuming two (or more) different

3 For a concrete example, even an experienced C language programmer might look puzzled
at a statement like long c=3["test"]; which is perfectly legal and unambiguous in the
language. But then, int x=*(char *)&c;, which is again legal, produces results which are
not specified by the semantics, and is thus ambiguous (probably, x would be either 0 or 116).

www.manaraa.com

198 V. Gervasi et al.

Fig. 3. A visual rendition of the difference between ambiguity (left) and vagueness (right).

points inside the continuous space to be two (or more) distinct meanings. In practice,
it is not uncommon for a stakeholder to use a vague term to signify a genuine lack of
preference, whereas an analyst might insist in setting on a single non-vague choice.

4 Ambiguity, Abstraction, Absence

We have seen in the previous section how even a simple sentence like our example

The system shall delete the user and send the notification within a month.

which could appear among the old-fashioned requirements, say, for a library loan sys-
tem when membership expires, is actually riddled by lexical, syntactic, and semantic
ambiguity, so that its correct implementation, missing further information, is probably
beyond hope.

One could then believe that ambiguity is thus a pernicious defect, to be eradicated
with ruthless determination from any self-respecting requirements specification. Unfor-
tunately, this noble determination often leads to the practical impossibility of writing
down, analyzing, and implementing, the requirements for even the simplest of software
systems, while huge amounts of effort are devoted to writing beautifully complex and
extensive specifications.4

We believe instead that ambiguity can also play a positive role in requirements spec-
ifications, beyond its well-known political role in negotiations. To this end, we need first
to distinguish among three related concepts:

– Ambiguity is the existence of multiple denotations for the same source text in the
semantics space. Whether this is caused by syntactic ambiguity (as in Fig. 4, bottom)
or by semantics ambiguity (as in Fig. 4, top), or by lexical issues (e.g., uncertain des-
ignations) is irrelevant: the essence of the phenomenon is in having multiple (dis-
tinct) semantics for the same source. Ambiguity has often been considered a defect
in requirements, in account of the lack of a single, well-defined, shared semantics
that can be used to drive implementation (and, later, verification).

– Abstraction is the omission of some details (or more properly, of some information
content). Ambiguity can be used as a form of abstraction, in that the detail miss-
ing is the information needed to discriminate between multiple semantics in order to

4 In fact, we rather believe that it is essentially impossible to write unambiguous specifications,
with space for doubt for some purely symbolic processing system (such as lexical domains
in [11]), that start with Peano axioms [20] and work up from those.

www.manaraa.com

Ambiguity in Requirements Engineering: Towards a Unifying Framework 199

The system shall
delete the user and
send the notification
within a month

Text Syntax DenotationSyntactic mapping

Semantics mapping

The system shall
delete the user and
send the notification
within a month

Text Syntax Denotation

Semantics mappingSyntactic mapping

Fig. 4. Cases of ambiguity: semantics ambiguity (top), syntactic ambiguity (bottom).

identify the right ones (in the eye of the requirement author). Abstraction is generally
considered a desirable quality in requirements, up to a point, in that it avoids over-
specification, a flaw that may cause waste of time or generation of new errors [21],
and thus simplifies the requirements, keeping them manageable and allowing stake-
holders to focus on the important parts.

– Absence is the total lack of details on some specific aspect; as such, it is the extreme
case of abstraction, where certain information content is abstracted to nothingness
(hence, it is at times called silence). Being a special case of abstraction, absence as
well can be related to ambiguity as discussed above. Absence is the major motivation
for requirements elicitation: knowledge holes are usually considered dangerous in
specifications, and need to be filled-in by investigating the problem and its domain
in more depth.

In witness of the pervasiveness of ambiguity in requirements, our sample require-
ment also contains instances of both abstraction and absence. Using the term “month”
can be seen as a not very precise way to refer to some specific duration of time, essen-
tially conveying the idea of “I don’t care about the exact duration, but it should be close
to 30 days”, hence this is a case of abstraction. At the same time, nothing is said about
the actual contents of the “notification”, e.g. which text should be sent. Of course, the
implemented system will have to send some specific text (we cannot keep the actual
message abstract in the implementation), so the missing information is needed, and
hence this is really a case of absence.

Since ambiguity can play both negative and positive roles, the question arises natu-
rally: when is bad ambiguity turned into good abstraction, and when is the latter turned
again into bad absence? We believe this question, in this crude form, is too simplistic,
and more about the intentions of the stakeholders working on and with the requirements
must be considered.

As a fist step, let us identify two roles in interacting with requirements, those of
author and of reader. The author is the stakeholder that commits a requirement to a

www.manaraa.com

200 V. Gervasi et al.

written form: it is not necessarily the customer or the problem owner, and in fact it could
also be a requirement analyst, a consultant, or the long-gone author of a procedures
manual that has since left the company. The reader is the participant to the development
process who needs the information conveyed by the requirements in order to perform
his or her own job. Implementors, testers, customer (in validation), developers of other
systems, etc. can all play the role of readers.

Both writers and readers may or may not recognize the ambiguity which is present
in a requirement. This gives rise to the combinations shown in Table 1.

Table 1. Recognized and unrecognized ambiguity.

Reader
recognized unrecognized

W
ri
te
r re
co

gn
iz
ed (a) ambiguity used by writer as ab-

straction device, recognized as such:
good use of ambiguity, any implemen-
tation correct.

(b) writer used ambiguity as abstrac-
tion device, reader only recognized
one possible meaning: loss of design
space.

un
re
co

gn
iz
ed

(c) writer wrote ambiguous require-
ment without realizing, reader as-
sumed all meanings are acceptable:
potential incorrect implementation.

(d) ambiguity gone unnoticed: if both
reader and writer agree on mean-
ing, correct implementation possible
by chance, otherwise incorrect imple-
mentation.

We assume for now that recognizing an ambiguity means being cognizant of all the
possible meanings, whereas not recognizing it means considering only one meaning
(which may or may not be the intended one), and not realizing that there is a potential
ambiguity. Naturally, in practice we can be faced with fuzzy cases, in which we can
suspect that there is an ambiguity but cannot determine for certain (e.g., for lexical or
semantic ambiguity), or the different meanings conveyed by an ambiguous statement
can themselves be vague and blend into each other without clear distinction. For the
sake of exposition, we will oversimplify the issue in the following analysis.

When the ambiguity is recognized by the writer (cases (a) and (b) in Table 1), we
can assume that it is intentional: the writer is using ambiguity as a means of abstracting
away unnecessary details, signifying that all possible meanings are all equally accept-
able to her as correct implementations of the requirements. For example, in our previous
example from Fig. 1, the clause “within a month” could be intentionally ambiguous,
meaning that the writer (e.g., the customer) is not interested in the exact limit, as long
as there is a fixed term, and the term is approximately a month. In case (a), the reader
(e.g., the implementor) also recognizes the ambiguity, and is free to choose, among all
possible implementations that satisfy the requirement in any of its possible ambiguous
meanings, the one that best suits him: for example, a simple limit=today()+30; in
code will suffice. In case (b), the reader may not realize that the writer has given him
freedom to implement a vague notion of month, and might implement a full calendar,
taking into account leap years and different month lengths, possibly synchronizing with
time servers on the Internet to give precise-to-the-millisecond months, etc. The result-
ing implementation will be correct, but unnecessarily complex. The design space for the

www.manaraa.com

Ambiguity in Requirements Engineering: Towards a Unifying Framework 201

solution has been restricted without reason, and maybe opportunities for improving the
quality of the implementation in other areas (e.g., robustness or maintainability) have
been lost.

If the ambiguity is not recognized by the writer (cases (c) and (d) in Table 1), we
can assume it is not intentional: in a sense, it has crept in against the writer’s intention.
Hence, only one of the possible meanings is correct, whereas others are incorrect. Of
course, once the ambiguity has entered the meaning chain, it is impossible to establish
which of the various possible meanings was the intended one. The implementation can
still be correct, but only by chance (because, among the possible interpretations, the
correct one was chosen). Moreover, when multiple readers are involved, as is the case in
every real-life project, the chances of every reader taking up the correct interpretation by
chance becomes smaller as the number of readers increases: so, this type of ambiguity
will probably lead to a wrong implementation, or to a correct implementation which is
tested against the wrong set of test cases, or to a correct implementation which is tested
correctly but then erroneously documented in users’ manuals according to a wrong
interpretation, etc.

5 Ambiguity Cases in Requirements Documents

In this section we review some typical cases of ambiguity in requirements documents,
based on publications available from the literature [22], and we show how such real-
world ambiguities can be explained by means of the presented framework.

Pronouns: Anaphora occurs in a text whenever a pronoun (e.g., he, it, that, this, which,
etc.) refers to a previous part of the text. The referred part of the text is normally called
antecedent. An anaphoric ambiguity occurs if the text offers more than one antecedent
options [23], either in the same sentence (e.g., The system shall send a message to
the receiver, and it provides an acknowledge message—it = system or receiver?) or in
previous sentences. The potential antecedents for the pronouns are noun phrases (NP),
which can be detected by means of a shallow parser.

Whenever the ambiguity can be resolved by identifying a proper textual antecedent,
we can assume this to be a type of syntactic ambiguity. However, at times a proper
antecedent will be missing entirely: in such cases, context might provide a resolution.
For example, “them” might be a signifier for “our competitors” if the document serves
the role of a strategic market analysis, even if no antecedent appear in the text.

Coordinating Conjunctions: coordination ambiguity occurs when the use of coordi-
nating conjunctions (e.g., and or or) leads to multiple potential interpretations of a
sentence [24]. Two types of coordination ambiguity are considered here. The first
type includes sentences in which more than one coordinating conjunction is used in
the same sentence (e.g., There is a 90◦ phase shift between sensor 1 and sensor 2
and sensor 3 shall have a 45◦ phase shift). The second type includes sentences in
which a coordinating conjunction is used with a modifier (e.g., Structured approaches
and platforms—Structured can refer to approaches only, or also to platforms).

www.manaraa.com

202 V. Gervasi et al.

Coordinating conjunctions are invariably a case of syntactic ambiguity, as the difficulty
lies with producing the correct parse tree, not with the interpretation of the meaning
once the correct parse tree is provided.

Vague Terms: Vagueness is associated with the usage of terms that admit a continu-
ous set of possible interpretations (Sect. 3.2), such as minimal, as much as possible,
later, taking into account, based on, appropriate, etc. Typical example requirements
are as follows: In case the boolean logic evaluates the permissive state, the system shall
activate a certain redundant output – which output shall be activated?

Modal Adverbs: Modal adverbs (e.g., positively, permanently, clearly) are modifiers
that express a quality associated to a predicate. Example of ambiguous requirements
using modal adverbs are: The system shall respond positively when the no fault is iden-
tified—the requirement does not specify what type of message should be sent. The term
“positively” is thus an abstraction device (Sect. 4): we state only the single property of
the message we are interested in (i.e., that it will be interpreted by the receiver as the
positive outcome), and not all other properties the message might have, thus leaving the
implementor free in that respect.

Passive Voice: The use of passive voice is a defect of clarity in requirements, and
can lead to ambiguous interpretations in those cases in which the passive verb is not
followed by the subject that performs the action expressed by the verb (e.g., The sys-
tem shall be shut down—by which actor?). Omitting the actor is a case of absence of
information, and as such an opportunity for further elicitation. Also, different meanings
could be intended by the writer, e.g. “The system shall be shut down on condition”, or
“The system shall be shut down by operator” or “It shall be possible to shut down the
system for whom”, etc.

It is interesting to observe that the rules of standard English grammar allow omitting
the actor, hence this is no syntactic ambiguity. However, other languages which have
an ergative case5 in their grammar that cannot be omitted, would rather consider this
a syntax error; or if the ergative case is unmarked, this could give rise to a proper
syntactic ambiguity. The fact that different languages exhibit different cases of syntactic
ambiguity should come as no surprise—and in fact, that is exactly one of the reasons in
support of using controlled languages in RE.

6 Ambiguity Cases in Requirements Elicitation Interviews

In this section we present typical cases of ambiguity in requirements elicitation inter-
views, based on publications on the topic available from the literature [25,26], and we
show how these real-world ambiguities can be explained by means of the presented
framework. The cases are presented based on typical categories of ambiguity cues in
interviews, namely under-specified terms, vague terms, quantifiers and pronouns.

5 Ergative is the grammatical case for nouns that identify the intentional agent of a verb (espe-
cially a transitive verb), often marked by a special suffix or prefix.

www.manaraa.com

Ambiguity in Requirements Engineering: Towards a Unifying Framework 203

Under-Specified Terms. This category includes terms with a high degree of generality,
i.e., terms that identify a class of concepts or actions, but do not specify some required
detail. Examples are names such as people, knowledge, movement, area, rule, data,
category, interface, thing, detail, etc. and – less frequently – verbs such as use, make,
search, etc. As such, under-specified terms are a form of abstraction, applied at the
lexical level.

These terms might characterize a specific concept in the mind of the customer,
which might not be accessible to the analyst, and that can be clarified with a more
detailed specification. In other cases, they can characterize a concept that is not well
defined in the mind of the customer, and that hence deserves to be made more con-
crete. In general, using the term “under-specified” implies a desire for a greater speci-
ficity, hence this particular designation has a negative connotation, and is often used
to stigmatize cases of nocuous ambiguity. Below we present real-world examples of
under-specified terms, adapted from [26].

Example 1. A bio-medical engineer wants to develop a system that patients can
use to measure their blood pressure. The system shall include a mobile applica-
tion, which sends the data about the blood pressure to the general practice doc-
tor. When asked how blood pressure is currently measured, the customer said:
There is this device. The analyst correctly understood that a specific device is
used. The analyst thought that a precise name, or brand, for the device was
needed, to develop an interface between the mobile phone and the device. After
asking, it was clarified that the bio-medical engineer did not know the name of
the device (i.e., blood pressure monitor).

Example 2. A customer wants to develop a mobile application that monitors
the use that she makes of her mobile phone. She said: Maybe the system could
give me also some recommendations. The analyst thought that the term
recommendations could have two acceptable meanings: (a) negative recommen-
dations on applications and mobile features that she should not use; (b) positive
recommendations on applications that could be downloaded, and mobile features
that could be used. After clarification, the first meaning resulted correct.

We have presented examples in which only one under-specified term is used. How-
ever, we saw also situations in which several under-specified terms are used together,
possibly with vague expressions (discussed in the next sub-section), giving a too
abstract level to the conversation, and causing interpretation difficulties. An interest-
ing example is presented below.

Example 3. One of our customers is a public administration officer. He started
the interview saying: [I want to develop] a data-base in which there are several
profiles of users that can access to different levels of information, but, most
of all, can do different operations depending on their profile. We have underlined
under-specified terms, and emphasised vague ones. The analyst could not assign
a clear meaning to this fragment and asked: What is the application field? Basi-
cally, the analyst did not have a contextual ground over which the under-specified

www.manaraa.com

204 V. Gervasi et al.

terms could make sense. Afterwards, it was clarified that the application field was
the monitoring and assessing of EU-funded projects. The different users were the
receivers of the funds, who are required to provide evidence of their expenses,
and the officer, who is required to assess the projects.

Vague Terms. Vague terms are terms that admit a continuous set of possible interpreta-
tions (Sect. 3.2) such as minimal, as much as possible, later, taking into account, based
on, appropriate, etc. We already discussed these in the previous section; however, in
interviews their use is generally more widespread and less damaging. In fact, vague
terms are often use as an effort-saving device, so that the speaker needs not focus on
retrieving the more precise term, an effort that would render the conversation less natu-
ral and impede its flow. In addition, in interviews the context is often more immediately
clear to both the interviewer and the interviewee (at least, at that point in time), and
moreover there is usually an underlying assumption that the material will eventually
end up in written form, and at that point more precise designations may be substituted
for vague terms used in the oral form.

Example 4. One of our customers wants to develop a system to automatically
sketch the map of apartments. The goal is to use the system before buying an
apartment, to have an idea of how the place could be rearranged. The ana-
lyst suggested a robot that follows the walls when the user visits the apartment,
and provides a sketch of the map that can be visualized through a tablet. The
customer asked: Can I do adjustments later? The term later triggered a multiple
understanding phenomenon. Indeed, the analyst could intend later as (a) when
the user was not anymore in the apartment, e.g., to actually rearrange the map,
or (b) right after the map was sketched, e.g., to account for errors made by
the system. When asked, the customer specified that the first interpretation was
correct.

Notice again how, by itself, later is non-ambiguous: it has a single meaning (i.e., at
some time subsequent the initial mapping), but the degree of vagueness was incompat-
ible with the needs of the analyst, who (arbitrarily) chose two possible interpretations
that were compatible with the vague semantics, yet more precise. We could have imag-
ined even more compatible interpretations, e.g. (c) after the apartment is sold, maybe
for tax-avoidance purposes!

Quantifiers. Quantifiers are the Natural language expressions that serve to select cer-
tain elements from a typically larger set of similar elements, and are thus akin to the
universal quantifier ∀ and the existential quantifier ∃ in logic. These terms include all,
for each, any, some, both, etc.

Example 5. A customer wants to develop a virtual phone-chain, i.e., a system that
alerts her when she is more than five meters from her mobile phone. The system is
composed of an application to be installed in the mobile, and by a device that the
user shall wear. The customer said: From the device I can switch off all of them.
The term all could be interpreted in multiple ways: the device allows to switch

www.manaraa.com

Ambiguity in Requirements Engineering: Towards a Unifying Framework 205

itself and the application simultaneously (for all); the device can switch itself and
the application off in a given sequence (for each); the device allows to switch
itself and the application separately (any) based on user’s choice. The first inter-
pretation resulted to be valid.

Pronouns. Personal pronouns such as he, she, it, possessive pronouns as her, his, its, rel-
ative pronouns such as that, which, demonstrative pronouns such as this, those, etc., are
all potential sources of ambiguity (i.e., when the target of the reference is not uniquely
determined by grammatical rules), which we have considered at the semantic level.

Example 6. A customer wants to develop an electronic business card, to be
passed from the mobile of the sender to the one of the receiver by means
of a Bluetooth connection. Along the discussion, the electronic business card
was decided to be associated with an image, like paper business cards. He
said: If we are in the same area, it gets transferred. The analyst thought that it
could be referred to the information only, or also to the image, and asked:
You want to transfer just the information, or you want also the image of the card?
The customer – quite surprisingly – replied: Just the information.

Example 7. A real-estate appraisal expert says that, when she has to estimate the
value of a property, she searches for the price of similar properties in the same
area. Then, she compares the characteristics of those properties with the property
under evaluation, to estimate the price. She said that her problem is that: This
work takes a lot of time.6 The analyst assumed that the time consuming work
was the comparison. But, when the analyst summarised what he understood, the
customer said: No, the search [of similar properties is time consuming].

In both these examples, the pronouns are used in an anaphoric function, i.e. they
refer to a noun or noun phrase that had already been mentioned in the context. Syntac-
tic concordance rules (e.g., the pronoun must be compatible in number and gender with
the referred noun) help in resolving the reference, yet may not be sufficient to identify a
single possible interpretation. More candidates can be discarded by having recourse to
semantics (e.g., in our example 6 it can only refer to something that can be transferred
via a Bluetooth connection), and if multiple possible candidates still exists, to prag-
matics (e.g., also in example 6, the analyst is assuming from social context that people
might be more interested in the textual details of the business card, so the options for
clarification offered to the customer are just two: (a) only textual information, (b) textual
information+image—but the third possible interpretation, (c) only image, is discarded
on pragmatic grounds).

It is worth to notice that pronouns can also serve other functions, e.g. as deictic7

instead of anaphora. This is particularly common in interviews. Our customer from

6 The reader will notice that the ambiguity is not raised by the vague expression a lot, which
appeared acceptable at that stage of the conversation.

7 A deictic expression refers to something that only exist in the context, e.g. “here” referring to
the current location of the speaker, never appearing in text.

www.manaraa.com

206 V. Gervasi et al.

example 6 could have said I want this transferred. while holding in his hand a tra-
ditional, paper-based business card, and looking down at the printed face of the card
while saying it. Deictics may also introduce ambiguity, which would clearly be at the
contextual level.

7 Related Work

Although not one of the most popular subjects, ambiguity in requirements has received
some degree of attention from researchers, especially in recent years. Not always the
phenomenon has been correctly described, and at times it has been mixed up with
related phenomena; also, the connection with classical studies of ambiguity in the
humanities is a relatively recent acquisition.

Early studies generally have considered ambiguity in relation to completeness,
i.e. only in its capacity as abstraction or absence (although often the terms used are
more pertaining to vagueness), and not as an independent and significant phenomenon.
Among those, Boehm [27] mentions indeterminacy as a form of incompleteness, and
attributes it to missing information. There is no distinction between information that the
writer might want to convey and is missing due to forgetfulness (absence), information
that the writer positively wanted to omit (abstraction), and information that the writer
wanted to convey, but was unable to articulate (tacit knowledge). Hence, several distinct
phenomena are confused into one “indeterminacy”, and the latter is itself flattened into
incompleteness. In [21], Meyer lists ambiguity as one of the seven deficiencies require-
ments specification can suffer of. In his view, ambiguity together with inadequacies
with respect to the real needs, incompletenesses, and contradictions are errors that may
have disastrous effects on the subsequent development steps and on the quality of the
resulting software product.

Gause andWeinberg [28] correctly identified these variations, but still defined ambi-
guity as related to missing information and communication errors. As causes, they cite
the fact that humans make errors in observation and recall (absence), tend to leave out
evident information, and generalize incorrectly (wrong abstraction); communications
error that occur between writers and readers are ascribed to expression inadequacies in
the writing. The fact that ambiguity can be introduced by lexicon, syntax, semantics
(and that these different causes call for different remedies, given that they only consider
the case of unwanted ambiguity) is not explored in [28].

A similar position is taken in the later work of Schneider et al. [29], where ambiguity
is defined as

An important term, phrase, or sentence essential to an understanding of system behavior
has either been left undefined or defined in a way that can cause confusion and misun-
derstanding. Note, these are not merely language ambiguities such us uncertain pronoun
reference, but ambiguities about the actual system and its behavior.

so ambiguity is considered either as absence (examples at the lexical and syntactic levels
are provided) or as confusion. Unfortunately, the definition offered defines “ambiguity”
in terms of “misunderstandings” and of “ambiguities about the system”, which makes
it shallow and circular, preventing a more in-depth analysis. Once again, only absence
and vagueness are identified, and equated to ambiguity.

www.manaraa.com

Ambiguity in Requirements Engineering: Towards a Unifying Framework 207

In his 2002 paper [30], Kovitz sees ambiguity as a defect, and recommends to add
redundancy relating to the context (i.e., everything outside the description and its sub-
ject matter that relates to it in any way) in order to remove ambiguity. It is unclear if
his view is closer to consider ambiguity as absence, and thus adding relevant material
would help in that it provides more information, or if it is closer to what we have called
the pragmatic source of ambiguity, in which case the added material only serves to
introduce the reader to the same context. In any case, most probably the added material
is not really redundant nor irrelevant, since it serves a precise purpose.

A first step in separating the different levels of ambiguity (still seen as a defect tout
court) was taken in [7], where syntactic, structural (referring to documents’ structure),
semantic and pragmatic levels were identified. That stream of works then continued,
eventually producing tools to identify the presence of known forms of lexical and syn-
tactic ambiguity in NL requirements [31,32].

Bubka et al. [33] highlighted the exaggerated attention given to ambiguity (as a
defect), since ambiguous statements may be “comprehended in such a way that the
intended meaning is chosen” and, hence, “it would seem that under the appropriate cir-
cumstances, there is no ambiguity.”; in our framework the “appropriate circumstances”
would entail a form of pragmatic ambiguity resolution.

The most complete analysis of linguistic causes of ambiguity (in RE) is probably
the one in [8,9,17,34], which we have already discussed. The one that more closely
matches our own is that by Chantree et al. [24]: Their work, though, focuses mostly
on a technique to automatically identify problematic cases of coordination ambiguity
in requirements, while discounting the easy cases in which lexical statistics techniques
let them judge misinterpretation unlikely. However, their distinction between nocuous
and innocuous ambiguity is based only on whether misunderstandings are more or less
likely, in that different interpretations are preferred by different readers, and they do not
consider the intent of the writer. Similarly, their distinction between acknowledged and
unacknowledged ambiguity coincides with our recognized and unrecognized ambiguity,
but only on the reader’s side. They do not investigate the relationship between ambigu-
ity, abstraction, and absence, nor how ambiguity can be used purposefully for a variety
of reasons (including negotiation).

A thorough analysis of tools to identify and manage ambiguity is provided in [10];
they also report on experiments that indicate that reasonable performance can be
obtained in certain recognition tasks.

Other works focusing on the development of tools for ambiguity detection are those
of Gleich et al. [35] and Tjong and Berry [36]. Recent advances in natural language
processing technologies [37], and the rising awareness about requirements quality in
industry have led to the application of this previous research in extensive industrial case
studies [22,38]. Furthermore, different companies have developed commercial tools
to support automated ambiguity detection, as well as other defects or smells. Among
these companies, Qualicen GmbH8, developed Requirements Scout, a tool to ana-
lyze requirements specifications aiming to uncover requirements smells; QRA Corp9,
developed QVscribe, a tool for requirements analysis for quality and consistency;

8 https://www.qualicen.de/en/.
9 https://qracorp.com.

https://www.qualicen.de/en/
https://qracorp.com

www.manaraa.com

208 V. Gervasi et al.

OSSENO Software GmbH10, developed ReqSuite, a tool to support requirements writ-
ing and requirements analysis.

8 Conclusions

This paper presented a comprehensive exploration of the nature of the ambiguity phe-
nomena in requirements specifications. We have conducted a thorough examination of
the relationship between ambiguity and two other phenomena, that of abstraction and
absence of information. Furthermore, we have explored a subtle variation of ambiguity,
referred to as vagueness.

This in depth analysis of different forms of ambiguity has resulted in offering as
characterization of the different levels at which ambiguity can be manifested in require-
ments specification documents. This systematic exploration of the ambiguity phenom-
ena and its relationship to other relevant concepts has thus enabled us to offer a theoret-
ical framework to study different forms of ambiguity.

We thus argue that each instance of ambiguity cannot be merely considered as useful
or damaging, nocuous or innocuous, good or bad just by itself, but that these charac-
teristics can only be defined with reference to a particular set of stakeholders—and, in
particular, with reference to the original author of the requirement. We believe that our
exploration and classification of ambiguity presented in this paper has achieved signif-
icant steps towards an increased understanding of the important and crucial issues in
identifying and handling ambiguity is requirements specifications.

We assert that an improved understanding of the nature and effect of ambiguity can
help clear the way for a more positive view of ambiguity in requirements, and suggest
ways to improve the current state of practice. In particular, tools and techniques aimed at
identifying instances of ambiguity in requirements could incorporate the classification
presented in this paper, assisting their users focus on identifying and properly handling
the different types of ambiguity, particularly critical and risky cases.

Far from being just little more than the result of unapt use of the language, ambiguity
has proven in our research to be an excellent instrument to expose more subtle features,
which play an important role in requirements analysis [39]. Future work will focus on
better exploring and exploiting the beneficial relation between ambiguity and the elici-
tation of tacit knowledge [25]. Furthermore, we aim to study the relationships between
intentional ambiguity and markedness [40,41], a typical linguistic phenomenon that
received little attention so far in RE.

Acknowledgment. The authors would like to thank Stefania Gnesi for her pioneering work on
ambiguity in requirements documents, and for the many scientific collaborations with her, on
several subjects, that they have enormously enjoyed along the years. The first author wishes to
acknowledge the financial support of the Centre for Human-Centred Technology Design Research
at UTS which partially sponsored the present work. This work was partially supported by the
National Science Foundation under grant CCF-1718377.

10 https://www.osseno.com/en/.

https://www.osseno.com/en/

www.manaraa.com

Ambiguity in Requirements Engineering: Towards a Unifying Framework 209

References

1. Zowghi, D., Gervasi, V.: The 3Cs of requirements: consistency, completeness, and correct-
ness. In: Salinesi, C., Regnell, B., Pohl, K. (eds.) Proceedings of REFSQ 2002, Essener
Informatik Beitrage, pp. 155–164, September 2002

2. Zowghi, D., Gervasi, V.: On the interplay between consistency, completeness, and correct-
ness in requirements evolution. Inf. Softw. Technol. 46(11), 763–779 (2004)

3. Gervasi, V., Zowghi, D.: On the role of ambiguity in RE. In: Wieringa, R., Persson, A. (eds.)
REFSQ 2010. LNCS, vol. 6182, pp. 248–254. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14192-8 22

4. Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages. Technical
report PRG-6, Oxford Programming Research Group (1971)

5. ISO: Information Technology - Z Formal Specification Notation - Syntax, Type System and
Semantics. ISO (2002)

6. Scott, D.S.: Lambda calculus: some models, some philosophy. In: Barwise, J., Keisler, H.J.,
Kunen, K. (eds.) The Kleene Symposium, pp. 223–265. North-Holland Publishing Company,
Amsterdam (1980)

7. Fabbrini, F., Fusani, M., Gervasi, V., Gnesi, S., Ruggieri, S.: On linguistic quality of natural
language requirements. In: Dubois, E., Opdahl, A.L., Pohl, K. (eds.) Proceedings of REFSQ
1998, 57–62. Presses Universitaires de Namur, Pisa (1998)

8. Berry, D., Kamsties, E., Krieger, M.: From contract drafting to system specification: linguis-
tic sources of ambiguity (2003)

9. Berry, D., Bucchiarone, A., Gnesi, S., Lami, G., Trentanni, G.: A new quality model for
natural language requirements specifications. In: Proceedings of REFSQ 2006, Luxembourg
(2006)

10. Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Requirements for tools for ambiguity
identification and measurement in natural language requirements specifications. Requir. Eng.
13(3), 207–239 (2008)

11. Jackson, M.: Problem Frames. Addison Wesley, Harlow (2001)
12. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
13. Breitman, K.K., Sampaio do Prado Leite, J.C.: Lexicon based ontology construction. In:

Lucena, C., Garcia, A., Romanovsky, A., Castro, J., Alencar, P.S.C. (eds.) SELMAS 2003.
LNCS, vol. 2940, pp. 19–34. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24625-1 2

14. Plato: Cratylus. In: Cooper, J.M., Hutchinson, D.S. (eds.) Plato Complete Works. Hackett
Publishing (1997)

15. Carroll, L.: Through the Looking-Glass, and What Alice Found There. Macmillan, London
(1871). (pseudonym of C. L. Dodgson)

16. Rice, S.L.: Loglan 3: Understanding Loglan. Master’s thesis, University of Alaska at Fair-
banks, May 1994. (Reprinted in serialized form by the Loglan Institute, Inc. in La Logli
issues 1997/1, 1997/2 and 1997/3)

17. Berry, D.M., Kamsties, E.: Ambiguity in requirements specifications. In: do Prado Leite,
J.C.S., Doorn, J.H. (eds.) Perspectives on Software Requirements, vol. 753, pp. 7–44. The
Kluwer International Series in Engineering and Computer Science. Springer (2004)

18. Gervasi, V.: Environment Support for Requirements Writing and Analysis. Ph.D. thesis, Uni-
versity of Pisa, March 2000

19. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional Requirements in Software
Engineering. Kluwer Academic Publishers, Massachusetts (2000)

20. Peano, G.: Arithmetices principia, nova methodo exposita. Fratres Bocca, Turin (1889). (in
Latin)

https://doi.org/10.1007/978-3-642-14192-8_22
https://doi.org/10.1007/978-3-642-14192-8_22
https://doi.org/10.1007/978-3-540-24625-1_2
https://doi.org/10.1007/978-3-540-24625-1_2

www.manaraa.com

210 V. Gervasi et al.

21. Meyer, B.: On formalism in specifications. IEEE Softw. 2(1), 6–26 (1985)
22. Ferrari, A., et al.: Detecting requirements defects with NLP patterns: an industrial experience

in the railway domain. Empirical Softw. Eng. 23(6), 3684–3733 (2018)
23. Yang, H., Deroeck, A., Gervasi, V., Willis, A., Nuseibeh, B.: Extending nocuous ambiguity

analysis for anaphora in natural language requirements. In: Proceedings of the 18th IEEE
International Requirements Engineering Conference, Sydney (2010)

24. Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying nocuous ambiguities in
requirements specifications. In: Proceedings of 14th IEEE International Requirements Engi-
neering Conference (RE 2006), Minneapolis/St. Paul, Minnesota, September 2006

25. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity and tacit knowledge in requirements elicita-
tion interviews. Requirements Eng. 21(3), 333–355 (2016)

26. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity cues in requirements elicitation interviews.
In: IEEE 24th International Requirements Engineering Conference (RE), pp. 56–65. IEEE
(2016)

27. Boehm, B.: Some experiences with automated aids to the design of largescale reliable soft-
ware. IEEE Trans. Software Eng. 1(1), 125–133 (1975)

28. Gause, D.C., Weinberg, G.M.: Exploring Requirements: Quality Before Design. Dorset
House, New York (1989)

29. Schneider, G.M., Martin, J., Tsai, W.T.: An experimental study of fault detection in user
requirements documents. ACM Trans. Softw. Eng. Methodol. 1(2), 188–204 (1992)

30. Kovitz, B.: Ambiguity and what to do about it. In: Proceedings of the 10th International Con-
ference on Requirements Engineering. IEEE Computer Science Press, Los Alamitos (2002)

31. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: An automatic quality evaluation for natural
language requirements. In: Proceedings of REFSQ 2001, Interlaken (2001)

32. Gnesi, S., Lami, G., Trentanni, G., Fabbrini, F., Fusani, M., et al.: An automatic tool for
the analysis of natural language requirements. Int. J. Comput. Syst. Sci. Eng. 20(1), 53–62
(2005)

33. Bubka, A., Gorfein, D.S.: Resolving semantic ambiguity: an introduction. In: Gorfein, D.S.
(ed.) Resolving Semantic Ambiguity, pp. 3–12. Springer, New York (1989). https://doi.org/
10.1007/978-1-4612-3596-5 1

34. Kamsties, E., Berry, D., Paech, B.: Detecting ambiguities in requirements documents using
inspections. In: Workshop on Inspections in Software Engineering (WISE 2001), Paris, pp.
68–80 (2001)

35. Gleich, B., Creighton, O., Kof, L.: Ambiguity detection: towards a tool explaining ambiguity
sources. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 218–232.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14192-8 20

36. Tjong, S.F., Berry, D.M.: The design of SREE — a prototype potential ambiguity finder for
requirements specifications and lessons learned. In: Doerr, J., Opdahl, A.L. (eds.) REFSQ
2013. LNCS, vol. 7830, pp. 80–95. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-37422-7 6

37. Ferrari, A., Dell’Orletta, F., Esuli, A., Gervasi, V., Gnesi, S.: Natural language requirements
processing: a 4D vision. IEEE Softw. 34(6), 28–35 (2017)

38. Femmer, H., Fernández, D.M., Wagner, S., Eder, S.: Rapid quality assurance with require-
ments smells. J. Syst. Softw. 123, 190–213 (2017)

39. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity as a resource to disclose tacit knowledge. In:
Zowghi, D., Gervasi, V., Amyot, D. (eds.) 23rd IEEE International Requirements Engineer-
ing Conference, RE 2015, Ottawa, 24–28 August 2015, pp. 26–35. IEEE Computer Society
(2015)

40. Merlini Barbaresi, L.: Markedness in English Discourse: A semiotic approach. Edizioni Zara,
Parma (1988)

41. Chandler, D.: Semiotics: The Basics, 2nd edn. Routledge, London (2007)

https://doi.org/10.1007/978-1-4612-3596-5_1
https://doi.org/10.1007/978-1-4612-3596-5_1
https://doi.org/10.1007/978-3-642-14192-8_20
https://doi.org/10.1007/978-3-642-37422-7_6
https://doi.org/10.1007/978-3-642-37422-7_6

www.manaraa.com

QuARS: A Pioneer Tool for NL
Requirement Analysis

Giuseppe Lami(B), Mario Fusani, and Gianluca Trentanni

Consiglio Nazionale delle Ricerche,
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Pisa, Italy
{giuseppe.lami,mario.fusani,gianluca.trentanni}@isti.cnr.it

Abstract. This paper summarizes the achievements of Stefania Gnesi’s
research activity in the area of the natural language requirements analysis
and quality evaluation. The development of the QuARS tool has been the
pivotal step of this research stream led by Stefania Gnesi at ISTI–CNR.
A functional description of the QuARS tool is provided as well as a short
report of its evolutions over a decade. The wide use of QuARS in several
research and industrial contexts demonstrates the validity and the origi-
nality of Stefania’s contribution in such an area of software engineering.

Keywords: NLP (Natural Language Processing) ·
Software Engineering · Requirement Analysis

1 Introduction

The achievement of software requirement quality is the first step towards soft-
ware quality. The process leading to requirement quality starts with the analysis
of the requirements expressed in natural language (NL).

NL requirements are massively used in software industry, even when formal
or semi-formal methods are applied to requirement representation. Although NL
has the advantage of being universal and flexible, it is inherently ambiguous. The
Oxford English dictionary states that the 500 most used words in English have
on average 23 meanings. NL requirements are then inherently prone to errors
and this is mainly due to interpretation problems of NL itself. Addressing the
evaluation of NL requirements to address part of the interpretation problems due
to linguistic problems has been considered an interesting research issue since late
’90s by Stefania Gnesi and her research group at the CNR.

There are several techniques to reduce the ambiguity of NL requirements.
Some of them adopt a restrictive approach based on the definition of writing
rules that introduce limitations of freedom in writing requirements aimed at
avoiding defects, some adopt analytic approaches aimed at identify and remove
linguistic defects in requirements. The research referred in this paper follows the
analytic approach.

The research has been conducted on two interdependent tracks: (1) the def-
inition of an effective quality model for NL requirements in order to define and

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 211–219, 2019.
https://doi.org/10.1007/978-3-030-30985-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_13

www.manaraa.com

212 G. Lami et al.

classify linguistic defects in requirements; (2) the development of technical solu-
tions to perform the quality evaluation against the quality model in an auto-
matic way.

The aim of this paper is to retrospectively provide an overall description of
the main phases of such a research and to highlight the principal effects they
produced in the last two decades. To do this we first provide a synthetic descrip-
tion of the tool called QuaRS (Quality Analyzer for Requirements Specification)
and of its evolution, as well as the underlying quality model in Sect. 2. Then a
survey of the principal research results based on the use of QuARS is presented
in Sect. 3. Finally some conclusions are provided in Sect. 4.

2 QuARS: Genesis, Evolution and Functional
Characteristics

Evaluating something means first comparing some properties of an entity with a
reference model and then determining the extent of the distance between the
entity’s property and the model itself. The same for quality analysis of NL
requirements. In order to evaluate the quality of NL requirements, it is nec-
essary that a quality model exists.

The quality model defined by Stefania’s team was originally [1–4] composed
of 4 high level quality properties:

◦ Testability: the capability of each requirement to be assessed in a pass/fail
or quantitative manner.

◦ Completeness: the capability of the requirements to refer precisely identi-
fied entities.

◦ Understandability: both the capability of each requirement to be fully
understood when used for developing software and the capability of the
requirement specification document to be fully understood when read by
the user.

◦ Consistency: the capability of the requirements to avoid potential or actual
discrepancies.

For each quality property a set of quality indicators for NL requirements were
being defined as shown in the table in Fig. 1.

The quality model was successively refined [5] to avoid those ambiguities,
which were not already included in the initial quality model, described by Berry,
Kamsties, and Krieger [6].

The quality model was the basis for implementing a prototype tool called
QuARS with the purpose to provide an automatic linguistic analysis of NL
requirements based on the developed quality model [7].

QuARS allows the requirements engineers to perform an initial parsing of
the requirements for automatically detecting potential linguistic defects that
can determine interpretation problems at the subsequent development stages of
software development.

www.manaraa.com

QuARS: A Pioneer Tool for NL Requirement Analysis 213

Fig. 1. Quality indicators

The QuARS tool has been developed in an incremental way, starting from an
initial prototypal version. Then, more complete and reliable versions have been
released, and several specialized versions have been developed for specific uses.

In the following the evolution steps of the QuaRS are shortly presented as
well as their use in industrial and research environment.

www.manaraa.com

214 G. Lami et al.

The first complete version of QuARS [3] was structured as described in Fig. 2.

Fig. 2. The QuARS tool functional scheme.

The input was a plain text file containing NL requirements to analyze. The
phases of the SRS Quality Evaluation made by the QuARS tool are described
in the following.

◦ The files containing the SRS (Software Requirements Specification) document
are analyzed by the Lexical Analyzer in order to verify if a correct English
Dictionary has been used.

◦ The output of the Lexical Analyzer (i.e. the lexical category associated to
each word of the sentences) is the input of the Syntactical Analyzer that,
using a special purpose grammar, builds the derivation trees of each sentence.
During the analysis process, each syntactic node is associated with a feature
structure, which specifies morpho-syntactic data of the node and application-
specific data, such as errors with respect to our quality criteria.

◦ The set of derived trees is the input of the Quality Evaluator module of
the QuARS tool. The Quality Evaluator module receives also the Properties-
related Dictionaries as input. These Dictionaries contain the words and the
syntactical elements that allow the detection of inaccuracies in the require-
ments. Another Dictionary is used by the Quality Evaluator module: the
Domain Dictionary that will contain specific terms of the particular appli-
cation domain. The Domain Dictionary is used to avoid the detection as
defective of terms that belong to the Properties-Related Dictionaries and in
the same time they are typical of the application domain. The Quality Evalu-
ator module, according to the rules of the Quality Model and by reading the
dictionaries, performs the evaluation of the sentences.

www.manaraa.com

QuARS: A Pioneer Tool for NL Requirement Analysis 215

◦ QuARS provides the user with Warning Messages that are able to point out
those sentences of the SRS Document having potential defects. Furthermore,
some metrics (Readability Index, Comment Frequency and Directives Fre-
quency) are provided too.

The GUI of the first release of QuARS is shown in Fig. 3.

Fig. 3. First version of the QuARS GUI.

The functionalities and the GUI of QuARS were later improved in order to
enlarge the scope of the analysis and to make the tool more usable. QuARS ver.
4.1 was released with a brand new graphical user interface as shown in Fig. 4.

From a functional point of view the novelty of the ver. 4.1 was the capability
of provide a clustering of requirements according to specific domain dictionaries
or topics. Such a clustering function was aimed at supporting the consistency
and completeness analysis of [8].

www.manaraa.com

216 G. Lami et al.

Fig. 4. QuARS version 4.1.

The capability to handle collections of requirements in order to highlight
clusters of requirements holding specific properties can facilitate the work of the
requirements engineers in terms of Consistency analysis (conflicting, redundant
or contradictory requirements can be easier detected by focusing on a cluster
where all the requirements are dealing with the same topic), Traceability with
test cases, and Verification of the correct organization of the requirement doc-
ument [8]. These clusters are called Views. The derivation of a View from a
document relies on the availability of special sets of terms each of them contain-
ing the appropriate corpus that can be put in relation with a particular factor of
interest. These sets of terms are called V-dictionaries (or Domain Dictionaries),
Fig. 5.

The quite simple clustering approach of QuARS was later improved by the
application of a clustering algorithm to exploit lexical and syntactic relationships
occurring between natural language requirements for grouping together similar
requirements contained in a requirements document [9].

www.manaraa.com

QuARS: A Pioneer Tool for NL Requirement Analysis 217

Fig. 5. Clustering in QuARS v4.1.

3 QuARS: A Launch Pad for Requirements Engineering
Automation

The QuARS tool has been a trigger for many initiatives aimed at evaluating
and refining the effectiveness of the automatic evaluation of NL requirements.
QuARS has been also used in several research and industrial initiatives.

Empirical experiments to assess the impact in terms of effectiveness and effi-
cacy of the automation in the requirements review process of a software company
are need to evaluate to usability and applicability of NLP based tools for the
quality analysis of textual requirements [10]. Three different experiments may
be cited in this direction. One concerns the use of QuARS, in collaboration with
Siemens CNX R&D Labs, on telecommunication requirement documents [11]. In
[12] a customization of QuARS, QuARS Express was used to evaluate the qual-
ity of a large set of requirements developed in a EU project. In [13] we report
the experience done within a collaboration between a world-leading railway sig-
nalling company, the University of Florence, and ISTI-CNR to investigate the
feasibility of using NLP for defect identification in the requirements documents
of the company.

www.manaraa.com

218 G. Lami et al.

In [12] and [13] two different experiences in the application of NLP techniques
have been developed to automatically identify quality defects in natural language
requirements in the Railway Domain. The QuARS approach, oriented to require-
ments, was later extended to address defects in public administration documents,
leading to the development of online tool QuOD (Quality checker for Official Doc-
uments). Use cases are powerful tools to capture functional requirements for soft-
ware systems. They allow structuring requirements according to user goals, and
provide a means to specify the interaction between a certain software system and
its environment.

As part of the ITEA project CAFE [15], we initiated with Nokia a collab-
oration on the use of methods based on a linguistic approach with the aim to
collect metrics and perform a qualitative analysis on the natural-language-based
use case modelling technique used by the company to specify functional require-
ments for the mobile phone software user interface [15,16]. In [14], a Software
Process Simulation Method (P-SIM) has been applied in order to evaluate the
benefits (including financial benefits) of the use of QuARS using a large-scale
NASA projects that utilize a process similar to the IEEE 12207 systems develop-
ment life cycle. In addition to assessing the value of QuARS in general, simulation
has been used to determine the impact of adding QuARS at different phases in
the project. This analysis aimed at supporting project managers to identify the
optimum point in the process to apply QuARS to capture full potential benefits.
The findings, in general, show that applying QuARS resulted in better overall
project performance. However, the degree of the value added depends on the
insertion point and step order in which QuARS is applied.

4 Conclusions

This paper presents the research activity led by Stefania Gnesi in the last two
decades in the field of NL requirements evaluation. Such a research experience
is a demonstration that an idea arisen in a research environment, if properly
developed and led, can produce a really positive impact both in the research
community and in industrial contexts.

The contribution of Stefania’s team in automatic NL requirements evalua-
tion, represented by the QuARS tool and the other derivative tools, has been
outstanding and represents even today a milestone.

Acknowledgment. The research activity described in this paper has been conducted
with the active contribution of our friend and colleague Fabrizio Fabbrini departed
in 2017.

www.manaraa.com

QuARS: A Pioneer Tool for NL Requirement Analysis 219

References

1. Fabbrini, F., Fusani, M., Gervasi, V., Gnesi, S., Ruggieri, S.: On Linguistic quality
of natural language requirements. In: 4th REFSQ, Presses Universitaires de Namur,
pp. 57–62 (1998)

2. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: Software requirements verification
by natural language analysis: a CNR initiative for italian SME’s. ERCIM News
40, 52–53 (2000)

3. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: The linguistic approach to the natural
language requirements quality: benefit of the use of an automatic tool. In: 26th
Annual NASA Software Engineering Workshop, pp. 97–105, IEEE (2001)

4. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: An automatic quality evaluation for
natural language requirements. In: 7th REFSQ (2001)

5. Berry, D.M., Bucchiarone, A., Gnesi, S., Lami, G., Trentanni, G.: A new quality
model for natural language requirements specifications. In: 12th REFSQ (2006)

6. Berry, D.M., Kamsties, E., Krieger, M.M.: From Contract Drafting to Software
Specification: Linguistic Sources of Ambiguity. University of Waterloo, Waterloo
(2017)

7. Gnesi, S., Lami, G., Trentanni, G.: An automatic tool for the analysis of natural
language requirements. Computer Systems: Science & Engineering, vol. 20, no. 1.
CRL Publishing (2005)

8. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: Automatic clustering of non-
functional requirements. In: IASTED Conference on Software Engineering and
Applications 2004, IASTED/ACTA Press, pp. 672–677 (2004). http://fmt.isti.cnr.
it/nlreqdataset/

9. Ferrari, A., Gnesi, S.: Using collective intelligence to detect pragmatic ambiguities.
In: 20th RE, pp. 191–200. IEEE (2012)

10. Lami, G., Ferguson, R.W.: An empirical study on the impact of automation on the
requirements analysis process. J. Comput. Sci. Technol. 22(3), 338–347 (2007)

11. Bucchiarone, A., Gnesi, S., Pierini, P.: Quality analysis of NL requirements: an
industrial case study. In: 13th RE, pp. 390–394. IEEE (2005)

12. Bucchiarone, A., Gnesi, S., Trentanni, G., Fantechi, A.: Evaluation of natural
language requirements in the MODCONTROL project. ERCIM News 75, 52–53
(2008)

13. Rosadini, B., et al.: Using NLP to detect requirements defects: an industrial expe-
rience in the railway domain. In: Grünbacher, P., Perini, A. (eds.) REFSQ 2017.
LNCS, vol. 10153, pp. 344–360. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-54045-0 24

14. Raffo, D.M., Ferguson, R., Setamanit, S., Sethanandha, B.D.: Evaluating the
impact of the QuARS requirements analysis tool using simulation. In: Wang, Q.,
Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 307–319. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72426-1 26

15. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Application of linguistic techniques
for use case analysis. In: 10th RE, pp. 157–164. IEEE (2002)

16. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Applications of linguistic techniques
for use case analysis. Requir. Eng. 8(3), 161–170 (2003)

http://fmt.isti.cnr.it/nlreqdataset/
http://fmt.isti.cnr.it/nlreqdataset/
https://doi.org/10.1007/978-3-319-54045-0_24
https://doi.org/10.1007/978-3-319-54045-0_24
https://doi.org/10.1007/978-3-540-72426-1_26

www.manaraa.com

Detecting Feature Interactions
in FORML Models

Sandy Beidu(B) and Joanne M. Atlee

University of Waterloo, Waterloo, ON N2L 3G1, Canada
{sbeidu,jmatlee}@uwaterloo.ca

Abstract. Requirement engineers must know how features (units of
functionality) interact, in order to resolve undesired interactions. Model
checking has been proposed as an effective method for detecting feature
interactions. We propose a method for (1) modelling features as dis-
tinct modules (explicating intended interactions with other features), (2)
composing feature modules into a system model that preserves intended
interactions, (3) translating this rich model into the input language of a
model checker, and (4) automatically generating correctness properties
whose violations reveal unintended feature interactions.

Keywords: Feature modelling · Feature interactions · Model checking

1 Introduction

A software system is often thought of in terms of its constituent features, where
each feature is “an optional or incremental unit of functionality” [24]. Users view
features as capabilities (e.g., cut, copy, and paste; Caller ID; Cruise Control).
Software developers use features as a criterion for incremental development, to
ease system development and evolution, because features can be developed in
isolation, in parallel, or by third-party vendors. Feature orientation is particu-
larly relevant in software product lines, in which a family of software products
shares a common set of mandatory features and products are differentiated by
their variable (optional or alternative) features [23].

The downside of feature orientation is that engineers must consider how fea-
tures interact when deriving a product from a selection of features. A feature
interaction occurs when “one feature affects the operation of [the other] fea-
ture” [10]. Some features interact by design: for example, Advanced Cruise Con-
trol features are designed to extend and override basic Cruise Control. Other
features interact by accident as a consequence of operating in a shared con-
text [16,19]. To be safe, the engineer needs to be able to specify, understand,
control, and reason about the behaviours of features in combination.

Stefania Gnesi is one of the earliest researchers to employ and extend Modal
Transition Systems (MTSs) to model and reason about variability in software
behaviour. Her group’s contributions have included new variants of MTSs that
express different types of variability in behavioural models [14,15]; logics such
as MHML for expressing variability constraints and behaviour properties over
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 220–235, 2019.
https://doi.org/10.1007/978-3-030-30985-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_14

www.manaraa.com

Detecting Feature Interactions in FORML Models 221

Fig. 1. FORML analysis process

MTSs [3,4]; and reasoners [5,8] for deriving valid products from product-line
models and for analyzing properties of products and product families.

We aim to emulate Stefania’s work in modelling and analyzing behaviour
models of feature-rich software, but we start from the premise of wanting to
model features modularly. The Feature-Oriented Requirements Modelling Lan-
guage (FORML) [21,22] enables modular specifications of features. Models of
features are composed into models of products or a family of products, which
can subsequently be model checked. Our work is most similar to work by Stefania
and colleagues on detecting conflicts among policies [7]. In their approach, poli-
cies and policy actions are expressed as simple UML State Machines, operations
on policy rules specify how to compose policy actions (and state machines), and
the resulting composite machines can be model checked using the UMC model
checker [6].

In this paper, we describe our process of using model checking to detect
interactions in FORML models. Figure 1 shows our process: FORML models of
distinct features are composed together and translated into the input language
of the NuSMV model checker [11]. Importantly, as part of the translation phase,
CTL properties [1] for detecting conflicts among features’ actions are also gen-
erated, automatically. Generating CTL properties to detect feature interactions
is possible because the individual features serve as specifications of how the
features ought to behave. That is, CTL properties derived from feature spec-
ifications relate to how a feature behaves in isolation; and the violation of a
generated property indicates that some behaviour of the feature no longer holds
when the feature is composed with other features.

www.manaraa.com

222 S. Beidu and J. M. Atlee

B

excludesB C

C
«inputs»
e3

A
«inputs»
e1
e2

CBA

MySPL

E
v : int

Fig. 2. World model of MySPL

Feat CFeat B

Feat A

C{s1}

C{t1}:e3 / v:= 2B{t1}:[v == 1] / v:= 0

B{s1}

A{s2}A{s1}
A{t2}: e2

A{t1}: e1 / v:=1

Fig. 3. Behaviour model of MySPL

2 Overview of FORML

This section provides a brief overview of FORML. Details can be found in [21].
A FORML model is decomposed into a static model (world model) and a

dynamic model (behaviour model). A FORML world model is an ontology of
a software product’s environment, expressed as a UML-based concept model.
Each concept represents a type of environmental variable. A concept instance
is an object that is characterized by attributes, inputs and outputs, and
relationships with other objects (e.g., a car has a speed and direction, a road
has lanes, and a car travels on a road). The values of world objects comprise
the world state. Actions in the behaviour model change the values of world
objects. A feature concept is a FORML-specific concept, distinguished by a
dashed border, that specifies feature-specific data (attributes, inputs, outputs)
that are visible to the environment (e.g., cruisingSpeed is introduced by the
Cruise Control feature). A FORML world model includes a feature model [18]
that constrains the valid feature configurations of an SPL. Figure 2 shows the
world model of a toy SPL called MySPL, consisting of a concept E, having an
attribute v of type integer, and three feature concepts, with input events that
the features receive from the environment; and a feature model.

A FORML behaviour model comprises a set of feature modules, one for
each feature object. Figure 3 shows the feature modules of MySPL’s three fea-
tures. Each feature module is a set of feature machines and feature-machine

www.manaraa.com

Detecting Feature Interactions in FORML Models 223

fragments. A feature machine is an extended state-machine model, based on
the UML state-machine notation [20]. A state may be a basic state or a super-
state containing one or more orthogonal regions; each region models a sub state-
machine that executes concurrently with the sub machines in sibling regions. A
transition between states has a label of the form:

id : te [gc] / id1 : [c1]a1, . . . , idn : [cn]an

where id is the name of the transition; te is an optional triggering event; gc is a
boolean guard condition; and a1...an are concurrent actions, each with its own
name idi and guard condition ci.

A feature fragment extends a specified feature machine with new or mod-
ified behaviours. Specifically, a fragment can add new behaviours at specific
points in an existing feature machine:

– A new region added to an existing state
– A new transition (and possibly new states) added to an existing machine.
– A new action added to an existing transition
– A weakening clause that extends the guard condition of an existing transition

or action with a disjunct, thereby weakening the guard condition.

A fragment can restrict the behaviour of a feature machine by adding a conjunct,
called a strengthening clause, to the guard condition of a transition or action.
Strengthening a guard condition results in the condition being satisfied less often,
and therefore leads to “removed” behaviours. Lastly, a new feature machine or
fragment can replace existing behaviour by specifying a new transition that is
enabled under similar conditions as an existing transition, but has higher priority.
There is distinct syntax to specify that a new transition has priority over an
existing transition; or overrides an existing transition1. Fragments, transition
priorities, and overrides all specify intended feature interactions, in that
they express explicit changes to the behaviour of existing features.

3 Composing Behaviour Models

Feature composition in FORML composes feature machines in parallel, and
applies fragments (new regions, new transitions, new actions; new clauses in
guard conditions; prioritized and overriding transitions) to the feature machines
that they extend. The behaviour of a composed model is the concurrent exe-
cution of the extended feature machines; each execution step comprises the
simultaneous execution of all enabled transitions and their actions [21]. The
composition preserves intended interactions specified as weakening/strengthen-
ing clauses, and prioritized and overriding transitions. Our analysis does not
report intended feature interactions.

Feature composition is commutative and associative [21], which has consider-
able advantages. For one, engineers do not need to identify an order of composi-
tion in order to derive a product from a collection of features. More importantly,
1 An overriding transition implicitly has the same enabling conditions as the transition

it override, whereas a prioritized transition has unique enabling conditions.

www.manaraa.com

224 S. Beidu and J. M. Atlee

it means that the order of composition does not affect analysis results. A third
advantage is that new features can be composed with an existing composed
model, thereby enabling incremental composition and analysis.

We implemented FORML feature composition [9] using the FeatureHouse
framework [2]. FeatureHouse provides a generic framework for the structural
composition of feature modules using superimposition. The input to the com-
poser are the feature modules of the selected features; the output is a FORML
model representing the composed behaviour model of the software product. The
result of composing MySPL’s three features from Fig. 3 is a single state machine
(not shown) with three concurrent regions, one for each feature.

4 Translation of FORML to SMV

We analyze FORML models using the NuSMV model checker [11]. NuSMV is
a symbolic model checker, which is the best choice when analyzing concurrent
models with non-interleaving semantics. Symbolic model verifier (SMV) is the
input language to NuSMV.

An SMV model consists of a set of variable declarations (VAR) and a set of
variable assignments (ASSIGN). Variables can be of type Boolean, integer sub-
ranges (e.g., 0..10), enumerated types (e.g. {on, off}) or an array of any of these
types. SMV expression operators include ! (not), | (or), & (and), → (implies)
and ↔ (iff). Assignment expressions specify variables’ initial values (INIT) at
the start of a model’s execution, and their next values (NEXT) in every SMV
execution step. A variable can be assigned a specific value or expression over cur-
rent variable values; a set of values {val1, ..., valn}, meaning that the next value
is non-deterministically selected from this set; or there can be no assignment,
meaning that the next value is non-deterministically selected from the range of
values in the variable’s defined type. In this manner, the variable declarations
define the model’s state space and the assignments define the model’s transition
relation. Macros can be defined (DEFINE) to represent any valid expression. In
our translation from FORML to SMV, we use macro definitions instead of vari-
able declarations wherever possible (because macros are not typed and do not
contribute to the model’s state space).

SMV modules (MODULE) are used to encapsulate sub-models of variables
and assignments. An SMV model can contain several modules, but must have
one high-level module called main. An SMV module can be instantiated as
a variable in other modules. Given a module instance a, the expression a.x
identifies a variable or macro named x inside the instance a. SMV invariants
(INVAR) are constraints on SMV variable values. We use invariants to constrain
when a transition can execute. SMV comments are preceded by the symbol −−.

We implemented a translator from FORML to SMV using BSML2SMV [13],
which is useful for translating big-step modelling languages (BMSL) [12] into
SMV. BSMLs are a family of behaviour modelling languages that have multi-step
execution semantics; the family of BSMLs includes UML State-Machines, various
statechart variants, and process algebras. We extended BSML2SMV to the

www.manaraa.com

Detecting Feature Interactions in FORML Models 225

Fig. 4. SMV module for WS Fig. 5. SMV model of an execution state

execution semantics of concurrently executing transitions that have conflicting
actions, and to translate the rich world model of a FORML model.

4.1 World State (WS) Module

The FORML-to-SMV translator generates an SMV module called WS, which
specifies valid world states of a FORML world model. The WS module models the
world concepts, their attributes, and associations between these concepts. This
module also contains a boolean state variable for each basic state in the FORML
composed behaviour model. A state variable has value true whenever it is one
of the current execution states of the model. Two instances ws_pre and ws of
this module are declared in the snapshot module to represent the current and
previous world states. (The previous world state is needed to specify properties
for detecting feature interactions.) Fig. 4 shows the WS module for MySPL. WS
variables are assigned next values in the snapshot module, described below.

Specifying Bounds for Analysis: Many model checkers, including SMV, ver-
ify only finite-state systems. Thus, the engineer must specify bounds on the
number of objects of each type in the world model and on the value ranges of
variables2. For example, the SMV model in Fig. 4 binds the value of attribute
E_v to the range 0..2. Specifying a small bound is often sufficient, based on the

2 Although bounds may need to be specified, this is for the purpose of analysis alone;
the bounds do not reflect the specified size of the model.

www.manaraa.com

226 S. Beidu and J. M. Atlee

small-scope hypothesis [17], which claims that a high percentage of bugs can be
found by checking a model on all possible inputs within some small bound. One
verification strategy is to analyze a model with respect to increasingly larger
bounds, until the engineer is satisfied that no bugs are likely to be found deep
in the model.

4.2 Snapshot Module

The snapshot module specifies the current execution state of a FORML model.
It includes two instances of the WS module: (1) ws, which represents the current
world state, and (2) ws_pre, which represents the previous world state. The
snapshot module also declares for each transition in the composed FORML
model a boolean execution variable, which indicates whether the transition will
execute in the next execution step. The values of the execution variables are
defined in the state modules, described in the next subsection.

The snapshot module updates all of the WS variables. Consider the snapshot
module for our MySPL model, shown in Fig. 5, which includes four types of
assignments: (1) The next values of ws_pre variables are always the current
values of ws variables. (2) The next value of each state variable is false if it
is the source state of an executing transition; true if it is the destination state
of an executing transition; and otherwise does not change. (3) The next value
of a WS variable reflects the assignments made by the executing transitions. If
more than one transition assigns values to the same variable, these actions are
merged into the same SMV assignment expression. For example, in MySPL
(Fig. 3), there are three transitions A{t1}, B{t1}, C{t1} that assign E.v to the
values 1, 0, and 2, respectively. In the corresponding SMV model (Fig. 5), the
next value of E_v depends on the combination of transitions that executes; if
more than one transition executes, the value is non-deterministically one of the
executing transitions’ assignments3. (4) There are no assignments to the input
events A_e1, A_e2 and C_e3 because these are environmental inputs whose
values are not controlled by the model; their values are non-deterministically set
in each execution step.

4.3 State Module

An SMV module is generated for each non-basic state and region of the composed
behaviour model - including the model’s root state. Each of these modules is
passed as a parameter the snapshot instance, ss, declared in the main SMV
module. The snapshot parameter gives the state module access to all information
defined in the snapshot module. Each state module declares a flag for each

3 The order of the branch conditions in an SMV case statement matters. The branch
conditions are considered in sequential order. Thus, branches should be ordered
such than no branch condition is a subcase of a subsequent branch condition. In the
next(ws.E_v) assignment in Fig. 5, where the branch conditions are the possible
subsets of executing transitions, the branches are listed in decreasing size of the set
of executing transitions.

www.manaraa.com

Detecting Feature Interactions in FORML Models 227

Fig. 6. SMV model of the root state Fig. 7. SMV model of a non-basic state

Fig. 8. Modified feature C, whose transition has priority over t1 in feature A

transition within its scope (i.e., the state is the lowest-common parent of the
transition’s source and destination states); the flag is a boolean macro that
indicates whether the transition is enabled with respect to its source state and
enabling conditions (events and variables). Each state module also declares two
flags (macros) that indicate its own enabledness and execution: the enabled flag
indicates whether there is any enabled transition within the scope of that state or
any of its descendants, and the exec flag indicates whether any of these enabled
transitions will execute in the next execution step.

Figure 6 shows the root state module for MySPL. It declares variables for
three regions, one for each of the feature machines in the composed behaviour
model. Figure 7 shows the SMV module generated for feature A’s region.

Intended Interaction (Priority): Intended interactions, such as prioritized
transitions or overrides, are encoded as invariants expressed over the transitions’
enabled and exec flags. Specifically, if one transition has priority over another, the
translator adds an invariant that states that when the higher-priority transition
is enabled the lower transition cannot be executed even if the lower-priority
transition is enabled.

For example, Fig. 8 presents a modified feature C whose transition C ′{t1}
has priority over A{t1}. This is an intended interaction, and is translated to the
following SMV invariant:

INVAR (C’_t1_enabled -> !ss.A_t1_exec)

www.manaraa.com

228 S. Beidu and J. M. Atlee

4.4 Main Module

The SMV main module pulls all of the pieces together. The SMV main module
of our running example (in Fig. 9) contains (1) an instance of the snapshot mod-
ule, (2) an instance of the root-state module, with a snapshot parameter, and
(3) the temporal logic properties to be checked. Our translation process auto-
matically generates the properties: one for each transition action. We describe
our process for generating interaction-detection properties in the next section.

Fig. 9. SMV main module

5 Detecting Feature Interactions in FORML

In this paper, we focus on feature interactions that are caused by conflicting
actions on shared variables. Note that detecting conflicting assignments is not
simply a matter of detecting transitions whose actions effect the same variables
– because those transitions might not be reachable, or might never be simul-
taneously enabled. We need a dynamic analysis, like model checking, to detect
realizable conflicts among features’ actions.

A barrier to effective model checking is the need to identify correctness prop-
erties to be checked of the model, and to express those properties in tempo-
ral logic. In our work, we are able to generate properties for detecting feature
interactions automatically from the feature modules. We can do this precisely
because of the nature of feature interactions: feature interactions are effectively
deviations from how features would behave in isolation. Thus we use features’
FORML behavioural models as specifications of expected behaviours of individ-
ual features; and check whether the features’ specified behaviours vary when the
features are composed into a product.

5.1 Running Example

This section employs a running example to demonstrate how correctness prop-
erties are generated and used to detect interactions. For pedagogical reasons, we
consider an SPL called AutoSoft, which has four features that correspond to
various basic functions of a car. These features are:

– Ignition Control (IC), responds to commands to turn the vehicle’s
ignition on and off (shown in Fig. 11).

www.manaraa.com

Detecting Feature Interactions in FORML Models 229

– Acceleration control (AC), responds to commands to increase the
vehicle’s acceleration (shown in Fig. 12).

– Braking control (BC), responds to commands to decrease the vehicle’s
acceleration (shown in Fig. 13).

– Steering control (SC), responds to commands to change the vehicles’s
direction (shown in Fig. 14).

Fig. 10. The AutoSoft World Model

Fig. 11. The IC feature module

Fig. 12. The AC feature module.

www.manaraa.com

230 S. Beidu and J. M. Atlee

waitDecelerate

t1: Decelerate+(o) /
a1: AutoSoftCar.acceleration := deceleration()

IC{main}.IC{on}

deceleration

Fig. 13. The BC feature module.

waitSteer

t1: Steer+(o) /
a1: AutoSoftCar.steerDirection := steerDirection()

IC{main}.IC{on}

steering

Fig. 14. The SC feature module.

Figure 10 shows the world model for AutoSoft. Figure 15 shows the com-
posed behaviour model that is generated from composing the four features of
AutoSoft.

5.2 CTL Property Language

The feature-interaction detection properties to be model checked are expressed
as formulae in the Computational Tree Logic (CTL) branching-time tem-
poral logic [1]. Branching-time temporal formulae are evaluated with respect
to a particular execution state, based on the set of possible execution paths
emanating from the state. Because the future path of the system’s execution is
unknown, temporal operators are quantified over the set of possible futures (e.g.,
a property p is true in some next state or in all next states).

The syntax and semantics for CTL formulas are defined in [1] and are simply
summarized below:

1. Every propositional variable is a CTL formula.
2. If f and g are CTL formulas, then so are: !f , f&g, f |g, AXf , EXf , A[fUg],

E[fUg], AFf , EFf , AGf , EGf .

The symbols ! (not), & (and), and | (or) are logical connectives and have their
usual meanings. X is the nextstate operator, and formula EXφ (AXφ) is true
in state si iff formula φ is true in some (in every) successor state of si. U is the

www.manaraa.com

Detecting Feature Interactions in FORML Models 231

IC{on}

AC{waitAccelerate}

AC{t1}: Accelerate+(o) /
AC{a1}: AutoSoftCar.acceleration := acceleration()

IC{off}

SC{waitSteer}

SC{t1}: Steer+(o) /
SC{a1}: AutoSoftCar.steerDirection := steerDirection()

AC{acceleration}

SC{steering}

IC{t1}: IgniteOn+(o) /
IC{a1}: AutoSoftCar.ignition := on

BC{waitDecelerate}

BC{t1}: Decelerate+(o) /
BC{a1}: AutoSoftCar.acceleration := deceleration()

BC{deceleration}

IC{t2}: IgniteOff+(o) /
IC{a1}: AutoSoftCar.ignition := off

Fig. 15. Composed behaviour model of AutoSoft

until operator, and formula E[φ U ψ] (A[φ U ψ]) is true in state si iff along some
(every) path emanating from si there exists a future state sj at which ψ holds
and φ is continuously true until state sj is reached. F is the future operator, and
EFφ (AFφ) is true in state si iff along some (every) path from si there exists a
future state in which φ holds. Finally, G is the global operator, and EGφ (AGφ)
is true in state si if φ holds in every state along some (every) path emanating
from si.

5.3 Generating Feature-Interaction Detection Properties

According to the execution semantics of FORML, if a transition t executes in a
given world state, the effects of its actions should be realized in the next world
state. If the effects are not realized, it means that some action(s) from other
transition(s) have assigned value(s) to some of the same world-model variables,
thereby interfering with t’s actions. Such interference can occur among actions
performed by a single feature or actions performed by multiple features.

Recall from Sect. 4.2 that, when translating FORML transition actions into
SMV assignments, if two or more transitions write to the same world-state vari-
able, the actions need to be merged into the same SMV assignment expression.
The outcome is a single (case-based) assignment expression that reflects exactly
one transition’s actions if only one transition executes; and that reflects a race
condition among actions if several of the transitions execute simultaneously.
If these transitions can ever execute together, then a race condition is possi-
ble – revealing a feature interaction: an executing transition that loses a race

www.manaraa.com

232 S. Beidu and J. M. Atlee

condition has a post-condition that is unsatisfied. Our goal is to specify proper-
ties that can detect unsatisfied post-conditions.

We do this by generating automatically a CTL property for each transition
action. Each property states that if a transition executes in the current world
state, then in the next world state the expected effect of the transition’s actions
should be realized. Such properties can be generated solely based on the state-
machine model and do not require any user input. We define below the general
template for these interaction-detection properties.

Rule 1. For each action of a transition t that assigns a value x to an attribute
C_a in the world model, add the following CTL specification to the main
module:

SPEC AG (t_exec -> AX (ws.C_a = ws_pre.x))

This CTL formula states that in All execution paths, it is always (or
Globally) true that if the value of t_exec is true, then (in All neXt states)
the next value of C_a is equal to the value of x as evaluated in the current
world state; if x is an expression, then the next value of C_a is the value of the
expression as applied over the current world-state variable values4.

Listing 1.1 shows the three example CTL properties that are generated for
the three actions: a1 from transition AC_t1, a1 from BC_t1, and a1 from
SC_t1. The expressions acceleration_fn and deceleration_fn corre-
spond to the unspecified functions acceleration() and deceleration(), respec-
tively, in Fig. 15. If any of the correctness properties fails, it indicates an inter-
action among feature actions.

AG(AC_t1_execute->AX(ws.AutoSoftCar_acceleration = (P1)
ws_pre.acceleration_fn))

AG(BC_t1_execute->AX(ws.AutoSoftCar_acceleration = (P2)
ws_pre.deceleration_fn))

AG(SC_t1_execute->AX(ws.AutoSoftCar_steerDirection = (P3)
ws_pre.steerDirection_fn))

Listing 1.1. CTL properties of AutoSoft2 to detect action conflicts

We now show how our approach detects interactions in our AutoSoft exam-
ple. In Fig. 15, the transitions AC{t1} and BC{t1} both have actions that assign
values to the same variable AutoSoftCar.acceleration. Our translator com-
bines these actions into a single conditional assignment expression that makes a

4 Note that current and next values in the current world state are previous and current
values in the next world state AX().

www.manaraa.com

Detecting Feature Interactions in FORML Models 233

IC{on}

AC{waitAccelerate}

AC{t1}: Accelerate+(o) /
AC{a1}: AutoSoftCar.acceleration := acceleration()

AC{acceleration}

SC{steering}

BC{waitDecelerate}

BC{t1} > AC{t1}: Decelerate+(o) /
BC{a1}: AutoSoftCar.acceleration := deceleration()

BC{deceleration}

...

Fig. 16. Composed behaviour model of AutoSoft, modified to include an intended
interaction.

non-deterministic choice if both transitions execute; assigns a unique value if
exactly one transition executes; and makes no assignment if neither transition
executes:

next(ws.AutoSoftCar_acceleration) := case

AC_t1_exec & BC_t1_exec : {ws.acceleration_fn,

ws.deceleration_fn};

AC_t1_exec : ws.acceleration_fn;

BC_t1_exec : ws.deceleration_fn;

1 : ws.AutoSoftCar_acceleration;

esac;

If both transitions execute simultaneously (which is possible because they reside
in concurrent regions and do not have conflicting enabling conditions), then
AutoSoftCar_acceleration will nondeterministically be assigned to either
acceleration_fn or deceleration_fn. In this scenario, only one of the
properties P1 or P2 of Listing 1.1 is satisfied. If AutoSoftCar_acceleration
is assigned the value of acceleration_fn, property P1 will hold but not P2,
and vice versa.

In the real world, this feature interaction represents the case where a driver
requests to accelerate and decelerate a vehicle simultaneously, for example by
pressing both the gas and brake pedals at the same time. We can resolve this
interaction by modifying the model to give one transition priority over the other
(in this case, it makes sense to prioritize the transition that decelerates the
vehicle) The result is an intended interaction, in which transition BC_t1 can
supersede transition AC_t1.

www.manaraa.com

234 S. Beidu and J. M. Atlee

Figure 16 shows a modified version of Feature BC in which transition BC_t1
is explicitly specified to have priority over transition AC_t1. If both transitions
are enabled, only BC_t1 can execute. This transition priority is represented in
the SMV model as an invariant:

INVAR (BC_t1_enabled -> !AC_t2_exec)

When this invariant is part of the SMV model, it is impossible for
AC_t1_exec and BC_t1_exec to both be true at the same time. Therefore,
the first case branch in the next(AutoSoftCar_acceleration) assignment
never executes; and there is no longer any reported violation of properties P1
and P2.

6 Conclusion

In this paper, we present an approach and tools for detecting feature interactions
due to conflicting actions in FORML models. The approach consists of first com-
posing FORML models of features into a composed FORML behaviour model,
and then translating the composed model and the FORML world model into the
SMV language. As part of the translation process, CTL properties for detect-
ing feature interactions are automatically generated from the translated model.
Each CTL property states for some transition action that the post-condition
of that action should hold if the transition executes. Lastly, the CTL properties
are model checked; any violation of a property indicates a conflict among feature
actions. We are currently evaluating the effectiveness of our approach on a case
study of 11 automotive drive-assist features from an industrial partner.

Acknowledgement. We are grateful to Stefania Gnesi in whose honour this
Festschrift is held, not only for her pioneering work on modelling and analysis of
behaviour models of software product lines (which inspired our work in this area),
but also for her service and leadership in the formal methods and SPL communities,
for many thought-provoking technical discussions, and for her friendship.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model checking for real-time systems. In:
Proceedings of the 5th Annual Symposium on Logic in Computer Science, pp.
414–425 (1990)

2. Apel, S., Kästner, C., Lengauer, C.: FeatureHouse: language-independent, auto-
mated software composition. In: International Conference on Software Engineering,
pp. 221–231 (2009)

3. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: Formal description of variability
in product families. In: International Software Product Line Conference, pp. 130–
139 (2011)

4. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A logical framework to deal
with variability. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp.
43–58. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16265-7_5

https://doi.org/10.1007/978-3-642-16265-7_5

www.manaraa.com

Detecting Feature Interactions in FORML Models 235

5. Basile, D., Di Giandomenico, F., Gnesi, S.: FMCAT: supporting dynamic service-
based product lines. In: International Systems and Software Product Line Confer-
ence, SPLC 2017, vol. B, pp. 3–8 (2017)

6. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011)

7. ter Beek, M.H., Gnesi, S., Montangero, C., Semini, L.: Detecting policy conflicts
by model checking UML state machines. In: International Conference on Feature
Interactions (2009)

8. ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: a tool for product variability
analysis. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
450–454. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-
9_36

9. Beidu, S., Atlee, J.M., Shaker, P.: Incremental and commutative composition of
state-machine models of features. In: International Workshop on Modeling in Soft-
ware Engineering (MiSE 2015), (ICSE Workshop), pp. 13–18, May 2015

10. Bowen, T.F., Dworack, F.S., Chow, C.H., Griffeth, N., Herman, G.E., Lin, Y.-J.:
The feature interaction problem in telecommunication systems. In: International
Conference on Software Engineering for Telecommunication Switching Systems,
pp. 59–62 (1989)

11. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: a new symbolic
model checker. Int. J. Softw. Tools Technol. Transf. 2(4), 410–425 (2000)

12. Esmaeilsabzali, S., Day, N.A., Atlee, J.M., Niu, J.: Deconstructing the semantics
of big-step modelling languages. Requirements Eng. J. 15(2), 235–265 (2010)

13. Faghih, F.: Model translations among big-step modeling languages. In: Interna-
tional Conference on Software Engineering, Doc. Sym., pp. 1555–1558 (2012)

14. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In: Inter-
national Software Product Line Conference, pp. 193–202 (2008)

15. Fantechi, A., Gnesi, S.: A behavioural model for product families. In: European
Software Engineering Conference/Foundations of Software Engineering: Compan-
ion Papers, pp. 521–524 (2007)

16. Hay, J.D., Atlee, J.M.: Composing features and resolving interactions. In: Founda-
tions of Software Engineering, pp. 110–119 (2000)

17. Jackson, D., Damon, C.A.: Elements of style: analyzing a software design feature
with a counterexample detector. IEEE Trans. Softw. Eng. 22(7), 484–495 (1996)

18. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical report CMU/SEI-
90-TR-21, Carnegie-Mellon University Software Engineering Institute (1990)

19. Nhlabatsi, A., Laney, R., Nuseibeh, B.: Feature interaction as a context sharing
problem. In: International Conference on Feature Interaction, pp. 133–148 (2009)

20. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual, The, 2nd edn. Pearson Higher Education, Boston (2004)

21. Shaker, P.: A feature-oriented modelling language and a feature-interaction taxon-
omy for product-line requirements. Ph.D. thesis, University of Waterloo (2013)

22. Shaker, P., Atlee, J.M., Wang, S.: A feature-oriented requirements modelling lan-
guage. In: International Requirements Engineering Conference, pp. 151–160 (2012)

23. Weiss, D., Lai, R.: Software Product Line Engineering: A Family Based Develop-
ment Process. Addison Wesley, Boston (1999)

24. Zave, P.: Requirements for evolving systems: a telecommunications perspective. In:
International Symposium on Requirements Engineering, pp. 2–9 (2001)

https://doi.org/10.1007/978-3-642-32759-9_36
https://doi.org/10.1007/978-3-642-32759-9_36

www.manaraa.com

Natural Language Processing

www.manaraa.com

Comparing Results of Natural Language
Disambiguation Tools with Reports
of Manual Reviews of Safety-Related

Standards

Isabella Biscoglio1, Attilio Ciancabilla2, Mario Fusani1, Giuseppe Lami1,
and Gianluca Trentanni1(B)

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” (ISTI–CNR),
Pisa, Italy

{isabella.biscoglio,mario.fusani,giuseppe.lami,
gianluca.trentanni}@isti.cnr.it

2 Rete Ferroviaria Italiana (RFI, Infrastructure Manager for the Italian State
Railways), Rome, Italy
a.ciancabilla@rfi.it

Abstract. Methods and tools for detecting and measuring ambiguity
in texts have been proposed for years, yet their efficacy is still under
study for improvement, encouraged by results in various application
fields (requirements, legal documents, interviews, ...). The paper presents
a fresh-started process aimed at validating such methods and tools by
applying some of them to a semi-structured data corpus. This corpus rep-
resents results of manual reviews, done by international experts, along
with their source texts. The purpose is to check how much results of auto-
mated analysis are consistent with the reviewers reports. The application
domain is that of safety-related system/software Standards in Railway.
Thus, if we increase confidence in tools, then we also increase confidence
in Standard correctness, which in turn impacts in conforming products.
Care is taken in using, for scientific purpose only, sensitive, unpublished
source data (the comments, protected by NDAs), that are kept reviewer-
anonymous before statistical results are produced, while the Standards
are publicly available texts. The results will also be used to improve the
tools themselves, even if much elaboration is still to be carried out: the
research is still at its beginning, so metrics for tool evaluation is a goal,
whose characteristics are just sketched and discussed in the paper.

Keywords: Natural Language Processing · Disambiguation ·
Tool validation · Safety-related Standards

1 Introduction

Requirements expressed in Natural Language (NL) are often uneasy to be
checked against, particularly when it comes to process requirements. For prod-
uct requirements, checking if they are satisfied can be usually done by mea-
surement, which can give more objective evidence, and even rigorous one when
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 239–249, 2019.
https://doi.org/10.1007/978-3-030-30985-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_15

www.manaraa.com

240 I. Biscoglio et al.

Formal Methods are used to express product properties. Process conformance,
instead, implies searching for evidence, by document inspection and interviews,
that certain actions are done: this is where the typical limitations of NL (clarity
problems, ambiguity) mostly create uncertainty.

There has been a rich, continuously evolving literature about methods and
tools able to cope with the problems of NL-expressed requirements in general,
where ISTI–CNR has been playing an important role since pioneering work done
by Stefania Gnesi’s group [1,2], and up to the most recent activity reports [3,4,
17]. The need to propose and check solutions to problems with NL understanding
led to implement a NLP (Natural Language Processing) tool, called QuARS (see
Sect. 4), useful to assist in text preparation and analysis [2,5].

In this paper we introduce a just-started research project, made possible by
the availability of a particularly interesting literary corpus on process require-
ments. This 2.3-gigabyte corpus represents more than a decade-long effort by an
international group of experts in creating some of the recent international Stan-
dards for the European Committee for Electrotechnical Standardization (CEN-
ELEC), namely EN 50126 and EN 50128 [6,7]. These Standards consist of a set
of norms that regulate the life-cycle processes of safety-related systems and soft-
ware in railway applications. Some of the authors of this paper have also been
participating in official Working Groups for the creation and review of these
Standards. This allows, once privacy restrictions (NDA-covered) are granted, to
work on the material to issue anonymous, statistically-processed results. One
outstanding feature of this corpus is that it contains the full story of document
versions, including Standards drafts, along with comments and suggestions that
made each version evolve into the next one. We believe that this opportunity
allows to investigate a rare documentation of a review process, made particu-
larly precious as it engaged a relevant number of experts, bound to follow defined
review procedures [8,9]. Our aim is being able to reproduce, by using NLP tech-
niques and tools, processes similar to those that were followed by the actors of
the standardization work.

Another feature, useful in NLP, is that all the Standards drafts as well as their
final, publicly available versions, are structured into hierarchically organized,
uniquely-labelled requirements (the clauses and sub-clauses of the Standards).

At the beginning of our investigation, in order to plan this likely long activity,
we can envision the following research questions:

RQ1: What are the conditions that make reviewers to propose a change,
particularly to increase clarity and remove non-ambiguity?
RQ2: How to automate, by using NLP, the detection of such conditions?
RQ3: To what extent could the deployment of the proposed changes be con-
sidered as a reference model to validate different NLP tools?
RQ4: Could the application of NLP help finding new possible situations of
lack of clarity and understandability in Standards, different from the ones
recurring in procedure-guided reviews, so that NLP methods and tools can
enter in the Standards creation process?

www.manaraa.com

Comparing NLP Results with Manual Reviews 241

The purpose of this paper is by no means that of responding to such questions.
For now, we can present the framework in which this research project, driven
by the same questions, can evolve. Such evolution will start with QuARS as a
NLP tool applied to single documents and then progressing towards other, more
recent approaches and tools. In an advanced research stage the whole CENELEC
corpus, hopefully enriched with material from other standardisation bodies, such
as ISO and IEC, would be viewed as a sandbox for the application of a selection
of existing data analytics methods and also new versions of QuARS itself.

The paper is organized as follows:
In Sect. 2, reasons are given about why safety-related Standards describing

lifecycle processes are best fitted for NLP and particularly for this research
project.

In Sect. 3, a short description of the corpus under examination is presented,
and the CENELEC review regulation, a norm itself, is also shown.

In Sect. 4, NLP-related work is referred, and it is shown how QuARS, of which
a brief description is given, has been used to help disambiguating requirements
in different application domains.

In Sect. 5, an example of using QuARS on two successive clause versions,
taken from the CENELEC corpus, is shown.

In Sect. 6, a perspective of a possible, long-term research activity is sketched.

2 Why Safety-Related Standards?

We have some reasons to refer to safety-related Standards as a target for our
NLP project.

1. The safety-related Standards we are interested in are very popular process-
oriented Standards and so, as mentioned in Sect. 1, they are prone to suffer
the typical NL problems.

2. The set of documents leading to publicly available international Standards are
submitted to a thorough, procedure-driven analysis by experts of all interested
Countries. Then, a full report of their step-by-step evolution can be considered
as a best model for understanding why and how a given text is evolved into
an improved text.

3. Being involved in standardization Working Groups of some safety-related
Standards, the authors happen to have access, although with restrictions
regarding disclosure of sensitive CENELEC material, to their related docu-
mentation, from the first draft to the final, public issue. This is an unique
occasion indeed. Without this opportunity, any analysis would have been done
only with the publicly available versions (nominally, one every five years), thus
missing essential data of the review process.

4. Since safety-related Standards, including the CENELEC Standards, prescribe
adoption of state-of-the-art techniques in system and software lifecycle pro-
cesses, their qualities do impact in the resulting products, and then in the
life of human beings using such products (trains, in our case), and in the

www.manaraa.com

242 I. Biscoglio et al.

environment as well. This impact is stronger than in other disciplines that
have seen similar research approaches (such as product requirements, legal
acts, handbooks).

5. Granted all the value attributable to the standardization work and its actors,
safety-related Standards have not been free from criticism. Since the 1990’s,
papers expressing concern on their quality and efficacy have appeared now
and then, typically about means and actions for safety assurance when the
target of comparison for conformity (the Standard text) may mix process
and product requirements, as well as different abstraction levels, and carry
some ambiguity in clause texts [10,14–16]. We believe that results of our
research project will help clarifying such criticism so to be able to improve the
Standard review process itself: in fact this could be aided by tools assisting
reviewers to mitigate the risks of ambiguity, unclarity, and other recurrent
defects of NL.

3 Documenting a CENELEC Standard Definition Process

3.1 CENELEC Standard Regulations and Activity

Quoting from [8]:
“CENELEC is the European Standardization Body in the field of elec-

trotechnology and related technologies, facilitating and organizing contacts with
all interested parties: producers, users, governments, public bodies, consumers,
trade unions, etc.”

Most of the standardization work is done in the area of Technical Committees
(TC). TC are established by a Technical Board with precise titles and scopes,
mainly to prepare CEN/CENELEC publications (EN, etc.). A TC is normally
organized in Sub-Committees (SC) and in operating Working Groups (WGs).

An European Standard (EN) is a Standard adopted by CEN/CENELEC
and carrying with it an obligation of implementation as an identical national
standard and withdrawal of conflicting national standards. EU directives and
regulations can prescribe conformance to an EN in some application domains
such as railway domain.

There are written rules on how to prepare an EN, that include analysing
draft-documents produced by a WG through formal internationally organized
Enquiries and international Formal Votes aimed to approve an EN [9].

Regarding activities of WG’s, they use and produce a fair amount of docu-
mentation, namely:

1. Source documents (formerly approved EN, Standards from other organiza-
tions, related technical literature)

2. Draft EN documents
3. Comments on specific drafts, including the rationale for comments
4. Reports on discussions and decision of comments disposition
5. Formal and informal meeting minutes
6. Organization and managing documents (schedule, plans, participants lists).

www.manaraa.com

Comparing NLP Results with Manual Reviews 243

3.2 Our Reference CELELEC Corpus

CENELEC TC’s cover several technical areas. The material of our literary corpus
has been produced within TC9X, whose mission is: “Electrical and electronic
applications for railways, dealing with standardization of electrical and electronic
systems, equipment and associated software for use in all railway applications,
whether on vehicles or fixed installations, including urban transport”.

More in detail, our literary corpus consists of a set of documents, including
type 2, 3, 4, 5 documents listed in Sect. 3.1. It is a collection of different standard
projects, created by different WG’s. WG 14 of TC 9X has been working on EN
50126 from 2008 to 2014. In SC 9XA (a Sub Committee of TC 9X), WG11
worked from 2006 to 2010 producing EN 50128:2011 and WG18 has been active
since 2017, working on the amendment of EN 50128.

An interesting type of documents, on which QuARS can work with moderate
pre- and post-processing, includes spreadsheets in which old and new clauses are
listed almost synoptically, along with some explanations and discussion notes.
One of these documents has been used for the example shown in Sect. 5.

4 Related Work: A Short Overview of NLP Applied
to Requirements

This paper belongs to a research line started in the 1990’s at the ISTI–CNR
FMT Lab, led by Stefania Gnesi. The FMT Lab was working by then in Use
Case Analysis [11] and investigating the relationship between NL requirements
and requirements formalisation using NL2ACTL [1]. In particular, NL2ACTL
proposed a way to transform NL requirements into more rigorous formal and
semi-formal models and languages. Since then, interest has been focused, at
ISTI–CNR and in other research environments, on providing quality models for
textual expressions (organized as structured sets of linguistic attributes), against
which sets of requirements can be checked. A survey of the role of ISTI–CNR
in this activity is shown in [12]. Early along this research line, the tool QuARS
(Quality Analyzer for Requirements Specifications) was developed at ISTI–CNR.
QuARS (referred in literature many times since [5] up to recent [13]), performs
sentence-bound analyses with the objective of finding evidence of indicators of
lexical and syntactical characteristics and sub-characteristics, structured as the
Quality Model shown in Fig. 1. In spite of the nice deal of effort devoted to using
NLP in requirement engineering at various institutions worldwide, no application
to Standards are known to be reported outside ISTI–CNR, where some related
work was initiated by the Stefania Gnesi’s group in 2010 [15].

5 Example

In Fig. 2 an example of applying QuARS to two consecutive versions (Old and
New) of some EN 50128 clauses, from a document belonging to the CENELEC
corpus, is shown.

www.manaraa.com

244 I. Biscoglio et al.

Fig. 1. Quality model adopted by QuARS

Fig. 2. Results from clause analysis (Old vs. New clauses)

In Fig. 3 a summary is shown regarding 20 clauses.
In this example, false positive Warnings are decided (and removed) by man-

ually inspecting all the Warnings reported by QuARS, on the basis of experience
in safety-related Standard applications to railway projects. We do not have suf-
ficient resulting data here to express quantitative considerations with any con-
fidence: Fig. 2 is just to show one of the different possible ways of comparing
clauses before (Old) and after (New) the changes suggested by the appointed
Standard reviewers. Among the hypotheses to be tested statistically, which we

www.manaraa.com

Comparing NLP Results with Manual Reviews 245

Fig. 3. Results from 20 clause analysis

will do as one of the first analyses, there will be one about the percentage of
the potential defects detected by QuARS shared by the expert reviewers (see
Research Question 3 and 4). Here, out of 24 non-false-positive warnings (9 in
Old clauses and 15 in New ones) only a few seem to be agreed upon by the
reviewers, whose purpose was more oriented to technical issues than to com-
prehension aspects. This should not be considered as a conclusion, for the just
stated reasons.

6 Working with Our Research Questions

Looking ahead from the beginning of our work, that will likely last a couple of
years, we can foresee that the activity with the CENELEC corpus (and possi-
bly other similar corpora) will mostly be focused in the analysis of Standard
reviewers’ change proposals, also comparing them with tools results.

One difficulty that we can perceive right now is that the two approaches have
different quality objectives, or models. Whilst a defined quality model (call it
NLP-QM) is used by QuARS (Fig. 1) and by other similar tools, the process
of the manual review, instructed by formal CENELEC enquiries [9], produces
a more general spectrum of type of issues, or comments, which could still be
related to a quality model, let us call it R-QM. R-QM can be thought of being
made of a basic set of issues, denoted as Technical, General and Editorial issues,
to be possibly associated, after manual inspection, with a given Standard clause.

A somehow loose relationship can be established between NLP-QM and R-
QM (see Fig. 4): common features could be found for Editorial issues, even if
in some occasions there is no sharp bound between Editorial and Technical.
Of course we expect that most Technical problems found by the reviewers that
generate changes in clauses would not be found also by tools such as QuARS,
that is oriented to intrinsic, generally non-technical characteristics within a single
clause.

Just one Editorial/Under-spec match was found by QuARS after the 20-
clause run that produced the results shown in Fig. 3).

www.manaraa.com

246 I. Biscoglio et al.

Fig. 4. Possible partial matches (X) between R-QM and NLP-QM

6.1 Planning the Work

Granted the problem just mentioned and others that will occur, our envisioned
research framework will start with a thorough data preparation (cleaning, pre-
processing, normalizing the parts of the CENELEC corpus) and partition (train-
ing data sets, testing data sets), according to a data model, still to be defined,
partly constrained by the actual structure of the corpus. QuARS and other tools
would then be run on defined parts of data sets. Among the results in which
both the issues raised by the reviewers (Reviewer Warnings) and the warnings
detected by NLP tools (Tool Warnings) will be reported (after pruning false
positives), the following groups can be considered of particular interest:

(1) Reviewer Warnings not matched by any Tool Warnings;
(2) Reviewer Warnings matched by Tool Warnings;
(3) Tool Warnings NOT matched by Reviewer Warnings.

Group 1 would solicit research for better QM, methods and tools. Group 2
would be used for tool validation and for comparison among tools. Group 3 would
give rise to recommendations for the WG’s working in Standards definition, which
is also valid, for the advantages due to automation, for the case of Group 2.

We want to stress again here that the idea to start a new research arises from
the (unexpected) availability of a corpus containing information about reviews
in standards, the most interesting parts being: text to be changed, comments
and new proposed text. As pointed out in the Introduction, this availability
is happening in the same research group that has been involved for years (yet
non continuously) in textual requirements analysis, not only with the aim of
disambiguation but also for other purposes (consistency, usability, concept rep-
resentation). However exciting this opportunity may be, it is too early to define
a detailed research work. What we can do now is to plan for an exploratory sur-
vey of the available material, with the research questions (see Sect. 1) in mind,
starting with RQ1 (“What are the conditions that make reviewers to propose a
change, particularly to increase clarity and remove non-ambiguity?”), which is
at the basis of the other ones.

We plan to extract, from the CENELEC corpus, only the Group 1 and Group
2 warnings (Reviewer Warnings), to obtain a set C of proposed changes of Stan-
dard clauses.

www.manaraa.com

Comparing NLP Results with Manual Reviews 247

If N changes are proposed, then
C = set of c(i) (i = 1, ..., N), where
c(i) = [Set(i) of Old-Clauses, Related-Comments, Set(i) of New-Proposed-

Clauses].
In general, we could have even more sets of new proposed clauses for the same

old clause, however the simplest and most frequent case is when just one clause
is requested to be changed into a single new clause (possibly with no comments),
so our element of investigation becomes the triplet:

c(i) = [Old-Clause(i), Related Comments, New-Proposed-Clause(i)].
A comparison will then be done between Old-Clause(i) and New-Proposed-

Clause(i) (i = 1,, N), according to criteria to which some metrics can be
associated. An example of such metrics could be represented by the following
measurable attributes of a proposed change:

– Word count change;
– Percentage of new words or lemmas in New-Proposed-Clause(i);
– Percentage of deleted words or lemmas in New-Proposed-Clause(i);
– Change in density of Tools Warnings (e.g., by QuARS tool), for each kind of

warnings according a defined QM.

Results of some of this metrics was shown in Fig. 2.
Also changes of various parameters in sentence complexity and readability

indexes could be considered.
From an analysis of the results of measuring an entire set C of changes,

we hope to find a way to appreciate the reviewer effort to make a clause more
understandable to its users (e. g.: implementers, testers, assessors).

Technical motivations for changes will be a real challenge: however we think
we will be able to discover some of them, or to confirm some related hypotheses,
by considering frequency of words belonging to the domain jargon, the comment
part of each triplet c(i), and the glossaries included in the Standard.

6.2 Concluding Remarks

Considering the research questions mentioned in Sect. 1, our activity will be
aimed at:

Investigating the technical aspects at the basis of the clause changes, by
considering also inter-clause relationships, both in a document and across doc-
uments, also referring to glossaries, definitions and different use of the same
expressions (RQ1 and RQ2).

Categorising the Reviewer Warnings into some detailed QM and studying
the way to automate their detection (RQ1).

Using, besides typical NLP tools, currently available data analytics tools on
the corpus as a whole, with a strategy still to be established, to discover new
relationships between clause contents and reviewers’ comments (RQ1 and RQ3).

One practical and final achievement would be to provide a handbook and a
tool set to assist WG’s in their Standard definition work (RQ4).

The authors feel very indebted to Stefania Gnesi, who had, more than two
decades ago, the idea of applying automated textual analysis to NL requirements
(see Sect. 4).

www.manaraa.com

248 I. Biscoglio et al.

References

1. Fantechi, A., Gnesi, S., Ristori, G., Carenini, M., Vanocchi, M., Moreschini, P.:
Assisting requirement formalization by means of natural language translation. For-
mal Methods Syst. Des. 4(3), 243–263 (1994)

2. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: An automatic quality evaluation for
natural language requirements. In: Proceedings of 7th REFSQ (2001)

3. Fantechi, A., Ferrari, A., Gnesi, S., Semini, L.: Hacking an ambiguity detection
tool to extract variation points: an experience report. In: Proceedings of the 12th
International Workshop on Variability Modelling of Software-Intensive Systems,
pp. 1–13 (2018)

4. Ferrari, A., Trentanni, G., Gnesi, S.: An automatic quality evaluation for natu-
ral language requirements. In: Proceedings of 1st Workshop on Natural Language
Processing for Requirements Engineering and NLP Tool Showcase, RESFQ 2018,
March 19th - Utrecht, The Netherlands (2019)

5. Gnesi, S., Lami, G., Trentanni, G.: An automatic tool for the analysis of natural
language requirements. IJCSSE 20(1) (2005)

6. CENELEC: EN 50128 - Railway applications - Communication, signalling and
processing systems - Software for railway control and protection systems (2011)

7. CENELEC: EN 50126–1 - Railway Applications - The Specification and Demon-
stration of Reliability, Availability, Maintainability and Safety (RAMS) - Part 1:
Generic RAMS Process (2017)

8. CENELEC: Internal Regulations Part 2: Common Rules For Standardization
Works (2017)

9. CENELEC: Internal Regulations Part 3: Principles and rules for the structure and
drafting of CEN and CENELEC documents (2017)

10. Fenton, N., Neil, M.: A strategy for improving safety related software engineering
standards. IEEE Trans. Software Eng. 24(11), 1002–1013 (1998)

11. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Application of linguistic techniques
for use case analysis. In: Proceedings of IEEE 10th RE, pp. 157–164 (2002)

12. Ferrari, A., Trentanni, G., Gnesi, S.: Research on NLP for RE at CNR-ISTI: a
Report. In: Proceedings of 1st Workshop on Natural Language Processing for
Requirements Engineering and NLP Tool Showcase, RESFQ 2018, 19th March
2018, Utrecht, The Netherlands (2018)

13. Gnesi, S: Trentanni, G.: QuARS: a NLP tool for requirements analysis. In: Pro-
ceedings of 2nd Workshop on Natural Language Processing for Requirements Engi-
neering and NLP Tool Showcase, RESFQ 2019, 18th March 2019, Essen, Germany
(2019)

14. Graydon, P., Holloway, C.: Planning the unplanned experiment: assessing the effi-
cacy of standards for safety critical software. NASA/TM-2015-218804, September
2015

15. Biscoglio, I., Coco, A., Fusani, M., Gnesi, S., Trentanni, G.: An approach to ambi-
guity analysis in safety-related standards. In: Proceedings of International Con-
ference on the Quality of Information and Communications Technology (QUATIC
2010), pp. 146–176 (2010)

www.manaraa.com

Comparing NLP Results with Manual Reviews 249

16. Ferrari, A., Fusani, M., Gnesi, S.: Are standards an ambiguity-free reference for
product validation? In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.) RSSRail.
Lecture Notes in Computer Science, vol. 10598. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68499-4 17

17. Ferrari, A., et al.: Detecting requirements defects with NLP patterns: an industrial
experience in the railway domain. IEEE Empir. Softw. Eng. 23(6), 3684–3733
(2018)

https://doi.org/10.1007/978-3-319-68499-4_17
https://doi.org/10.1007/978-3-319-68499-4_17

www.manaraa.com

Looking Inside the Black Box: Core
Semantics Towards Accountability

of Artificial Intelligence

Roberto Garigliano1 and Luisa Mich2(&)

1 Journal of Natural Language Engineering (Founding Editor), Cambridge, UK
2 University of Trento, Trento, Italy

luisa.mich@unitn.it

Abstract. Recent advances in artificial intelligence raise a number of concerns.
Among the challenges to be addressed by researchers, accountability of artificial
intelligence solutions is one of the most critical. This paper focuses on artificial
intelligence applications using natural language to investigate if the core
semantics defined for a large-scale natural language processing system could
assist in addressing accountability issues. Core semantics aims to obtain a full
interpretation of the content of natural language texts, representing both implicit
and explicit knowledge, using only ‘subj-action-(obj)’ structures and causal,
temporal, spatial and personal-world links. The first part of the paper offers a
summary of the difficulties to be addressed and of the reasons why representing
the meaning of a natural language text is relevant for artificial intelligence
accountability. In the second part, a-proof-of-concept for the application of such
a knowledge representation to support accountability, and a detailed example of
the analysis obtained with a prototype system named CoreSystem is illustrated.
While only preliminary, these results give some new insights and indicate that
the provided knowledge representation can be used to support accountability,
looking inside the box.

Keywords: Artificial intelligence � Natural language processing �
Knowledge representation � Semantics � Rules � Accountability

1 Introduction

Thanks to more powerful hardware and to a new generation of learning algorithms [1],
artificial intelligence (AI) supports the automation of a widespread number of tasks and
activities, changing not only the job landscape, but also everyday life [2, 3]. Embedded
in almost any device and software system, AI solutions support decisions and control
systems giving advice and recommendations that may imply serious risks [4–7]. The
first step to address such risks is to be able to explain why a given solution or behavior
has been chosen, providing information on the data and knowledge used, and on their
processing, thus including stakeholders. This feature of an AI system is named
accountability [8]. The problem is that many AI systems run programs based on algo-
rithms whose particular output cannot usually be traced back to specific parts of the
input. The new generation algorithms, based on deep learning, are even more inscrutable

© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 250–266, 2019.
https://doi.org/10.1007/978-3-030-30985-5_16

http://orcid.org/0000-0002-2306-3202
http://orcid.org/0000-0002-0018-6883
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_16

www.manaraa.com

due to the complexity of the processing steps and the huge size of data required and
produced [9]. Focusing on AI systems using natural language, whose role is relevant in a
variety of areas, we assume that a ‘core’ semantic representation of the content of natural
language text could assist to address accountability issues, looking inside the box.
A core semantic approach aims at obtaining a full interpretation of a natural language
text representing both implicit and explicit knowledge: in this way it could support
explanation of the output of AI systems embedding any form of natural language
processing (NLP), e.g., translators, chatbot, information extraction systems. Further-
more, a core semantic representation could be applicable also to systems which do not
have natural language as their normal input or output (e.g., a medical system which takes
patient data and produces a structured output), but which would benefit from being able
to store their knowledge in core semantics and explain it in a comprehensible manner
using natural language.

In this paper we will investigate if and how the core semantic representation defined
for a large-scale domain independent NLP system could be used to support accountability
of AI. The system, a prototype that in this paper is referred as CoreSystem, represents the
content of natural language texts using only ‘subj-action-(obj)’ structures and causal,
temporal, spatial and personal-world links, the basic elements of the ‘core semantics’. To
be able to explain is the first, crucial step in ‘accounting’, which can be seen as detecting
causes and then allocating responsibilities. Beyond that, the two key elements in allo-
cating responsibilities are causal relationship and ‘personal-world’ relationships (those
produced by relations which move into a person’s inner world, such as ‘think’, ‘want’,
‘need’, etc.). These are exactly the two elements which CoreSystem uses as basic links in
its model.

As a-proof-of-concept, a detailed example is illustrated, showing the representation
of a complex sentence’s content produced by CoreSystem, and how it could be used to
answer some simple questions in order to explain its interpretation. The results of the
analysis, albeit preliminary, indicate that the core semantics approach produces a
knowledge representation that can be understood and checked towards accountability
goals.

The rest of the paper is structured as follow. Section 2 illustrates the concept of
accountability and the difficulties involved in making an AI system accountable.
Section 3 summarizes the problems of NLP in the light of accountability and the
benefit of a core semantic representation of a text. In Sect. 4, the core semantics defined
for CoreSystem is illustrated focusing on the output of the system. Section 5 gives an
example of how the analysis produced by an NLP system able to implement a core
semantics could be used to support accountability goals. Conclusions are drawn in
Sect. 6.

2 Accountability for Artificial Intelligence

In AI, accountability is the ability to explain how a given result has been obtained from
a given input, to justify why a certain decision or behaviour has been suggested and to
identify roles and responsibilities. The accountability concept is connected to that of
explainability, interpretability and transparency [5, 10, 11]. Accountability problems

Looking Inside the Black Box 251

www.manaraa.com

were raised since the very first AI systems, as automatic systems and processes are
based on algorithms and the problem of accountability for their output is not a new one.
Many authors have underlined the risks connected with applications of algorithms in
different fields. AI has elevated the complexity of algorithms and the related risks to
unprecedented levels. Besides, many people are unaware of the use of the results of a
software system and accept suggestions without critical reflection. For a given AI
system, accountability is challenged since the first activities of definition and choice of
the input data. Data and knowledge used in deep-learning AI algorithms are:

– unstructured: textual documents, audio, video, images;
– extracted from large data sets and knowledge bases;
– analysed applying data analytics or other techniques of big data analysis.

The higher risk is that of data-bias, that is of data reflecting values of the people
who design and realize the data sets [12]. A number of cases have been reported in
literature and in newspapers [11, 13, 14].

As regards algorithms, the need to have explanations for decisions by being able to
inspect the system or the code – looking inside the box – can be defined as external
accountability. Unfortunately, learning algorithms, especially unsupervised and deep
learning algorithms, are based on models that do not allow tracking and understanding
of the internal steps [15, 16]. Complex multilayer neural networks and large inputs
cannot be described in details at the level of their inner processing and, in turn, it is
difficult to understand the relationship between inputs and outputs. For expert systems,
one of the first type of AI applications and usually based on if-then rules, accountability
is guaranteed through ‘why?’ and ‘how?’ explanation capabilities, allowing, e.g., a
doctor to know why a given diagnose was suggested for the specified symptoms, but
this is not the case for the new generation of AI algorithms. Even for supervised
algorithms, in which it would be possible to use (a subset of) the training sets to show
the input for a given output to explain why a solution was obtained, usability problems
could arise [17].

Finally, the output of an AI system comes in a variety of forms; each of them can be
more or less difficult to be traced-back to the input and to justify the results.

3 Natural Language Processing and Accountability

3.1 Representing Meaning in a Text

Natural language processing is one of the main areas of AI. Natural language texts are
traditionally analysed in a sequential process, starting with lexical and structural ele-
ments, parsing text to identify the most suitable parsing tree and then applying more or
less complex techniques to interpret the semantic content, that is, to understand the
meaning.

252 R. Garigliano and L. Mich

www.manaraa.com

Parsing trees and semantic representations are typically dependent on the particular
form of the sentence; in this sense, they give a surface representation. For example, the
parsing and shallow semantic analysis of the following sentence:

(a) A 59-year-old man from York has been arrested on suspicion of murdering
missing chef Claudia Lawrence.

would allow identifying two instances of ‘named entity’, ‘York’ and ‘Claudia Lawr-
ence’; the first part of the sentence as the syntactical subject of an ‘arrest’; ‘missing’ as
an adjective and (possibly) ‘chef’ as a ‘role’ of the named entity ‘Claudia Lawrence’;
the last part of the sentence as the object of the ‘suspicion’. The difference between a
shallow and a core semantics can be illustrated comparing sentence (a) with the
following:

(b) Police have arrested a York man, aged 59, because they suspect him to be the
murderer of Claudia Lawrence, the chef who has disappeared.

Phrase (b) has the same meaning for any competent native speaker as phrase (a), but it
produces completely different parse tree and surface semantics. It should be noticed
that there is a large amount of ways (surface structures) in which this same meaning
could be expressed.

To fully understand that meaning, an NLP system needs a core semantics, that is,
an approach based on an internal representation of the content of sentences in which
both explicit and implicit knowledge is showed.

There are many reasons why an internal representation for natural language is
necessary and the most important for an NLP system are the following:

– To deal with problems in the natural language inputs: an NLP system has to be able
to address possible problems of incorrect data, incomplete data or skewed data, all
problems quite frequent in real natural language texts.

– To show how the NLP system reached its result: to this end, the system has to be
able to look from outside at an internal representation or ‘record’, a characteristic
that is relevant to developers of the system but also to support accountability.

– To reason on its internal representation independently from the surface form of its
NLP input.

– To implement self-awareness (more philosophical): in order for any system to
reason and evaluate its own beliefs and actions autonomously, it needs an internal
accessible representation of at least part of it [7, 18].

Focusing on the application of NLP systems to accountability goals, an example for the
need of an internal representation is the recent case of the Amazon assistant Alexa,
which was faced with the request from a teenager about what to do with annoying
parents, and which replied “murder them”, because it had found a perfect match to the
input in a ‘for-laughs’ site (https://tinyurl.com/ybedgm6f). The system deals with
speech (i.e. natural language) input all the time in millions of home, yet has no model
of what is doing or what the request-answers mean.

As regards AI systems processing different media, images or videos, when human
analyze the accountability implications, they do it using natural language. For example
in the government-sponsored panel in Germany to define guidelines for automated and

Looking Inside the Black Box 253

https://tinyurl.com/ybedgm6f

www.manaraa.com

connected driving (https://tinyurl.com/y3rf6mgx), experts had to deal with questions
like: “In case of possible accident, should the car prioritize the driver, the passengers or
passer-by?” (with various sub-categories considered). The natural language answers
then becomes suitable for analysis by a system like CoreSystem, as are the simplified
output of the experts. The results can then be fed-back to the car designers, in a more
formal and interactive way, helping to bridge the gap between moral experts on the
panel and engineers.

3.2 Core Semantic Representation

A core semantic representation in NLP is an internal representation of the text that
attempts to describe its meaning in a form that can be (very) different from the original
one. Internal semantic representation can be categorised in various ways according to
the supported functionalities:

– Disambiguation: does it disambiguate the text; normally disambiguation is under-
stood to cover lexical (nouns and verbs) and some structural (e.g., attachment)
elements; a core semantic approach covers also other structures such as preposi-
tions, implicit elements (especially causal and temporal ones, events underlying
nouns), redundant structures, etc.

– Normalization: does it normalize the representation, i.e., does it produce the same
output for inputs that human would recognize as equivalent, even if the surface
forms are very different.

– Relationships: does it make explicit all the implicit relationships: causal, temporal,
spatial, and personal.

– Point of views: can the system extrapolate from the narrative point of view in the
description; e.g., giving and receiving: “Tom gives a book to Mary” and “Mary
receives a book from Tom” have the same deep meaning, but told from different
viewpoints.

– Reasoning: does it help reasoning and query answering, by avoiding unnecessary
searches, combinatorial explosions, match-failure due to surface elements, etc.

There are some difficulties in implementing such explicit representation using a deep
learning approach on its own. The main problems are related to the following issues:

– Lack of data: while there are huge repositories of text translations (e.g., the EU
translation repositories) [19, 20] and question answering (large repos exist in call
centre databases, etc.), there are fewer such databases of text-internal representation
pairs, usually of much smaller dimensions. Note that deep learning usually requires
huge amount of data, from millions to billions; e.g., DeepL [21].

– While it can be used on smaller data sets, its general correct coverage on new input
decreases noticeably. Parsing is a different issue, in that the parse tree is funda-
mentally a grammatical structure. Deep learning has been successfully used on
TreeBank [22], but this has two key features: (1) all the text used is correct; (2) the
representation pairs stored includes semantic decisions (e.g., on attachment) that
usually cannot correctly be solved at that scale; (3) the representation is surface-
based anyway.

254 R. Garigliano and L. Mich

https://tinyurl.com/y3rf6mgx

www.manaraa.com

– Existing deep semantic approaches still do not achieve the above requirements.
Example of such deep semantics models are: the Mental models [18], based on
instantiation, separation of possibilities in different models (cognitive bias), elimi-
nation of non-compatible models, self-centred models, etc.; the Conceptual
dependency theory model [23], based on primitives chosen away from language,
negation of parsing role, no explicit rules for extractions, pre-constructed scripts,
difficult handling of negation, etc. Many semantic representation systems carry
surface-based elements such as the absence of personal worlds (e.g., AMR, https://
amr.isi.edu); a case-structure (e.g., FrameNet, https://framenet.icsi.berkeley.edu) or
the inability to extract implicit causal links.

“Deep semantics” is also used to indicate a number of approaches in which ‘deep’
denotes specific characteristics of the task or of the output. For example, in [24] it is
used to indicate a latent semantic model exploiting neural networks to semantic role
labelling; the authors propose an approach that does not run any parsing, does not
actually recover the full meaning of the sentences and is dependent on various surface
elements.

4 CoreSystem

CoreSystem1 is a prototype NLP system. Its final goal is to obtain an internal repre-
sentation of the meaning of sentences independent of the surface description and able to
explicit the key implicit elements. The current version of the system is based on a
sequence of compositional rules. These rules tend to be linked to general semantic
properties of the terms or language structures: once specific information is acquired, it
can then be used to supplement the analysis with specific domain dependent infor-
mation. The design is based on the principle of doing what can be done straight away,
according to an economy principle, since keeping options open costs efforts (in human
is also limited by working memory), while at the same time leaving open the decisions
for which there is not enough information at that stage (e.g., for attachment at parsing
stage). This can be done without overload by a technique that allows localizing
structural ambiguities. Vice versa, where semantic information can be used efficiently
early on (e.g., semantic restrictions on verbs), it is incorporated in the parsing stage.
Once a surface semantic representation is achieved – i.e., one which transforms the
parsing tree into a graph, in which same entities or events are unified, the process to
transform it into core semantics begins.

CoreSystem deals only with English, however, given the present proficiency of
automatic translation systems, for other languages it is possible to do the following:
automatically translate an input in English, convert it in the internal semantics, elab-
orate it as required, get CoreSystem to generate an English text from such elaboration

1 The following brief description of the prototype system is provided in order to outline what has been
used to produce the analysis below. The system is at present not available for external testing;
furthermore, as it is under development, no claims are made here to its coverage or efficiency with
respect to other NLP systems.

Looking Inside the Black Box 255

https://amr.isi.edu
https://amr.isi.edu
https://framenet.icsi.berkeley.edu

www.manaraa.com

as required, re-translate in the desired language. Initial experiments in this sense with
Italian and Spanish have given positive results.

The analysis process is a step-by-step one, in which a set of rules has been elab-
orated looking at many written texts from different sources (e.g., Economist, Wiki-
pedia, BBC, Telegraph, Mirror, Bloomberg, Reuters); these rules turn out to be by-and-
large domain independent. A version for different types of input (e.g., speech tran-
scription, dialogue, chat, etc.) is under development. CoreSystem satisfies, albeit at
different levels, all the requirements described in Sect. 3.2. Its core semantic approach
tackles the combinatorial explosion of meaning representations following a strongly
minimalist approach that leads to a representation of the content independent of the
surface description, including hidden casual, spatial and temporal connections.

The core of the present version is written in Haskell (www.haskell.org). Haskell, a
purely functional, strongly typed, lazy, referentially transparent, higher order pro-
gramming language, is particularly suited for representing very complex set of rules;
also, because of its referential transparency, it is not dependent on side effects, which
greatly help the managing of a large number of rules working together. Haskell can be
run in parallel, either internally or using orchestrating systems such as Erlang. The user
interface is implemented in JavaScript, with the logic controlling the display managed
from Haskell.

The last version of CoreSystem has been used and preliminary validated, in a
national project (Sintesys, http://www.cerict.it/it/progetti-nazionali-conclusi/281-
sintesys-ricerca.html) and in a European project (LASIE, http://www.lasie-project.eu).
In these projects, CoreSystem was tasked with analysing texts from similar domains
(terrorism for the national project and crime for the European project), while the type of
text was different (short, information rich Reuters flash news in Sintesys; long news-
paper articles and blogs in LASIE). In both cases, the goal was to produce an analysis
that helped investigators in the following ways:

– provide a clear representation of the information and the underlying structures;
– find common references to people, places, organizations, events, etc.;
– connect events along temporal causal and spatial chains;
– extract modal information, such as desires, beliefs, plans, likes, duties, etc.

In order to reach these objectives, the core semantic representation has proved the key
feature, since it has allowed to unify apparently different entities and events and to
connect them using implicit deep temporal, causal and spatial chains. It has also been
essential in extracting motivations, likely actions, elements of planning and other
mental structures.

As regards self-awareness, a deep neural network may embody such knowledge,
beliefs, etc., but it is distributed, so there is not a part that represents it. For some
scholars, such representation has to be symbolic in nature, and separated from the
underlying one, in order to avoid infinite regressions [7].

256 R. Garigliano and L. Mich

http://www.haskell.org
http://www.cerict.it/it/progetti-nazionali-conclusi/281-sintesys-ricerca.html
http://www.cerict.it/it/progetti-nazionali-conclusi/281-sintesys-ricerca.html
http://www.lasie-project.eu

www.manaraa.com

5 Core Semantics and Accountability

To investigate how a core semantic representation could be used to support account-
ability of AI, in this section the output produced by CoreSystem for sentence (a) is
analysed.

A 59-year-old man from York has been arrested on suspicion of murdering missing
chef Claudia Lawrence.

In this sentence, a lot of knowledge is implicit, but a reader would be able to interpret it,
understanding it as follows: Claudia Lawrence worked as a chef, she disappeared, she
may have been murdered, then police suspected that a man murdered her and so they
arrested him. The man had been in York before police arrested him, and he was 59
years of age when the police arrested him.

Its surface representation (parsing or semantic) is very distant from its core
semantics (Figs. 1a and 1b give the output created by the NLP system split for the sake
of readability).

Core semantics means that all the implicit information, as for example the events
hidden inside nouns such as ‘suspicion’, adjective such as ‘missing’, or roles such as
‘chef’, has to be extracted and organized in small atomic unit, which then are put
together in the correct temporal and causal sequence.

In CoreSystem, information is represented in a graph as objects and events. For the
above sentence, the system creates 3 new objects (‘man’, ‘York’ – used in the event
which describes the man’s position before the arrest – and ‘police’), an object created
for a previous analysis (‘Claudia Lawrence’) and 14 events. Figure 2 presents an
extract of the analysis obtained by the CoreSystem applying a core semantics for the
sentence: the event ‘arrest’, the object ‘police’ and the event created to explicit the fact
that the man is 59 years old when he is arrested by the police. Both events are
interpreted according the ‘subj-action-(obj)’ structure, supplemented by other meta-
level information, as the time of the action, the source of the information and the links
with other objects and events used by CoreSystem to represent the content of the
sentence.

The final analysis is rather distant from the original text, although it is close to how a
native speaker would mentally visualize the story [18]. The full analysis is given in the
appendix, and the number of the nodes used for the internal representation is reported in
what follows. ‘Arrest’ (109608) is an example of a general event marked as ‘proto-
typical’, which allows to explicit police (172748) as the subject of the arrest. A proto-
type is a ‘best initial guess’ structure, based on causal models. It is not probabilistic and
it can be overruled by more specific information. Other prototypes used to represent the
meaning of the sentence are that of ‘murder’ (172705) and ‘suspicion’ (172745).
‘Police’ is also used as the subject of the event “Police suspects a man murdering
Claudia Lawrence” (172745), the event representing the reason of the arrest, i.e. the
causal link between suspicion and arrest. The content of the last part of the sentence is

Looking Inside the Black Box 257

www.manaraa.com

(a)

(b)

Fig. 1. Parse tree for sentence (a) first subtree (b) second subtree

258 R. Garigliano and L. Mich

www.manaraa.com

represented by the following events: “Claudia Lawrence works as Chef” (171759),
“Claudia Lawrence disappears” (172744), and “Claudia Lawrence works as Chef,
before she disappears” (172780). The murder, the suspicion and the arrest are then
connected by the event “Police suspects a man murdering Claudia Lawrence so they
arrest him” (170891). The other events are needed to represent the causal, spatial and
temporal relations among the events in the original sentence.

Notice that the fact that the arrested man murdered Claudia Lawrence is marked as
hypothetical, since it exists at present only in police’s suspicion. This, as well as other
phenomena such as negation, desires, different beliefs etc., is modelled using a many-
worlds semantics, some of which may be incompatible with each other.

* arrest/1: 109608 *

universal_:

Event - 74883 - rank: universal

arrest/1 - 820 -subject_:

police/2 - 172748 - rank:
universal

action_:

arrest/4 - 823 -

object_:

man/2 - 79018 - rank: individual

time_:

present_ - 248575 –

source_:

speaker_ - 19845 - rank:
named individual

object_of:

Event - 170891 - rank: individual

Event - 172767 - rank: individual

Event - 172779 - rank: individual

event: Police arrests a man.

* police/2: 172748 *

generalisation_:

police/2 - 171402 - rank:
universal

subject_of:

arrest/1 - 109608 - rank:
individual

suspicion/1 - 172745 - rank:
individual

object: Police.

* Event: 172767 *

universal_:

Event - 74883 - rank: universal

subject_:

Event - 79016 - rank: individual

action_:

during/2 - 61250 -

object_:

arrest/1 - 109608 - rank:
individual

event: A man having age 59
during police arresting him.

Fig. 2. Examples of events and objects used for representing core semantics

Looking Inside the Black Box 259

www.manaraa.com

For what concerns accountability, such representation could be used to explain
some facts and actions, answering questions as “Who was arrested?”; “Where is he
from”; “Why was he arrested?”; “What was she doing for a living” but also “Who
arrested him”, even if this information is not explicited in the sentence. While, what is
the name of the arrested man could be answered saying “I do not know”, being that a
statement about the knowledge in the AI system and not about not being able to extract
such knowledge from the text. Also important is the source information given for an
event (Fig. 2).

Question answering is an obvious way to achieve both explanation and account-
ability, as is normally done among humans. However, CoreSystem also produces a
graphical view of the causal-personal structure of the model, which allows for easy
understanding (and even hand-modifications if needed). Figure 3 shows a simplified
screen shot for the graphical output for the text “A man, believed to be a member of an
unknownMuslim militant group, planted five gasoline bombs on a bus carrying German
tourists in Cairo. A guide saw the man put a bag under a seat on the bus and called the
police. The man was arrested and a bomb disposal crew removed the bombs. No injuries
were reported.” In the interactive version, by clicking on the various links the viewer can
see the different types of causality, inspect the standard models behind etc.

Fig. 3. Screenshot of the graphical representation produced by CoreSystem

260 R. Garigliano and L. Mich

www.manaraa.com

6 Conclusions

The importance of accountability and the need for a core semantics which can fully
understand the meaning of natural language processing texts have recently been
underlined in two interventions by leading AI scientists [25, 26]. Focusing on AI
systems embedding any form of NLP, in this paper we investigated how a core
semantic approach could be used to address those concerns. In general, core semantics
embedded in various AI applications would greatly help in assessing systems’ per-
formance, as well as allowing the systems themselves to have an image of their own
high-level processing. The final goal of an NLP system is to extract from natural
language documents core semantic version that clearly shows the crucial causal and
temporal links, and this is a pre-requisite to use the NLP system to support account-
ability. As a proof-of-concept, the practicability of the core semantics has been tested
using a prototype large-scale NLP system. For accountability goals, the example
illustrated in Sect. 5 indicates that a core semantics produces textual representations
that can be easily understood and checked by human. The next step is to provide also a
graphical representation and the NLP query answering. To design and implement
accountability functionalities as NLP system module, the large amount of knowledge
used for the analysis of a single statement highlights that it is critical to be able to deal
with the combinatorial explosion of the graph. Besides, according to software engi-
neering best practices, interfaces supporting final users, and not only developers, have
to satisfy usability and performance requirements.

Acknowledgments. As researchers in natural language processing and requirements engineer-
ing, authors shared a number of papers with Stefania Gnesi and her research group since the early
1990s. She is a passionate scientist, and these exchanges resulted in a fruitful and enriching
relationship.

Appendix A

Representation of the Meaning of the Sentence: “A 59-year-old man from York has
been arrested on suspicion of murdering missing chef Claudia Lawrence”.

Looking Inside the Black Box 261

www.manaraa.com

* Event: 79016 *
universal_:
Event - 74883 - rank: universal
subject_:
man/2 - 79018 - rank: individual
action_:
have_age/1 - 258771 -
object_:
59 - 258887 - rank: universal
time_:
present_ - 248575 -
source_:
speaker_ - 19845 - rank: named individual
subject_of:
Event - 172767 - rank: individual

event:
A man has age 59.

* man/2: 79018 *
universal_:
man/2 - 79015 - rank: universal
murderer/1 - 150961 - rank: universal
suspect/3 - 189089 - rank: universal
subject_of:
Event - 79016 - rank: individual
Event - 79021 - rank: individual
murder/2 - 172705 - rank: individual - hypothe-

sis_
object_of:
arrest/1 - 109608 - rank: individual

object:
A man.

* Event: 79021 *
universal_:
Event - 74883 - rank: universal
subject_:
man/2 - 79018 - rank: individual
action_:
be/12 - 15902 -
location_:
position_ - 79022 - rank: individual

time_:
past_ - 248407 -
source_:
speaker_ - 19845 - rank: named individual
subject_of:

Event - 172779 - rank: individual

event:

A man was in York.

* position_: 79022 *
universal_:
position_ - 11456 -
subject_of:
Event - 79023 - rank: individual
location_of:
Event - 79021 - rank: individual

object:
In York.

* Event: 79023 *
universal_:
Event - 74883 - rank: universal
subject_:
position_ - 79022 - rank: individual
action_:
in/1 - 119448 -
object_:
york/5 - 247198 - rank: named individual

event:
Is in York.

* arrest/1: 109608 *
universal_:
Event - 74883 - rank: universal
arrest/1 - 820 -
subject_:
police/2 - 172748 - rank: universal
action_:
arrest/4 - 823 -
object_:
man/2 - 79018 - rank: individual

262 R. Garigliano and L. Mich

www.manaraa.com

time_:
present_ - 248575 -
source_:
speaker_ - 19845 - rank: named individual
object_of:
Event - 170891 - rank: individual
Event - 172767 - rank: individual
Event - 172779 - rank: individual

event:
Police arrests a man.

* Event: 170891 *
universal_:
Event - 74883 - rank: universal
subject_:
suspicion/1 - 172745 - rank: individual
action_:
cause/3 - 33341 -
object_:
arrest/1 - 109608 - rank: individual
source_:
speaker_ - 19845 - rank: named individual

event:
Police suspects a man murdering Claudia Law-
rence so they arrest him.

* Event: 171759 *
universal_:
Event - 74883 - rank: universal
subject_:
claudia_lawrence/1 - 258841 - rank: named

individual
action_:
work_as/1 - 172933 -
object_:
chef/1 - 44708 - rank: universal
source_:
speaker_ - 19845 - rank: named individual
subject_of:
Event - 172780 - rank: individual

event:
Claudia Lawrence works as Chef.

* murder/2: 172705 *
universal_:

murder/2 - 157791 - rank: universal
subject_:
man/2 - 79018 - rank: individual
action_:
murder/1 - 154816 -
object_:
claudia_lawrence/1 - 258841 - rank: named

individual
source_:
speaker_ - 19845 - rank: named individual
status_:
hypothesis_ - 248409 -
subject_of:
Event - 172750 - rank: individual
object_of:
Event - 172766 - rank: individual
suspicion/1 - 172745 - rank: individual

event:
A man may murder Claudia Lawrence.

* Event: 172744 *
universal_:
Event - 74883 - rank: universal
subject_:
claudia_lawrence/1 - 258841 - rank: named

individual
action_:
disappear/1 - 70373 -
source_:
speaker_ - 19845 - rank: named individual
subject_of:
Event - 172766 - rank: individual
object_of:
Event - 172780 - rank: individual

event:
Claudia Lawrence disappears.

* suspicion/1: 172745 *
universal_:
suspicion/1 - 189007 - rank: universal
subject_:
police/2 - 172748 - rank: universal
action_:
suspect/4 - 189090 -
object_:

Looking Inside the Black Box 263

www.manaraa.com

murder/2 - 172705 - rank: individual - hypothe-
sis_
time_:
present_ - 248575 -
subject_of:
Event - 170891 - rank: individual
object_of:
Event - 172750 - rank: individual

event:
Police suspects a man murdering Claudia Law-
rence.

* police/2: 172748 *
generalisation_:
police/2 - 171402 - rank: universal
subject_of:
arrest/1 - 109608 - rank: individual
suspicion/1 - 172745 - rank: individual

object:
Police.

* Event: 172750 *
universal_:
Event - 74883 - rank: universal
subject_:
murder/2 - 172705 - rank: individual - hypothe-

sis_
action_:
before/2 - 15971 -
object_:
suspicion/1 - 172745 - rank: individual

event:
A man may murder Claudia Lawrence, before
police suspects this.

* Event: 172766 *
universal_:
Event - 74883 - rank: universal
subject_:
Event - 172744 - rank: individual
action_:
before/2 - 15971 -
object_:

murder/2 - 172705 - rank: individual - hypothe-
sis_

event:
Claudia Lawrence disappears, before a man
may murder her.

* Event: 172767 *
universal_:
Event - 74883 - rank: universal
subject_:
Event - 79016 - rank: individual
action_:
during/2 - 61250 -
object_:
arrest/1 - 109608 - rank: individual

event:
A man having age 59 during police arresting
him.

* Event: 172779 *
universal_:
Event - 74883 - rank: universal
subject_:
Event - 79021 - rank: individual
action_:
before/2 - 15971 -
object_:
arrest/1 - 109608 - rank: individual

event:
A man was in York, before police arrests him.

* Event: 172780 *
universal_:
Event - 74883 - rank: universal
subject_:
Event - 171759 - rank: individual
action_:
before/2 - 15971 -
object_:
Event - 172744 - rank: individual

event:
Claudia Lawrence works as Chef, before she
disappears.

264 R. Garigliano and L. Mich

www.manaraa.com

References

1. LeCun, Y., Yoshua, B., Geoffry, H.: Deep learning. Nature 521(7553), 436 (2015)
2. Davis, A.: How artificial intelligence has crept into our everyday lives. IEEE Special Report

(2016). http://theinstitute.ieee.org/static/special-report-artificial-intelligence
3. LinkedIn: Global recruiting trends 2018 (2018). https://business.linkedin.com/talent-

solutions/recruiting-tips/2018-global-recruiting-trends?trk=bl-ba_global-recruiting-trends-
launch_maria-ignatova_011018

4. Kaplan, J.: Artificial intelligence: think again. Commun. ACM 60(1), 36–38 (2016). https://
doi.org/10.1145/2950039

5. Internet Society: Artificial Intelligence and Machine Learning: Policy paper (2017). https://
www.internetsociety.org/resources/doc/2017/artificial-intelligence-and-machine-learning-
policy-paper

6. Parnas, D.L.: The real risks of artificial intelligence. Commun. ACM 60(10), 27–31 (2017).
https://doi.org/10.1145/3132724

7. Shanahan, M.: The Technological Singularity. MIT Press, New York (2015)
8. Anthes, G.: Artificial intelligence poised to ride a new wave. Commun. ACM 60(7), 19–21

(2017). https://doi.org/10.1145/3088342
9. Guidotti, R., Monreale, A., Pedreschi, D.: The AI black box explanation problem. ERCIM

News 116, 12–13 (2019)
10. ACM U.S. Public Policy Council, ACM Europe Policy Committee: Statement on

algorithmic transparency and accountability (2017). https://www.acm.org/binaries/content/
assets/public-policy/2017_joint_statement_algorithms.pdf

11. Doshi-Velez, F., et al.: Accountability of AI under the law: the role of explanation. CoRR
abs/1711.01134 (2017)

12. O’Neil, C.: Weapons of math destruction: how big data increases inequality and threatens
democracy. New York Time (2016)

13. Pell, D.: The 10 algorithms that rule the world and other fascinating news on the web. Time
(2014). http://time.com/111313/the-10-algorithms-that-rule-the-world-and-other-fascinating-
news-on-the-web

14. Barry-Jester, A.M., Casselman, B., Goldestein, D.: The Marshall Project. The new science of
sentencing (2015). https://www.themarshallproject.org/2015/08/04/the-new-science-of-
sentencing#.bwuhXcwqn

15. Buregess, M.: Holding AI to account: will algorithms ever be free from bias if they’re
created by humans? Wired, UK (2016). http://www.wired.co.uk/article/creating-transparent-
ai-algorithms-machine-learning

16. Kirkpatrick, K.: Battling algorithmic bias: how do we ensure algorithms treat us fairly?
Commun. ACM 59(10), 16–17 (2016). https://doi.org/10.1145/2983270

17. Gaines, B.: Designing expert systems for usability. In: Shackel, B., Richardson, S.J. (eds.)
Human Factors for Informatics Usability, pp. 207–246. Cambridge University Press, New
York (1991)

18. Johnson-Laird, P.: How We Reason. Oxford University Press, New York (2006)
19. Wong, S.: Google Translate AI invents its own language to translate with. Daily News

(2016). https://www.newscientist.com/article/2114748-google-translate-ai-invents-its-own-
language-to-translate-with

20. Reynolds, M.: Google uses neural networks to translate without transcribing. Daily News
(2017). https://www.newscientist.com/article/2126738-google-uses-neural-networks-to-
translate-without-transcribing

Looking Inside the Black Box 265

http://theinstitute.ieee.org/static/special-report-artificial-intelligence
https://business.linkedin.com/talent-solutions/recruiting-tips/2018-global-recruiting-trends%3ftrk%3dbl-ba_global-recruiting-trends-launch_maria-ignatova_011018
https://business.linkedin.com/talent-solutions/recruiting-tips/2018-global-recruiting-trends%3ftrk%3dbl-ba_global-recruiting-trends-launch_maria-ignatova_011018
https://business.linkedin.com/talent-solutions/recruiting-tips/2018-global-recruiting-trends%3ftrk%3dbl-ba_global-recruiting-trends-launch_maria-ignatova_011018
http://dx.doi.org/10.1145/2950039
http://dx.doi.org/10.1145/2950039
https://www.internetsociety.org/resources/doc/2017/artificial-intelligence-and-machine-learning-policy-paper
https://www.internetsociety.org/resources/doc/2017/artificial-intelligence-and-machine-learning-policy-paper
https://www.internetsociety.org/resources/doc/2017/artificial-intelligence-and-machine-learning-policy-paper
http://dx.doi.org/10.1145/3132724
http://dx.doi.org/10.1145/3088342
https://www.acm.org/binaries/content/assets/public-policy/2017_joint_statement_algorithms.pdf
https://www.acm.org/binaries/content/assets/public-policy/2017_joint_statement_algorithms.pdf
http://time.com/111313/the-10-algorithms-that-rule-the-world-and-other-fascinating-news-on-the-web
http://time.com/111313/the-10-algorithms-that-rule-the-world-and-other-fascinating-news-on-the-web
https://www.themarshallproject.org/2015/08/04/the-new-science-of-sentencing#.bwuhXcwqn
https://www.themarshallproject.org/2015/08/04/the-new-science-of-sentencing#.bwuhXcwqn
http://www.wired.co.uk/article/creating-transparent-ai-algorithms-machine-learning
http://www.wired.co.uk/article/creating-transparent-ai-algorithms-machine-learning
http://dx.doi.org/10.1145/2983270
https://www.newscientist.com/article/2114748-google-translate-ai-invents-its-own-language-to-translate-with
https://www.newscientist.com/article/2114748-google-translate-ai-invents-its-own-language-to-translate-with
https://www.newscientist.com/article/2126738-google-uses-neural-networks-to-translate-without-transcribing
https://www.newscientist.com/article/2126738-google-uses-neural-networks-to-translate-without-transcribing

www.manaraa.com

21. Coldewey, D., Lardinois, F.: DeepL schools other online translators with clever machine
learning. Techcrunch (2017). https://techcrunch.com/2017/08/29/deepl-schools-other-
online-translators-with-clever-machine-learning

22. Mitchell, M.P., Santorini, B., Marcinkiewicz, M.A., Taylor, A.: Treebank-3 LDC99T42
Web Download. Linguistic Data Consortium, Philadelphia (1999)

23. Schank, S., Abelson, R.: Scripts, Plans, Goals and Understanding. An Inquiry into Human
Knowledge Structures. Lawrence Erlbaum, Hillsdale (1997)

24. He, L., Lee, K., Lewis, M., Zettlemoyer, L.: Deep semantic role labeling: what works and
what’s next. In: Proceedings of the 55th Annual Meeting Association for Computational
Linguistics, vol. 1, pp. 473–483 (2017)

25. Jordan, M.: Artificial Intelligence. The revolution hasn’t happened yet. Medium (2018).
https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-
5e1d5812e1e7

26. Hutson, M.: AI researchers allege that machine learning is alchemy. Science 360(6388), 861
(2018). http://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-
alchemy

266 R. Garigliano and L. Mich

https://techcrunch.com/2017/08/29/deepl-schools-other-online-translators-with-clever-machine-learning
https://techcrunch.com/2017/08/29/deepl-schools-other-online-translators-with-clever-machine-learning
https://medium.com/%40mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-5e1d5812e1e7
https://medium.com/%40mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-5e1d5812e1e7
http://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy
http://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy

www.manaraa.com

QuOD: An NLP Tool to Improve
the Quality of Business Process

Descriptions

Alessio Ferrari1(B) , Giorgio O. Spagnolo1, Antonella Fiscella2,
and Guido Parente2

1 ISTI–CNR, Pisa, Italy
{alessio.ferrari,spagnolo}@isti.cnr.it

2 Narwhal Software, Florence, Italy
info@narwhal.it

Abstract. [Context and Motivation] In real-world organisations,
business processes (BPs) are often described by means of natural lan-
guage (NL) documents. Indeed, although semi-formal graphical notations
exist to model BPs, most of the legacy process knowledge—when not
tacit—is still conveyed through textual procedures or operational man-
uals, in which the BPs are specified. This is particularly true for public
administrations (PAs), in which a large variety of BPs exist (e.g., defini-
tion of tenders, front-desk support) that have to be understood and put
into practice by civil servants. [Question/problem] Incorrect under-
standing of the BP descriptions in PAs may cause delays in the delivery
of services to citizens, or, in some cases, incorrect execution of the BPs.
[Principal idea/results] In this paper, we present the development of
an NLP-based tool named QuOD (Quality Analyser for Official
Documents), oriented to detect linguistic defects in BP descriptions and
to provide recommendations for improvements. [Contribution] QuOD
is the first tool that addresses the problem of identifying NL defects in
BP descriptions of PAs. The tool is available online at http://narwhal.
it/quod/index.html.

Keywords: NLP · Business process · Requirements engineering

1 Introduction

Public Administrations (PAs) are socio-technical systems whose goal is to pro-
vide services to citizens in accordance with the law. Services are performed by
civil servants following business processes (BPs), which are sequences of activ-
ities to be carried out to deliver a service [5]. In PA, as in other organisations,
BP specifications are available in the form of written procedures, or operational
manuals [15,16,22]. As typical also for system/software requirements specifi-
cations, these documents are expressed in informal natural language, which is
inherently open to different interpretations [2,20,23]. Hence, the content of these
documents might be incorrectly interpreted by those who have to put the process
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 267–281, 2019.
https://doi.org/10.1007/978-3-030-30985-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_17&domain=pdf
http://orcid.org/0000-0002-0636-5663
http://narwhal.it/quod/index.html
http://narwhal.it/quod/index.html
https://doi.org/10.1007/978-3-030-30985-5_17

www.manaraa.com

268 A. Ferrari et al.

into practice. It is therefore important to identify linguistic defects in written
BP specifications, to ensure that BPs are properly carried out [12,19,23].

In the context of the EU Project Learn PAd (http://www.learnpad.eu) [8–10],
we developed a tool, named QuOD (Quality Analyser for Official Doc-
uments), which is specifically oriented to identify language defects in written
BP specifications and official documents of PAs. The tool is based on the evalu-
ation of a set of quality attributes, with associated indicators of potential defects.
Specifically,QuODdealswith fourmain quality attributes, namely simplicity,non-
ambiguity, content clarity and correctness, and identifies defects such as the usage
of difficult jargon, syntactic ambiguities, unclear actors or acronyms as well as
grammatical errors. To this end, QuOD leverages a set of patterns expressed by
means of the JAPE grammar, supported by the GATE (General Architecture for
Text Engineering)1 tool.

In this paper, we present the quality model developed within the context of
Learn PAd, which was used as a reference to define the defect detection patterns
of QuOD. Furthermore, we describe each pattern in details and we present the
web interface of the tool. Further information about the development of the tool,
and the role of its patterns in the context of Learn PAd can be found in our
public deliverable [15].

The remainder of the paper is structured as follows. In Sect. 2 we briefly
present background on the Learn PAd project and the quality model. In Sects. 4
to 6 we present the patterns associated to each quality attribute of the quality
model. Section 7 presents the interface of QuOD, and Sect. 8 concludes the paper.

2 The Learn PAd Quality Model

The Learn PAd EU project [8–10] aims to improve the sharing of knowledge
among civil servants, and as a consequence the perceived quality of services
delivered by the public administration (PA). The overall idea of Learn PAd is to
use the business process modeling notation (BPMN) [4] to teach civil servants
how the procedures shall be implemented in practice and to complement the
models expressed according to the BPMN with BP descriptions that give details
in natural language about the procedures.

In the context of the project, a quality model was defined comprising a set
of defects to be automatically identified in the BP descriptions. The quality
model is based on a throughout domain analysis published in a recent work [16],
and focuses on those defects that can be automatically checked by means of a
rule-based system, i.e., a system that is based on pattern matching algorithms.

A quality model is a reference model against which a certain artifact—a PA
procedure expressed in natural language, i.e., a BP description, in our case—
can be evaluated [17]. A quality model is defined by means of a set of quality
attributes, which are high-level quality properties that the PA procedure shall
exhibit. The general quality model for PA procedures comprises seven general
quality attributes, namely:
1 https://gate.ac.uk.

http://www.learnpad.eu
https://gate.ac.uk

www.manaraa.com

QuOD: An NLP Tool to Improve the Quality 269

– Clarity: this attribute indicates that the PA procedure is understandable,
both in terms of content, in terms of presentation, and in terms of practical
applicability.

– Non-ambiguity: this attribute indicates that the content of the PA proce-
dure has only one interpretation, independently of the reader. The attribute
considers the non-ambiguity of terms, and the non-ambiguity of the syntax
used in the sentences of the PA procedure.

– Simplicity: this attribute indicates that the content of a PA procedure is
easy to read. The attribute considers both the difficulty of the terms and the
difficulty of the syntax.

– Completeness: this attribute indicates that all the required fields of a given
template for PA procedures are filled with content. The attribute requires a
reference template to be defined.

– Conciseness: this attribute indicates that the PA procedure is sufficiently
synthetic, and does not have any irrelevant detail or repetition.

– Correctness: this attribute indicates that the content of the PA procedure
is correct in terms of grammar, and does not include copy-paste errors.

– Coherence: this attribute indicates that the content of the PA procedure is
not contradictory or illogical. The attribute takes into account the internal
coherence, the external coherence (i.e., the coherence with other documents),
and the coherence with respect to the real world (referred as applicability
incoherence).

Among the different quality attributes, in this paper we focus on those that
have been addressed with the definition of a set of patterns implemented in
QuOD. Specifically, we focus on (content) clarity, non-ambiguity, simplicity, and
correctness. The other quality attributes can be enforced by means of the guide-
lines for writing BP descriptions collected by Ferrari et al. [16] and the BP
description template presented therein. For each quality attribute, we have iden-
tified a set of indicators, which can be automatically detected and provide infor-
mation about a particular attribute [17]. Indicators can be regarded as defects to
be matched by means of defect detection patterns. Patterns are regular expres-
sions that might involve characters or more complex linguistic constructs, such
as words, and phrases. To express simple patterns we generally use an intuitive
semi-formal notation that use natural language and symbols. To express more
complex patterns we use a notation inspired to the JAPE grammar [27], which is
the one employed by the tool GATE and that is used to implement the patterns
in QuOD. Each pattern has been designed to identify the majority of potential
defects. The idea, borrowed from the requirements engineering domain [1], is
that the system raises the possibility of a defect in the text, and that the user
considers whether such defect is an actual defect, or can be ignored. The ratio-
nale here is that a user can easily discard those potential defects that are not
actual flaws from their point of view, while more severe consequences can be
expected (e.g., procedure not correctly performed or not performed at all [22])
in case a defect is not detected. Each of the following sections is dedicated to a
quality attribute, and to the associated indicators.

www.manaraa.com

270 A. Ferrari et al.

3 Quality Attribute: Non-ambiguity

The non-ambiguity quality attribute defines the degree of non-ambiguity of a BP
description. Such quality attribute considers both the ambiguity of the terms and
the ambiguity of the syntax. The following sections describe the indicators that
we consider for this attribute.

3.1 Indicator: Lexical Ambiguity

In general, a lexical ambiguity occurs whenever a term can have different mean-
ing (e.g., the word “bank” can be the bank of a river, or the bank as “estab-
lishment for custody, loan, exchange, or issue of money”) [2]. However, in this
context, we will not refer to this definition of lexical ambiguity – cases as the
one exemplified will be treated as pragmatic ambiguity, since the interpretation
of “bank” depends on the context. Instead, we will refer to the model defined by
Gnesi et al. [17], for checking the quality of natural language requirements speci-
fication. According to such model, lexical ambiguity occurs whenever a sentence
includes an adverb, adjective or conjunction, possibly combined with preposi-
tions, that might lead to different interpretations of the sentence. In practice,
the considered model does not take into account names or verbs with poten-
tially different interpretations, but solely typical expressions that are commonly
source of potential misunderstandings. Four categories of lexical ambiguity are
defined in [17], namely vagueness, subjectivity, optionality and weakness. The
first category includes the usage of vague expressions, with a non uniquely quan-
tifiable meaning, such as “accurate”, “suitable”, “appropriate”, “clearly”, etc.
The second category includes expressions that refers to personal opinions or feel-
ings, such as “better”, “accordingly”, “depending on”, etc. The third category
includes expressions that reveal the presence of an optional part in the sentence,
such as “if necessary”, “if needed”, “and/or”. The fourth category include cases
when a weak main verb, such as “can”, “may”, etc., is used. Examples for the
first three categories are provided below:

– Vagueness: The field office will forward the application to the appropriate
official for a final decision. Here, the term “appropriate” is vague, and the
editor shall specify which is the specific official that is in charge of taking the
final decision.

– Subjectivity: Support staff may be called in from other teams depending
on the extent of the scene. Here, the expression “depending on” leaves the
reader with the freedom to personally evaluate the extent of the scene.

– Optionality: The director of the group must transfer 10% of the funded loans
to the institute and/or to the department. Here the expression “and/or”
leaves the freedom of sending the funded loans to just one organisation.

In the context of Learn PAd, we do not consider cases of “weakness”, since
this indicator was specifically designed for natural language requirements spec-
ifications, and appeared less suitable for PA documents. Indeed, in the context

www.manaraa.com

QuOD: An NLP Tool to Improve the Quality 271

of PA procedure descriptions, we have found that it is rather frequent to find
verbs such as “can” or “may” (e.g., 63 cases of “can”, and 124 cases of “may”
are found in our dataset [15]), and these are normally acceptable (as, e.g., in the
following example “Ensure you can meet the deadlines”).

To check the presence of vagueness, subjectivity or optionality in a sentence,
we define three patterns. Let V , U and O be sets of vague, subjective, or optional
terms. Let S be a sentence, and let T (S) be any sequence of words in the sentence.
The patterns are the following:

– VAG: ∀v ∈ V,∀t ∈ T (S), if t = v, mark t as vague.
– SUB: ∀u ∈ U,∀t ∈ T (S), if t = u, mark t as subjective.
– OPT: ∀o ∈ O,∀t ∈ T (S), if t = o, mark t as optional.

If a sentence has at least one term that is detected to be vague, subjective of
optional according to the at least one of the previous patterns, such sentence is
marked as defective. In QuOD, we employ the dictionaries used by QuARS [17],
to check the three categories of lexical ambiguity exemplified above. Therefore,
the sets V (446 terms), S (19 terms) and O (11 terms) are composed of all the
terms used by QuARS.

3.2 Indicator: Syntactic Ambiguity

Syntactic ambiguity manifest itself whenever the sentence can have more than
one grammatical structure, each one with a different meaning. Four types of
syntactic ambiguity are defined in the literature [2], namely analytical (i.e., a
complex noun group with modifiers [18]), attachment (i.e., a prepositional phrase
can be attached to two parts of the sentence), coordination (i.e., when more than
one conjunction “or”, or “and” is used in a sentence), elliptical (i.e., when words
are omitted because they are expected to be deduced from the context), and
anaphoric/referential (i.e., when pronouns or other words refer to other elements,
but there is more than one possibility). This latter type of ambiguity may involve
different sentences, and the literature often categorise it as pragmatic ambiguity.
However, given its strong relation with the syntax, and its similarity with, e.g.,
attachment ambiguity, we consider more reasonable to include it among the
syntactic ambiguities.

Examples of each category are provided below:

– Analytical: The Italian office director. Here, “Italian” can be referred to the
office or to the director.

– Attachment: The officer edits a resumee with a template for the final assess-
ment. Here “for” can be referred to the “template”, or to the “resumee” or
can specify a deadline (i.e., before the final assessment).

– Coordination: The employee met the council and the head of office and the
secretary assessed his presence. Here, the sentence can have several parses.
For example, it is unclear whether both the head of office and the secretary
assessed the presence of the employee, or just the secretary.

www.manaraa.com

272 A. Ferrari et al.

– Elliptical: The successful candidate receives the letter on Sept. 12, and the
unsuccessful doesn’t. Here, the ambiguity is whether the unsuccessful candi-
date receives a notification in another date, or does not receive any notifica-
tion.

– Anaphoric: The delegate assesses the presence of the candidate, and he
provides his signature. Here “he” can be referred to both the delegate or the
candidate.

We decided to focus on a sub-set of the syntactic ambiguity categories and
to provide pattern-based approaches for them. The chosen categories are coor-
dination and anaphoric ambiguities. The choice has fallen on these categories
since they are more clearly defined in the literature, and can be in principle
associated to the presence of specific keywords (e.g., “and”, “or” for coordina-
tion ambiguities, and pronouns for anaphoric ambiguities). The other types of
syntactic ambiguities are more likely to be identifiable with machine learning
approaches.

Coordination Ambiguities. Potential coordination ambiguities may occur when
we have more than one coordinating conjunction in the form “or” or “and” in
the same sentence, as in the example provided above. Moreover, they may occur
when a conjunction is used with a modifier, as e.g., in the sentence “Novel
employees and directors are required to provide summaries of their work at
the end of the year” (is “novel” referred to employees only, or to both employees
and directors?). To detect these types of ambiguity, two patterns, one for each
type, can be provided.

– CAMB-1: (Token)∗ (and | or) (Token.kind != “punct”)∗ (and | or) (Token)∗
– CAMB-2: (JJ) (NN | NNS) (and | or) (NN | NNS).

The first pattern searches for at least two occurrences of “and” or “or”, not sep-
arated by punctuation (e.g., commas, semicolons, separator such as “-”, etc.). As
reported in [2], commas, and other types of punctuation may clarify the syntactic
structure. Coordination ambiguity may occur also in presence of punctuation.
However, we have evaluated these cases are sufficiently rare to be negligible.
The second pattern matches cases where an adjective (JJ) precedes a couple of
singular (NN) or plural nouns (NNS), joined by “and” or “or”.

Anaphoric Ambiguities. Anaphora occurs in a text whenever a linguistic expres-
sion (e.g., personal pronouns such as “he/she/it”, possessive pronouns as
“her/his”, relative pronouns such as “that”, “which”, demonstrative pronouns
such as “this”, “who”, etc.) refer to a previous part of the text. The referred part
of the text is normally called antecedent. An anaphoric ambiguity occurs if the
text offers one or more antecedent options, either in the same sentence or in pre-
vious sentences [28]. Here, we focus on anaphoric ambiguities that involve third
personal subject/object pronouns and possessive pronouns, of the three gen-
ders, namely male (“he”, “his”, “him”, “himself”), female (“she”, “her”, “hers”,
“herself”), and neuter (“it”, “its”, “itself”, “they”, “their”, “theirs”, “them”,

www.manaraa.com

QuOD: An NLP Tool to Improve the Quality 273

“themselves”). We do not focus on first and second person pronouns, since these
are less frequent in PA documents.

The potential antecedents for these pronouns are noun phrases (NP) [28].
Therefore, we define the following two patterns to identify potential cases of
anaphoric ambiguities.

– AAMB-1: (NounChunk) (NounChunk)+ (Pronoun)
– AAMB-2: (NounChunk) (NounChunk)+ (Split) (Pronoun)

The first pattern matches any single sentence with a pronoun and two or more
potential antecedents. The second pattern searches for potential antecedents in
the previous sentence (the notation “Split” indicates the sentence separator).

4 Quality Attribute: Simplicity

The simplicity quality attribute defines how easy is to read a BP description. It
is a quality attribute that, in a sense, shall give an overall degree of readability
of each sentence, and compute an aggregate value of readability. Such quality
attribute takes into account the difficulty of the terms. The difficulty associated
to the syntax – a topic that is still a matter of research, see. e.g., [11] – instead
is considered by simply evaluating the length of the sentences. We use the term
“simplicity” and not “readability”, since readability in the literature is a more
domain-generic concept, which involves also typographical aspects and degree of
interest that a text raises [16]. Here, we wish to highlight that the defects that
we address are those that makes difficult the understanding of PA procedure
descriptions, such as, e.g., juridical jargon and difficult jargon. Therefore, we have
considered the term simplicity to be more appropriate. The following sections
describe the indicators that we consider for this attribute.

4.1 Indicator: Excessive Length

This indicator indicates that a sentence is too long. The length of a sentence is
a rather intuitive indicator of its complexity. Normally a long sentence includes
multiple concepts that have to be processes by the reader, and is more likely to
include complex syntactic constructions that require higher reading effort. An
example of long sentence is provided below:

– Long Sentence: Further distribution of vote sheets within the staff is per-
missible upon issuance of the vote, but distribution outside the agency is per-
missible only after the final collegial decision is recorded by the Secretary in an
SRM to the action office and the votes have been released to the public. This
sentence is 49 words, and 293 characters, and it requires multiple readings to
be understood.

This indicator can be easily checked with this basic pattern:

– LEN: N = number of words in a sentence, N < τ .

www.manaraa.com

274 A. Ferrari et al.

The The Plain English Guide by Cutts [6] states that sentences should be
15–20 words in average, and should not exceed 40 words. Moreover, the style
guidelines of the English government [26] recommends sentences to not exceed
25 words. Therefore, in the context of Learn PAd, we take the threshold τ of 26
words as basic rule to check whether a sentence is too long.

4.2 Indicator: Juridical Jargon

Juridical jargon is the usage of terms and constructions that belong to the juridi-
cal domain. This domain has defined a specific jargon that is understood by
domain experts, and in a sense, is oriented to establish clear concepts and to
avoid ambiguity. Nevertheless, studies as [25] have shown that even technical
experts prefer text that use plain English instead of legal jargon, and that the
more specialist the knowledge of the reader, the higher the preference for plain
English. These studies have been used also by the UK government to define
their guidelines for editing the content of their Web pages [26], where they rec-
ommend to minimize the usage of juridical jargon, and latin terms, which are
typical in legal writing. Moreover, our interviews and questionnaires show that
the presence of juridical jargon is one of the main linguistic problems found in
their current procedure descriptions.

To address this problem, we define the current indicator – i.e., juridical jargon
– which aims to identify juridical words and expressions in the Learn PAd con-
tent. It is worth mentioning that the term “jargon” includes not only words and
expressions, but also the syntax. Here, we focus solely on the terms (i.e., words
and expressions), since other indicators are defined in Learn PAd that address
problem with ambiguous syntax (see Sect. 3.2), a typical problem of juridical
jargon.

Let J be a set of juridical terms, let S be a sentence and let T (S) be the
set of any ordered sequence of words in a sentence (i.e., any potential single or
multi-word term). The following pattern checks the presence of juridical terms.

– JUR: ∀j ∈ J,∀t ∈ T (S), if t = j, mark t as juridical jargon.

The set J of juridical terms used in Learn PAd is composed of 877 terms
in total. To compose this set, we have merged comprehensive glossaries selected
from the Web. In particular, we have merged juridical terms from (a) the glossary
provided by NY-COURTS.GOV, the New York State Unified Court System2, (b)
the glossary provided by the Judicial Branch of the State of Connecticut 3, and
(c) the list of legal Latin terms in Wikipedia4.

4.3 Indicator: Difficult Jargon

This indicator quantifies the amount of sentences using terms (single and multi-
words) that are considered difficult, either because they are rare, or because
2 http://www.nycourts.gov/lawlibraries/glossary.shtml.
3 http://www.jud.ct.gov/legalterms.htm.
4 https://en.wikipedia.org/wiki/List of legal Latin terms.

http://www.nycourts.gov/lawlibraries/glossary.shtml
http://www.jud.ct.gov/legalterms.htm
https://en.wikipedia.org/wiki/List_of_legal_Latin_terms

www.manaraa.com

QuOD: An NLP Tool to Improve the Quality 275

they are overly complex expressions that can be substituted with simpler ones.
The Dale-Chall formula [3] measures the readability of a text by taking into
account the percentage of words in the text not included in a list of 3, 000 words
considered easy-to-read. Such formula has two primary defects in our context:
(1) It gives only an index and does not indicate the editor which term is defective,
i.e., hard to read; (2) the set of 3, 000 words is too restricted and risks to raise too
many warnings. Indeed, a 5–6 years old child normally already uses 2, 500–5, 000
common words [26], and by age 9, people normally build the set of words that
they use every day. This set is normally composed of two sub-sets, a primary
set (around 5, 000 terms), and a secondary set (around 10, 000 terms). Though
also the secondary set includes terms that are used in every day life, such set
includes also terms that are less common, and, hence, more difficult. Therefore, to
identify the usage of difficult jargon, we define a pattern that, for each sentence,
checks that each term is contained in the primary set. More formally, let S be
a sentence, and let W (S) be any word in the sentence. Moreover, let E be the
set of 5, 000 terms that belong to the primary set of easy-terms. The following
pattern checks the presence of difficult jargon:

– DIF-1: ∀w ∈ W (S), if w /∈ E, mark w as difficult jargon.

If a sentence has at least one word that is detected to be difficult, according
to the previous pattern, such sentence will be marked as defective. As set E, we
have used the set of top-5000 most common terms available at [7].

The previous pattern checks that terms used in a sentence are easy-to-read
for a general public, and it is domain independent. Indeed, the list of common
words is based on the selection of the most frequent words in genre-balanced
corpus [7]. To detect difficult expressions that are specific of PA documents, we
resort to use the list of pompous terms that litter official writing [21]. Such list
of terms has been edited by the Plain English Campaign5, with the objective
of making official writing easier to read. While the list of easy words include
only single-word terms, this list includes also multi-word terms (e.g., “acquaint
yourself with”, “despite the fact that”, etc.). Therefore, we define a pattern to
check the presence of difficult jargon according to such list. Let D be the set of
difficult terms. Let S be a sentence, and let T (S) be any sequence of words in
the sentence. The pattern is as follows:

– DIF-2: ∀d ∈ D,∀t ∈ T (S), if t = d, mark t as difficult jargon.

If a sentence has at least one term that is detected to be difficult according
to one of the previous patterns, such sentence is marked as defective. As set D,
we have used the mentioned set of 407 difficult terms listed in [21].

5 Quality Attribute: Clarity

The content clarity quality attribute defines the degree of clarity of a BP descrip-
tion. Clarity of content is associated to specific aspects of sentences that make
5 http://www.plainenglish.co.uk.

http://www.plainenglish.co.uk

www.manaraa.com

276 A. Ferrari et al.

them more understandable from the procedural point of view. In other terms,
this attribute focuses on aspects associated to the applicability of a procedure,
such as the presence of well-defined actors in a sentence, and the presence of
clear time constraints. The following sections describe the indicators that we
consider for this attribute.

5.1 Indicator: Actor Unclear

This indicator indicates that the actor of an action is unclear. This might occur
in different cases, as e.g., in the following examples:

– The officer shall send the review form within 5 days from the reception of
the review request.

– The procedure shall be carried out before the end of March 2015.

In the first case, it is unclear which officer is in charge of sending the
review form. This situation might be resolved though the other sentences of
the documents—where the concept of officer might be defined—, and can be
apportioned to the cases of potential pragmatic ambiguities [13], not considered
here. The second case, instead, is using the passive voice, and this is a typi-
cal case where the subject of the action, i.e., the actor, is not specified in the
sentence, and he/she is therefore unclear. However, a simple “by” could help
specifying the actor, as in the following rephrasing:

– The procedure shall be carried out by the certification authority before the end
of March 2015.

In this section, we will define patterns to identify cases similar to the one
shown in the second example. The pattern below has been defined such cases:

– ACT: (Auxiliary) (RegularPP | IrregularPP)+ (¬ “by”)

The pattern matches any case where we have a term that indicates the
presence of at least an auxiliary verb (i.e., “am”, “are”, “were”, “being”, “is”,
“been”, “was”, “be”) followed by one or more past participle in regular form (i.e.,
any term terminating with “-ed”) or irregular form (e.g., “written”, “spent”,
“proven”, etc. – a list of 175 irregular verbs have been used). Moreover, the pat-
tern checks the presence of the preposition “by” following the verbs, as indicator
of the potential specification of an actor.

5.2 Indicator: Unclear Acronym

An acronym is word made from the initial letters or parts of other words, gener-
ally used to identify organisations (e.g., NATO, NASA, etc.) or domain specific
concepts (e.g., BPMN, SQL, etc.). An acronym is normally composed of capital
letters, which can be separated by full stops (e.g., F.A.O.), or not (e.g., FAO).
This indicator checks for acronyms that are never expressed in their extended
form (e.g., North Atlantic Treaty Organization for NATO). We have seen that

www.manaraa.com

QuOD: An NLP Tool to Improve the Quality 277

undefined acronyms are a relevant problem in the real-world BP descriptions col-
lected within the Learn PAd project [15]. Indeed, such BP descriptions include a
large amount of sentences with acronyms, and in most of the cases the meaning of
such acronyms is not defined in any part of the text. Though some acronyms are
commonly used, many acronyms found are domain specific, or even procedure
specific and need to be defined to clarify their meaning.

We define an algorithm that makes use of regular expressions to check the
presence of unclear acronyms in a document. The algorithm first searches for
potential acronyms (Step 1). Then scans the document to search for sentences
where the potential acronym occurs together with its definition; if no sentence
is found, the acronym is marked as unclear (Step 2).

Step 1. The following regular expression is used to find potential acronyms:

– Find Acronyms: [A − Z|\.]{2, }
The expression matches any string of text with capital letters or full stops, if it

is composed of at least two characters. This expression includes cases of sequences
of full stops, and terms written in capital letters (e.g., “PROTOCOL” in a
capitalized title). After the execution of the regular expression, these cases are
discarded from the list of potential acronyms. In practice, all potential acronyms
made of full stops are discarded, as well as sequence of capital letters longer than
5 character.

Step 2. In each sentence where the acronym appears, the algorithm checks if a
sequence of words exist that express the acronym in its extended version. The
following regular expression is used to find the presence of a potential extended
version of an acronym of length “len” in a sentence. The value of “len” is com-
puted without counting the full stops (CNR and C.N.R. have both len = 3).

– Find Acronym Definition: ([A − Z] + \w + ([]|)){len}
The regular expression searches for sequences of length “len”. The sequences

are required to be composed of one or more capital letters, followed by any word
character (\w), followed by a space ([]), or not (to detect final words). Finally,
the algorithm checks that each capital letter in the matched string matches the
capital letters found in the candidate acronym.

If the extended version of an acronym is found in at least one sentence in the
document, the acronym is marked as ‘‘clear’’, and no defect will be raised
if the acronym appears in the rest of the document without its extended ver-
sion. If no sentence exist where the acronym appears together with its extended
version, such acronym is marked as ‘‘unclear’’ in each sentence where the
acronym appears. In turn, each sentence including an ‘‘unclear’’ acronym
will be marked as defective.

www.manaraa.com

278 A. Ferrari et al.

6 Quality Attribute: Correctness

The correctness quality attribute defines the degree of grammatical correctness
of a BP description. Hence, in this case, the quality attribute is equivalent to
the indicator. Grammatical correctness is a fluid concept that evolves according
to the evolution of a language and its grammar. Therefore, in our context, we
have decided to give a more operational definition of correctness (i.e., a text is
correct, if a grammar checker does not find any defect). To this end, we use a
set of prescriptive rules, which are embedded in a tool, namely Language Tool6,
which has the advantage of embedding grammar checks that can be extended
with the contributions of the user community. Therefore, as the grammar of a
language evolves, we expect to easily plug additional patterns – or remove old
ones –, so that the computed degree of correctness of a sentence is up-to-date
with the rules of language.

7 The QuOD Tool

The different patterns have been implemented in the form of JAPE rules,
deployed within a web service, and embedded in the content analysis component
of the Learn PAd platform [10,15]. Furthermore, the QuOD web application has
been implemented that, through RESTful APIs, interacts with the web service
and allows users to check the quality of their BP descriptions and official docu-
ments in general. The web application was developed by Narwhal Software7 and
it is publicly available at http://narwhal.it/quod/.

Figure 1 reports a screenshot of QuOD when applied to a sample BP
description named EPBR (European Project Budget Reporting), see Thönssen
et al. [24] for more details. On the top-left panel, the user can select the quality
attributes to check (named Criteria), the Language, and the Document type.
After performing the analysis, the system outputs a summary of the numerical
scores associated to each quality attribute, indicating the percentage of defective
sentences over the whole document for each attribute (bottom-left). On the right
panel, the user can see the actual occurrences of the defects, highlighted with
the color of the associated attribute. By hovering the mouse on the highlighted
defect, the user can see the recommendation. For example, in the figure, we have
an unclear actor in the sentence [...] the authorization of the involved school has
to be asked [...], and we see a pop-up window with a recommendation concern-
ing Content Clarity: The sentence does not specify the subject: asked by whom?
Please specify.

By selecting the lens icon on the top-right corner, the user can also inspect
the single defects. In the figure, we see the list of defects associated to the
non-ambiguity attribute. This is particularly useful when overlapping defects
are present in the original document, which may not be clearly visible in the
central panel. For example, in the figure, we have two potential, and overlapping,
6 https://www.languagetool.org.
7 http://narwhal.it.

http://narwhal.it/quod/
https://www.languagetool.org
http://narwhal.it

www.manaraa.com

QuOD: An NLP Tool to Improve the Quality 279

Fig. 1. The interface of QuOD when applied to a BP description.

anaphoric ambiguities: one is referred to the usage of “they” in the sentence
“Submitting a EU project the organizations have to be aware of the complexity
of the environment in which they are working.”, identified with AAMB-1 of
Sect. 3.2. The other is referred to the usage of “They” in the following sentence,
which refers to the previous one, and which was identified based on AAMB-2
of Sect. 3.2.

www.manaraa.com

280 A. Ferrari et al.

8 Conclusion

Public administrations (PAs) typically use natural language to describe their
business processes (BPs). As natural language is inherently ambiguous, descrip-
tions of BPs need to be carefully reviewed for their linguistic quality. To support
the work of editors and reviewers of BP descriptions in PAs, this paper presents
QuOD, a tool oriented to detect linguistic quality defects in official documents in
general, and in PA documents in particular. The tool is developed in the context
of the EU project Learn PAd, and is publicly available through a web applica-
tion. In the future, we plan to gather data from the users of the tool, and improve
the defect detection capabilities to reduce false positives, as pattern-based sys-
tems are known to suffer from this problem [14]. A validation campaign is also
foreseen with PA users, to assess and further improve the tool.

Acknowledgments. This work was possible thanks to the seminal work of Stefania
Gnesi and co-authors on the usage of rule-based NLP techniques for detecting ambi-
guity and other quality issues in requirements specifications [17].

References

1. Berry, D., Gacitua, R., Sawyer, P., Tjong, S.F.: The case for dumb requirements
engineering tools. In: Regnell, B., Damian, D. (eds.) REFSQ 2012. LNCS, vol.
7195, pp. 211–217. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28714-5 18

2. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software spec-
ification: linguistic sources of ambiguity (2003)

3. Chall, J.S., Dale, E.: Readability Revisited: The New Dale-Chall Readability For-
mula. Brookline Books, Cambridge (1995)

4. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput.
Stand. Interfaces 34(1), 124–134 (2012)

5. Corradini, F., et al.: A guidelines framework for understandable BPMN models.
Data Knowl. Eng. 113, 129–154 (2018)

6. Cutts, M.: The Plain English Guide. Oxford University Press, Oxford (1996)
7. Davies, M.: Word frequency data. http://www.wordfrequency.info/free.asp.

Accessed 1 Aug 2015
8. De Angelis, G., Ferrari, A., Gnesi, S., Polini, A.: Collaborative requirements elic-

itation in a European research project. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing, pp. 1282–1289. ACM (2016)

9. De Angelis, G., Ferrari, A., Gnesi, S., Polini, A.: Requirements elicitation and
refinement in collaborative research projects. J. Softw. Evol. Process 30(12), e1990
(2018)

10. De Angelis, G., Pierantonio, A., Polini, A., Re, B., Thönssen, B., Woitsch, R.:
Modeling for learning in public administrations—the learn PAd approach. Domain-
Specific Conceptual Modeling, pp. 575–594. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39417-6 26

11. Dell’Orletta, F., Montemagni, S., Venturi, G.: Read-it: assessing readability of
Italian texts with a view to text simplification. In: Proceedings of the Second
Workshop on Speech and Language Processing for Assistive Technologies, pp. 73–
83. Association for Computational Linguistics (2011)

https://doi.org/10.1007/978-3-642-28714-5_18
https://doi.org/10.1007/978-3-642-28714-5_18
http://www.wordfrequency.info/free.asp
https://doi.org/10.1007/978-3-319-39417-6_26
https://doi.org/10.1007/978-3-319-39417-6_26

www.manaraa.com

QuOD: An NLP Tool to Improve the Quality 281

12. Ferrari, A., Dell’Orletta, F., Esuli, A., Gervasi, V., Gnesi, S.: Natural language
requirements processing: a 4D vision. IEEE Softw. 34(6), 28–35 (2017)

13. Ferrari, A., Gnesi, S.: Using collective intelligence to detect pragmatic ambiguities.
In: 20th IEEE International Requirements Engineering Conference (RE), pp. 191–
200. IEEE (2012)

14. Ferrari, A., et al.: Detecting requirements defects with NLP patterns: an industrial
experience in the railway domain. Empir. Softw. Eng. 23(6), 3684–3733 (2018)

15. Ferrari, A., Spagnolo, G.O., Witschel, H.F.: Learn PAd - deliverable D4.2 quality
assessment strategies for contents (2019). https://doi.org/10.5281/zenodo.2643293

16. Ferrari, A., Witschel, H.F., Spagnolo, G.O., Gnesi, S.: Improving the quality of
business process descriptions of public administrations: resources and research chal-
lenges. Bus. Process Manag. J. 24(1), 49–66 (2018)

17. Gnesi, S., Lami, G., Trentanni, G.: An automatic tool for the analysis of natural
language requirements. IJCSSE 20(1), 53–62 (2005)

18. Hirst, G.: Semantic Interpretation and the Resolution of Ambiguity. Cambridge
University Press, Cambridge (1992)

19. Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in
business process models. Inf. Syst. 37(5), 443–459 (2012)

20. Massey, A.K., Rutledge, R.L., Anton, A., Swire, P.P., et al.: Identifying and classi-
fying ambiguity for regulatory requirements. In: IEEE 22nd International Require-
ments Engineering Conference (RE), pp. 83–92. IEEE (2014)

21. Plain English Campaign: The A to Z of alternative words. http://www.
plainenglish.co.uk/files/alternative.pdf

22. Sanne, U., Ferrari, A., Gnesi, S., Witschel, H.F.: Ensuring action: identifying
unclear actor specifications in textual business process descriptions. In: Proceedings
of the 8th International Conference on Knowledge Management and Information
Sharing (KMIS). Springer (2016)

23. Silva, T.S., Thom, L.H., Weber, A., de Oliveira, J.P.M., Fantinato, M.: Empir-
ical Analysis of Sentence Templates and Ambiguity Issues for Business Process
Descriptions. In: Panetto, H., Debruyne, C., Proper, H., Ardagna, C., Roman,
D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11229. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-02610-3 16

24. Thönssen, B., Witschel, H.F., Rusinov, O.: Determining information relevance
based on personalization techniques to meet specific user needs. In: Dornberger,
R. (ed.) Business Information Systems and Technology 4.0. SSDC, vol. 141, pp.
31–45. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74322-6 3

25. Trudeau, C.R.: The public speaks: an empirical study of legal communication.
Scribes J. Leg. Writ. 14(2011–2012), 32 (2012)

26. UK Government: Content design: planning, writing and managing content. https://
www.gov.uk/guidance/content-design/writing-for-gov-uk. Accessed 1 Aug 2015

27. University of Sheffield: JAPE: regular expressions over annotations. https://gate.
ac.uk/sale/tao/splitch8.html. Accessed 1 Aug 2015

28. Yang, H., Roeck, A.N.D., Gervasi, V., Willis, A., Nuseibeh, B.: Analysing anaphoric
ambiguity in natural language requirements. Requir. Eng. 16(3), 163–189 (2011)

https://doi.org/10.5281/zenodo.2643293
http://www.plainenglish.co.uk/files/alternative.pdf
http://www.plainenglish.co.uk/files/alternative.pdf
https://doi.org/10.1007/978-3-030-02610-3_16
https://doi.org/10.1007/978-3-319-74322-6_3
https://www.gov.uk/guidance/content-design/writing-for-gov-uk
https://www.gov.uk/guidance/content-design/writing-for-gov-uk
https://gate.ac.uk/sale/tao/splitch8.html
https://gate.ac.uk/sale/tao/splitch8.html

www.manaraa.com

Software Product Lines

www.manaraa.com

A Decade of Featured Transition Systems

Maxime Cordy1 , Xavier Devroey2 , Axel Legay3, Gilles Perrouin4(B) ,
Andreas Classen5, Patrick Heymans4, Pierre-Yves Schobbens4 ,

and Jean-François Raskin6

1 SnT, University of Luxembourg, Luxembourg, Luxembourg
maxime.cordy@uni.lu

2 Delft University of Technology, Delft, The Netherlands
x.d.m.devroey@tudelft.nl

3 UCLouvain, Louvain-la-Neuve, Belgium
axel.legay@uclouvain.be

4 PReCISE/NaDI, Faculty of Computer Science, University of Namur,
Namur, Belgium

{gilles.perrouin,patrick.heymans,pierre-yves.schobbens}@unamur.be
5 INTEC Software Engineering, St. Vith, Belgium

andreas.classen@intecsoft.com
6 ULB, Brussels, Belgium

jraskin@ulb.ac.be

Abstract. Variability-intensive systems (VIS) form a large and hetero-
geneous class of systems whose behaviour can be modified by enabling or
disabling predefined features. Variability mechanisms allows the adapta-
tion of software to the needs of their users and the environment. However,
VIS verification and validation (V&V) is challenging: the combinatorial
explosion of the number of possible behaviours and undesired feature
interactions are amongst such challenges. To tackle them, Featured Tran-
sitions Systems (FTS) were proposed a decade ago to model and verify
the behaviours of VIS. In an FTS, each transition is annotated with a
combination of features determining which variants can execute it. An
FTS can model all possible behaviours of a given VIS. This compact
model enabled us to create efficient V&V algorithms taking advantage
of the behaviours shared amongst features resulting in a reduction of the
V&V effort by several orders of magnitude. In this paper, we will cover
the formalism, its applications and sketch promising research directions.

Keywords: Variability-intensive systems · Modeling ·
Model-checking · Testing

1 Introduction

Variability-intensive systems (VISs) form a vast and heterogeneous class of soft-
ware systems that encompasses: Software Product Lines [2,84], operating system

Gilles Perrouin is a research associate at the FNRS. This research was partially funded
by the EU Project STAMP ICT-16-10 No. 731529, the NIRICT 3TU.BSR (Big Software
on the Run) project, the EOS project VeriLearn under FNRS Grant O05518F-RG03.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 285–312, 2019.
https://doi.org/10.1007/978-3-030-30985-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_18&domain=pdf
http://orcid.org/0000-0001-8312-1358
http://orcid.org/0000-0002-0831-7606
http://orcid.org/0000-0002-8431-0377
http://orcid.org/0000-0001-8677-4485
https://doi.org/10.1007/978-3-030-30985-5_18

www.manaraa.com

286 M. Cordy et al.

kernels, web development frameworks/stacks, e-commerce configurators, code
generators, Systems of Systems (SoS), software ecosystems (e.g., Android’s “Play
Store”), autonomous systems, etc. While being very different in their goals and
implementations, VIS see their behaviour affected by the activation or deactiva-
tion of one or more feature(s), i.e., units of variability, or configuration options.
Configurable systems may involve thousands of features with complex depen-
dencies. The set of valid combinations of features of a VIS can be represented
in a tree-like structure, called feature model (FM) [60]. Each valid combination
is a configuration of the VIS, which can be derived as a variant or a product,
terms we will use interchangeably in this paper both at the model and code level.
Each feature may be decomposed into sub-features and additional constraints
may be specified amongst the different features. Within feature models, features
can be mandatory (present in every configuration) or selected depending on the
groups they belong to (OR, XOR, etc.) and cross-tree constraints (dependence
on or exclusion of other feature selections). To support automated reasoning, fea-
ture models have been equipped with formal semantics and in particular based
on first-order logic [88]. Thanks to their formal semantics, operations on fea-
ture models such as inconsistency reasoning can be automated thanks to SAT
solvers [75].

Considering that some VIS such as the Linux kernel can easily have more
than 10,000 features and that the number of possible variants grows exponen-
tially with the number of features, considering each variant independently for
verification and validation (V&V) activities is intractable. As an example, Halin
et al. [54] report their effort to perform a complete product-based testing of
JHipster, an open-source generator for Web applications with 48 features. It
took 8 person/month to set up the testing infrastructure, 5.2 TB of disk space,
and 4,376 h (around 182 days) computation time to test all 26,256 products. It is
therefore desirable to analyse VIS behaviours without requiring to build and run
tests for each variant by reasoning on a behavioural model rather than on the
system itself (which may not be implemented yet). However, while providing a
transition system for each variant and performing model-checking [6] or model-
based testing (MBT) activities allows to find bugs early in the process, this does
not solve per se the combinatorial explosion problem due to variability, as pro-
viding a transition system for each variant is also intractable. A family-based
approach is required to model all the variants in a compact manner without
having to enumerate them. Almost a decade ago, Classen et al. [27] defined Fea-
tured Transition Systems (FTSs) as transition systems (TSs) annotated with
combination of features on their transitions: each combination describes the set
of products that can execute the behaviour defined by the transition. It is thus
possible to model all the variants of a VIS with a unique FTS and its associ-
ated feature model. This compact formalism allows to take advantage of sharing
between variants leading to drastic reductions of the analysis time, both for
formal verification or test generation.

This paper reviews the foundations and applications of featured transi-
tion systems, connecting them to other formalisms, such as modal transition

www.manaraa.com

A Decade of Featured Transition Systems 287

systems, and considering extensions such as quantities and probabilities which
are required to address V&V challenges induced by, for instance, cyber-physical
or learning systems. The rest of this paper is structured as follows. Section 3
introduces the formalism and describes how the modified VIS model-checking
problem can be solved efficiently. Section 3.4 reviews other model-checking tech-
niques for VIS, placing FTS-based verification in a broader context. Section 4
explores how the FTS formalism was used to provide a framework for model-
based testing for VIS, notably extending existing coverage criteria for transition
systems. Section 5 provides an outlook into the future of VIS V&V. Finally,
Sect. 6 concludes the paper.

2 Grazie Mille

The content of this paper, although being a synthesis of a 10-year collective
research effort, is only a very small sample of the many ways in which the work
and personality of Stefania Gnesi have inspired us. The scope of this chapter
lies at the intersection of formal methods and software product lines, two areas
to which Stefania offered both seminal contributions and devoted a continuous
effort over several decades. If that was all Stefania had done, she could already
be proud of herself and happily retire without regrets. But this is actually only
part of the story we are celebrating, a story that produced significant scientific
contributions in a variety of other areas too, including requirements engineering,
software engineering, critical systems and natural language processing; a story of
relentlessly passing knowledge to her students and peers; a story of coordinating
international research efforts; a story of organizing memorable scientific events
and of serving research communities; and, in spite of all that, a story of remaining
a humble, attentive and kind colleague with whom it is a constant pleasure to
work and discuss. Stefania does not deserve a simple applause, she deserves a
standing ovation. Thank you from all of us!

3 Verifying Variability-Intensive Systems with FTS

We model the space of variants in terms for feature models following the seman-
tics as provided by Schobbens et al. [88]. A FM fm is a tuple (F, r, DE) where
F is a set of features, r ∈ F is the root, and DE ⊆ F ×F is the set of decomposi-
tion edges between features. A product (or variant) is defined as a set of features
P = {f1, . . . , fn}, such that fi ∈ P if and only if fi is part of the product. The
semantics of a FM fm, noted [[fm]], is the set of valid products (whose features
satisfy the FM constraints), i.e. a set of sets of features: [[fm]] ∈ 22

F

. We also
assume the presence of a behavioural model Mv for all variants – which we will
formalise below – in order to introduce the VIS model-checking problem. This
problem is more complex than for single systems because it requires to verify
all the variants that can be built against a given property. More precisely, it is
desired to identify exactly which VIS variants violate the property [25].

www.manaraa.com

288 M. Cordy et al.

Definition 1 (VIS model checking). Let fm be a feature model, Mv be a
behavioural model of all variants in [[fm]], and φ a property. Model checking Mv

against φ is the problem of:

1. Determining for each product p ∈ [[fm]] whether p satisfies φ in Mv, that is,
whether the behaviour of p expressed in Mv satisfies φ.

2. Providing for each product p that does not satisfy φ a counterexample of
behaviour of p that violates φ.

A simple method to address this problem consists of modelling every valid prod-
uct of a VIS in a separate transition system (TS), and then applying single-
system model checking on each of these TS individually. This method, named
enumerative [26] or product-based [85], violates the principles of VIS engineer-
ing: the variants should not be modelled separately. Instead, one should build a
core model, which is subsequently specialized into desired variants. In addition
to the modelling task, performance is also a major concern. State explosion, a
problem inherent to model checking, is amplified when considering VISs, espe-
cially when these consist of a huge number of variants. Being part of a VIS, these
variants likely share commonalities in both their structure and their behaviour.
This observation illustrates the fact that single-system verification techniques
are suboptimal to address the VIS model-checking problem. Clearly, VIS model
checking would benefit from models that can concisely represent the behaviour
of a set of variants, and algorithms that can exploit the information about the
commonalities between these variants to speed-up verification.

3.1 A Formalism to Model VIS Behaviour

In [25,27], we proposed Featured Transition Systems (FTSs) as a compact rep-
resentation of the behaviours of a set of variants. FTSs are an extension of TSs
equipped with an FM and whose every transition is annotated with the exact set
of variants able to execute it. For the sake of conciseness, these sets are encoded
as feature expressions.

Definition 2 (Feature expression). Let F = {f1, . . . , f|F |} be a set of fea-
tures. Then a feature expression over F is a Boolean formula b ∈ 22

F

in which
each variable corresponds to a unique element of F , and whose semantics is a
function 2F → {⊥,�} encoding a set of products. A product p ∈ 2F is included
in the set represented by b, noted [[b]], if and only if b(p) = �, or equivalently:∧

f∈p f
∧

g∈F\p ¬g |= b. In this case, p is said to satisfy b, noted p |= b. We also
denote by B(px) the feature expression encoding the set of products px, that is,
B(px) =

∨
p∈px

(∧
f∈p f

∧
g∈F\p ¬g

)
.

Definition 3 (Featured transition systems). An FTS is a tuple (S, Act,
T rans, I, AP, L, fm, γ), where

– S is a set of states named the state space;
– Act is a set of actions;

www.manaraa.com

A Decade of Featured Transition Systems 289

87

6

5

1 3

cancel / creturn / c

close

change

free / f
soda / s

serveSoda / s

tea / t
2

4

serveTea / t

open

Fig. 1. The FTS modelling the vending machine VIS.

– Trans ⊆ S ×Act×S is the transition relation, where (s, α, s′) ∈ Trans (also
noted s

α−→ s′) means that there is a transition from state s to state s′ labelled
with action α;

– I ⊆ S is a set of initial states;
– AP is a set of atomic propositions;
– L : S → 2AP is a function that associates every state with the set of atomic

propositions satisfied by this state.
– fm is an FM over a set of features F ;
– γ : Trans → 22

F

is a total function that associates a transition with a feature
expression over F .

An FTS can be seen as the merging of the TSs of all the variants that compose
the VIS. The TS model of a specific product is obtained from the FTS by apply-
ing a projection function. In simple terms, this function suppresses in the FTS
all the transitions whose feature expression is not satisfied by the considered
product [27], and then removes all feature expressions.

Definition 4 (Projection of FTS). Let fts = (S,Act, T rans, I, AP,L, fm,
γ) be an FTS and p ∈ [[fm]] be a variant. The projection of fts onto p, noted
fts |p, is the TS (S, Act, T rans′, I, AP, L) where Trans′ = {t ∈ Trans | p |=
γ(t)}.

Example 1. Figure 1 depicts an FTS modelling an VIS of vending machines,
while Fig. 2 shows its associated FM. This VIS consists of 12 variants, each of
which has its behaviour modelled by the FTS. For instance, the transition from
state 3 to state 6 is labelled with the feature expression t, meaning that it can be
executed only by variants including the corresponding feature Tea. Transition
from state 1 to state 2 is labelled with ¬f , and thus can be executed only by
variants that do not have the feature Free.

Since an FTS represents the behaviour of a set of variants, its semantics is
defined as a function that associates a variant with the traces of the correspond-
ing projection.

Definition 5 (FTS Semantics). Let fts be an FTS over an FM fm. The
semantics of the fts is a total function [[fts]] : [[fm]] → 2(2

AP)ω

such that ∀p ∈
[[fm]] • [[fts]](p) = [[fts |p]].

www.manaraa.com

290 M. Cordy et al.

VendingMachine
v

Tea
t

FreeDrinks
f

CancelPurchase
c

Soda
s

Beverages
b

Fig. 2. The FM of the vending machine VIS.

3.2 FTS Model Checking

Contrary to single systems, a binary result is not sufficient to appropriately
address the model-checking problem for VIS. In case of property violation, a
model checker is expected to identify all variants responsible for the violation.
There is thus a need for generalizing the definition of model checking. We already
gave an intuitive definition at the beginning of this paper. Here, we rephrase this
definition formally, by considering a FTS as a model for VIS behaviour.

Beforehand, let us remark that a property may only be relevant for certain
variants. For instance, a property may refer to characteristics that only occur
in a subset of the VIS. To address this requirement, we proposed to extend
temporal logic with a product quantifier, i.e. a feature expression that defines for
which variants the property must be checked [25]. The resulting variant of LTL
is defined as follows.

Definition 6 (fLTL). Let F be a set of features. An fLTL formula ψ is an
expression ψ = [χ]φ where χ is a feature expression over F and φ an LTL
formula. Let fts be an FTS over an FM fm over F and let p ∈ [[fm]]. Then p
satisfies ψ in fts if and only if χ(p) ⇒ fts |p |= φ.

We are now ready to generalise the concept of satisfiability.

Definition 7 (F-satisfiability). Let fts be a FTS over an FM fm, and ψ =
[χ]φ be an fLTL formula. Then, the variants that F-satisfy ψ in fts are encoded
as the feature expression

(fts |= ψ) = ¬χ ∨ B({p ∈ [[fm]] | fts |p |= φ}).

Conversely, the variants that F-unsatisfy ψ in fts are encoded as the feature
expression

(fts
|= ψ) = χ ∧ B({p ∈ [[fm]] | fts |p
|= φ}).

Given an FTS and an fLTL formula, a VIS model-checker should thus compute
F-satisfiability expressions, and associate each F-unsatisfying product with one
of its traces that violates the formula.

www.manaraa.com

A Decade of Featured Transition Systems 291

3.3 Algorithms

Given its explicit notion of features, FTSs constitute a suitable formalism to
concisely model behaviour subject to variability. Yet there remains a second
challenge to solve, i.e. an efficient verification of the behaviour of a set of variants.
To achieve that, we designed algorithms to check FTS against LTL [25] and
CTL [26] formulae that exploit common transitions among variants to reduce the
verification effort. As opposed to the product-based approach, a given behaviour
is not always checked as many times as the number of variants in which it occurs.

Regardless of the logic used to express properties, the verification process
can be reduced to the computation of reachability relations. A major difference
is that the reachability of a state now depends on variability: the variants that
can reach a target state a from an initial state i are those that can execute
any sequence of transitions starting from i and ending in a. Fundamentally, the
difference with single-system model-checking is the definition of successor state.
In TS, state s′ is a successor of a given state s if and only if there exists a
transition from s to s′. In FTSs, variability can influence the set of successors
as a transition may exist for only a subset of the variants. The definition of
successor has thus to be revisited according to variants as well. It is given as
follows.

Definition 8 (Successors in FTS). Let fts = (S,Act, T rans, I, AP,L, fm,

γ) be an FTS. The successor function in fts is defined as Post : S → (S → 2(2
F))

such that:

Post(si)(si+1) = B({p ∈ ∪α[[γ(si, α, si+1)]]})

=
∨

α

γ(si, α, si+1)

with (si, α, si+1) ∈ Trans.

Intuitively, for a given pair of states (s, s′), the function Post(s)(s′) is the feature
expression encoding the variants that can execute a transition from s to s′.

From the definition of successor, one can define reachability relation in FTS.
Similarly to successor, reachability takes the form of a function. It associates
two states, say s0 and sn, to a feature expression encoding the variants able to
reach sn from s0. These variants are those able to follow at least one path from
s0 to sn. Let s0, . . . , sn be a path in a given FTS. A variant can follow this path
if and only if it satisfies the feature expression

∧
0≤i<n Post(si)(si+1). To obtain

the variants that can reach sn from s0, we can existentially quantify the above
expression over the paths from s0 to sn.

www.manaraa.com

292 M. Cordy et al.

Definition 9 (Reachability in FTS). Let fts = (S,Act, T rans, I, AP,L, fm,

γ) be an FTS. Reachability in fts is a function R : S → (S → 2(2
F)) such that:

R(s0)(sn) = B({p ∈ 2F | ∃s1, . . . , sn−1 • p ∈ [[
n−1∧

i=0

Post(si)(si+1)]]})

= B({p ∈ [[
∨

s1,...,sn−1∈Sn−1

n−1∧

i=0

Post(si)(si+1)]]})

=
∨

s1,...,sn−1

n∧

i=0

Post(si)(si+1)

where ∀j • 0 ≤ j < n • ∃α ∈ Act • (sj , α, sj+1) ∈ Trans.

To efficiently compute the reachability function in an FTS, we designed a
depth-first search algorithm that accumulates the conjunction of the feature
expressions of all transitions executed on a given path in order to keep track of
the variants able to reach any state met along this path. The algorithm separates
the verification of different sets of variants only if they discover a behavioural
discrepancy between them. This optimisation is called late splitting [3].

Algorithm 1 formalises the computation of the reachability function of a given
state s0. The algorithm consists of a loop that iterates over a stack of pairs (s, γ)
where s is a state and γ is a feature expression. Initially, the stack contains only
the element (s0, fm) in order to start the search from s0 while considering all
the variants. At each iteration, the algorithm takes the top element (s, γ) of
the stack, computes the successors of s and associates each successor with the
variants that satisfy γ and can reach the successor from s (Lines 4–5). This
results in a set of couples (s′, γ′) ∈ S × 22

F

. For each such pair, the algorithm
first determines whether [[γ′]] contains at least one valid product; otherwise it is
not needed to pursue the search from s′. This verification is achieved by checking
the satisfiability of γ′ (Line 6). If that is the case, we enter an inner loop (Lines
7–17).

During the search, the algorithm may visit a given state more than once
(Lines 7–13). In single-system model checking, it should not pursue the search
since it already knows that the revisited state is reachable. In our case, however,
it may happen that the algorithm discovers a new path to an already visited
state s′ which is executable by variants that were not known to be able to reach
s′. Formally, let R(s′) be the feature expression encoding the set of variants
that were known to reach s′. Then ¬R(s′) ∧ γ′ encodes the set of variants that
are newly known to reach s (noted γnew at Line 8). If there is at least one
valid product satisfying this feature expression, the search continues from s′

considering only the variants in γnew (Lines 9–12). Indeed, any state reachable
from s for variants [[R(s′)]] may have already been visited for these variants.
Therefore, the paths starting from s are worth re-exploring only for the variants
in γnew. Before pursuing the exploration, the feature expression R(s′) is updated
accordingly.

www.manaraa.com

A Decade of Featured Transition Systems 293

Input: fts = (S, Act, T rans, I, AP, L, fm, γ), s0 ∈ S.
Output: R(s0).

1 R ←⊥;
2 Stack ← push((s0, fm), []);
3 while Stack �= [] do
4 (s, γ) ← pop(Stack);
5 succ ← {(s′, γ′) | s′ ∈ dom(Post(s)) ∧ γ′ = Post(s)(s′) ∧ γ};
6 foreach (s′, γ′) ∈ succ • γ′ �|=⊥ do
7 if s′ ∈ dom(R) then
8 γnew ← ¬R(s′) ∧ γ′;
9 if γnew �|=⊥ then

10 R(s′) ← R(s′) ∨ γ′;
11 push((s′, γnew), Stack);

12 end

13 end
14 else
15 R(s′) ← γ′;
16 push((s′, γ′), Stack);

17 end

18 end

19 end
20 return R

Algorithm 1: Reachables(fts, s0)

The theoretical complexity of the above algorithm is given as follows.

Theorem 1. [25] Let fts be an FTS over a set of features F . The worst-case
time complexity of computing Algorithm 1 is bounded by O(|fts|.22.|F |).

Intuitively, in the worst-case each valid product has a different behaviour start-
ing from the initial state. In this case, Algorithm 1 behaves as the product-based
approach. Moreover, the number of valid variants is in the worst-case the size
of the power set of F , i.e. 2|F |. Furthermore, there is an overhead in the FTS
algorithm that does not exist in the product-by-product method: At each itera-
tion, a satisfiability check on feature expression is performed, which also has a
time complexity of O(2|F |). Although the FTS algorithm has a worse theoret-
ical complexity, experiments tend to show that in practice it outperforms the
product-based approach [23,25,26]. The FTS theory is thus a solid candidate
solution for the VIS model-checking problem.

3.4 Related FTS-Based Verfication Work

Modal Automata, i.e., automata with optional and compulsory transitions, pre-
cede FTS as a formal model for software product lines. As an example, in [49],
Gnesi and Fantechi proposed a behavioural model, namely the Extended Modal
Labeled Transition Systems (EMLTS), as a basis for the formalisation of the

www.manaraa.com

294 M. Cordy et al.

different notions of variability usually present in the definitions of product fam-
ilies. In particular, an EMLTS is able to define a family of products by telling at
any state of the system whether transitions are optional or compulsory for the
products of the family. The work was then pursued by Leucker and co-authors
[52] and compared with FTS in [4]. One of the main drawbacks of EMLTS is
that there is no causality on transition choice from state to state. This causal-
ity is captured by FTS constraints and also by a constraint-based extension
of EMLTS proposed in [7,8], but without the family-based analysis. It should
be also noted that, contrary to FTS, EMLTS have not been extended to the
quantitative setting.

Our FTS formalism has been extended in various directions. The first of them
was to consider other types of logic in order to specify product line requirements.
As an example in [24], we have showed how to extend symbolic model-checking
of computational tree logic to FTS. We showed how to encode features as extra
variables in BDDs representing symbolic behaviors of multiple products without
blowing up the representation. Later, in [10], Ter Beek et al., have showed how to
consider the entire mu-calculus. Their main contribution was to introduce μLf ,
a logic that combines mu-calculus modalities with feature expressions. They
showed how to define and model-check this logic on FTS. Their work has been
implemented in a tool called mCRL2 [96].

In parallel, we have also extended our approach to conformance model-
checking (also known as refinement-based model-checking), that is the problem
of comparing the behaviors of several products. Simulation relation allows us to
decide whether all behaviors of a system are covered by those of another system.
In product lines, the problem reduces to check if all products from one line are
covered by products from another line. One way to do so is to perform a pair-
wise comparison between the products of the two lines, which is expensive. In
order to avoid this enumerative comparison, we have showed how to generalize
the notion of simulation from systems to family. The work, which is presented
in [31], shows clear benefit in using this approach. Branching bisimulation for
FTS was also studied by Belder et al. [11]. Later, in collaboration with Univer-
sity of Waterloo Canada, we have showed that these new relations can be used
to quantify the impact of change when introducing or removing features from
a given system. This was one of the first extensions of FTS has been used to
handle problems that are not related to product lines. Indeed, here features are
used to label behaviors of a system, not to distinguish products in a specific line.
Results related to this topic are available in [5].

Abstraction is a technique that permits to reduce the size of a system by
merging states or transitions. The resulting system is generally smaller and eas-
ier to verify. Abstraction is behaviorally conservative, but may introduce extra
fake behaviors. In [32], we have showed how to abstract states and transitions
of FTS. The situation is more complex than for single systems. Indeed, we need
not only to merge states, but also to simplify formulas representing set of fea-
tures over FTS’s transitions. In order to remove fake behaviors (when needed),
we have entirely redeveloped a CEGAR-based model-checking for FTS. Another

www.manaraa.com

A Decade of Featured Transition Systems 295

CEGAR procedure was developed by Wasowski for LTL and latter CTL [43–45].
Contrary to us, they only focus on abstracting features, but not states. Their
approach uses games and modal automata as FTS abstractions, hence show-
ing that FTS is practically more convenient than modal automata to represent
complex behavioral relations between products.

Another trend has been the one of extending FTS with quantitative infor-
mation. The first attempt was when we showed how to combine FTS and timed
automata in order to handle timed product lines. In [34], we have showed how
to combine timed constraints of real-time clocks with feature constraints. We
have then showed that the model-checking procedure from [25] applies directly
to our case by using the well-known region construction from timed automata.
Our timed extension has been reused and extended in various directions. As an
example, Beohar and Mousavi introduced IOFTS that is an input/output exten-
sion of timed FTS for model-based testing of software product lines [14]. Their
main contributions were to define a notion of test suite and test cases generated
from an IOFTS. They also defined two notions of refinement, one at the level of
IOFTS and another one at the level of test suites.

Later, probabilistic extensions of FTS were also considered. In [86], we have
combined FTS with stochastic information coming from a Markov Decision Pro-
cess representation of the environment. In this context, one has to compute
which product satisfies a given requirement with a specified probability. We
have defined family-based algorithms to analyze the resulting quantitative FTS.
One of them directly extends the classical algorithm for bounded quantitative
logic. The other one uses parameter synthesis in stochastic systems to extract
products that do satisfy a quantitative behavior. In [39], we have showed how
learning algorithms and Markov Decision processes can be used to abstract envi-
ronment behaviors. We then showed how the result can be used to restrict FTS
behaviors in a model-testing based approach. Our work also paved the way for
compositional reasoning and analysis of probabilistic queries for software prod-
uct lines. In [47], Baier et al. give a clear adaptation of compositional reasoning
to this context. This is implemented in the ProFeat tool [21] that uses similar
techniques to those in [86]. It is worth mentioning that other research groups
are also working of verifying stochastic and even quantitative behaviors of prod-
uct lines. As an example, in [9,89], Ter Beek et al. have proposed an algebra to
defined quantitative relations between features. This algebra is static in the sense
that it relates features with quantitative information (cost, constraints on costs,
etc.) and dynamic in the sense that it allows us to specify when features can
appear and disappear in system’s execution at runtime (hence opening the door
to the analysis of dynamic software product lines). The verification process used
in these works relies on a dynamic extension of statistical model-checking [66].

In a series of recent works e.g., [79], we have also extended FTS to han-
dle quantitative problems such as long run average. Quantitative problems were
already handled at feature diagram level, but not yet at behavioral level. Unfor-
tunately, the family-based approach advantages decrease in this context. Indeed,

www.manaraa.com

296 M. Cordy et al.

those weighted automata-based problems require to compute specific quantities
that differ from products to product. A solution to this problem could be to use
abstraction-based approaches over quantities.

4 Testing Variability-Intensive Systems with FTSs

In this section, we focus on Model-Based Testing (MBT) [93] at the SPL level.
Test cases are defined during domain engineering [84] for the SPL by associating
each test to the set of products able to execute it. Intuitively, if one wants to test
a particular product, she will consider only the tests associated to that particular
product. In the other way around, if one wants to test an SPL, she will start by
building the product with the highest number of associated tests and execute
those tests on that product.

MBT requires to define a model of the expected behaviour of the System
Under Test (SUT), i.e., a specification, that serves as input to an automated test
suite selection tool. The model should be small enough to be cheaper than the
analysis of the actual system, but accurate enough to describe the characteristics
to test. The tool uses this model to generate a sequence of input (i.e., a test case)
and an oracle for each one of those sequences. For most systems, selecting all
the possible test cases from the model is intractable. The test engineer relies
on selection algorithms that maximize a given coverage criterion, measuring the
adequacy of a test suite [73].

4.1 Test Concepts for FTSs

Since FTSs are derived from TSs, a natural starting point to adapt model-based
testing in the context of software product lines is to consider existing coverage
criteria for transition systems [93] and extend them to make them meaningful
with respect to FTSs.

Abstract Test Case over an FTS. In an MBT approach, test cases are
automatically selected from a model of the system under test. This derivation
is done in several steps: first, abstract test case are selected from the model,
an FTS in our case, using a given criterion; those abstract test cases are then
refined, using additional information in order to be executable by the SUT. The
remainder of this section cover the first step: abstract test case selection.

First, let us define the notion of abstract test case for FTS. We define an
abstract test case over an FTS as a sequence of actions from this FTS, such
that there exists a sequence of transitions in this FTS with the given actions.

Definition 10 (Abstract test case). Let fts = (S, Act, T rans, I, AP, L,
fm, γ) be an FTS. An abstract test case t is a finite sequence (α1, . . . , αn), where
α1, . . . , αn ∈ Act and there exists a sequence of transitions in trans such that

∃i ∈ I : i
α1−→ sk

α2−→ . . .
αn−−→ sl

www.manaraa.com

A Decade of Featured Transition Systems 297

Positive and Negative Abstract Test Cases. We distinguish two kinds of test
cases: positive test cases trigger a desired/expected behaviour of the system
under test; and negative test cases trigger an undesired behaviour of the system
under test [93]. At the SPL level, a positive abstract test case is defined as a
sequence of actions executable by the fts (i.e., executable by at least one prod-
uct), while a negative abstract test case is a sequence of actions not executable
by the fts (i.e., not executable by any product). Once concretized (i.e., trans-
formed into executable code) [95], negative abstract test cases typically represent
sequences of actions that every product of the product line should forbid. Note
that a positive test case for a SPL may become a negative test case for one par-
ticular product of the SPL if this product is not allowed to exercise the behavior
described in the test case. In the remainder of this section, we focus on test case
selection at the SPL level.

In a LTS (lts), an abstract test case t = (α1, . . . , αn) is executable, denoted
lts t=⇒, if there exists a sequence of transitions starting from an initial state
and labelled with α1, . . . , αn [91,92]. For an FTS (fts), to be executable, the
sequence of transitions must moreover have feature expressions compatible with
the associated FM (or its projection on a subset of the product line if one wants
to test only a given set of products). In other words, when selecting test cases
for a product line, a sequence of actions is executable by fts if there exists at
least one product (p) which, when fts is projected onto p (denoted fts |p), is able
to execute it: (

fts
α1,...,αn=⇒

)
⇔

(
∃p ∈ [[fm]] : fts |p

α1,...,αn=⇒
)

In testing, unlike model-checking [6], we only consider finite sequences of
actions. Since FTS (as LTS) do not have an observable final/accepting state per
se, in order to decide if a sequence of actions represents a desired behaviour
of the system, we chose to consider the initial states of an FTS as accepting
states, observable for the tester (contrarily to Tretmans et al. [91,92], we do not
partition the set of actions into inputs and observable outputs, this will be part
of our future work). Positive abstract test cases have to end their execution in an
initial state (e.g., state 1 in the soda vending machine FTS) in order to observe
that the test case was executed successfully.

Definition 11 (Positive abstract test case). Let fts = (S, Act, T rans, I,
AP, L, fm, γ) be an FTS. A positive abstract test case t = (α1, . . . , αn), where
α1, . . . , αn ∈ Act, is a finite sequence of actions such as there is at least one
product from fm able to execute t, and this execution ends in an initial state:

∃p ∈ [[fm]],∃i ∈ I : fts|p
t⇒ i

Definition 12 (Negative abstract test case). Let fts = (S, Act, T rans, I,
AP, L, fm, γ) be an FTS. A negative abstract test case t = (α1, . . . , αn), where
α1, . . . , αn ∈ Act, is a finite sequence of actions such as for every product from
fm, the product is not able to execute t or this execution does not end in an
initial state:

∀p ∈ [[fm]], �i ∈ I : fts|p
t

� i

www.manaraa.com

298 M. Cordy et al.

When derived from the soda vending machine FTS, a positive abstract test
case has to start from 1 and end in 1 and only fire transitions with compatible
feature expressions. For instance, abstract test case (free, soda, serveSoda, open,
close) is a positive abstract test case, while (free, soda, serveSoda) is a negative
abstract test cases as it does not end in an initial state when it is executed on
the FTS (and hence one cannot observe if the test is successfull or not). Other
negative abstract test cases include sequences of actions that mix the behaviour
of two incompatible products.

In the remainder, we mainly focus on positive abstract test cases and simply
write test case. A test suite, defined for a SUT, is a set of test cases.

Test Suite Product Selection. When abstract test cases are concretized,
the result (i.e., concrete test cases, represented as a sequence of operations on
the system) has to be executed on one or more products of the SPL. The set
of products able to execute a test case may be calculated from the FTS (and
the FM). It corresponds to all the products (i.e., set of features) of the FM
that satisfy all the feature expressions associated to the transitions fired by the
abstract test case when it is executed on the FTS:

Definition 13 (Test case product selection). Given an FTS fts = (S, Act,
T rans, I, AP, L, fm, γ) and a positive abstract test case t = (α1, . . . , αn) with
(α1 , . . . , αn) ∈ Act, the set of products able to execute t is defined as:

prod(fts, t) = {p ∈ [[fm]] | ∃i ∈ I : fts|p
t=⇒ i}

From a practical point of view, the set of products contains all the products sat-
isfying the conjunction of the feature expressions γ(sk

αi−→ sk+1) on the path(s)
of t and the FM fm. When fm is Boolean, it may be transformed to a Boolean
formula [38]. The existence of a product for a test case is equivalent to the
satisfiability of the following formula, that can be checked by a SAT solver:

∨

pt∈paths

(
npt∧

i=1

(
γ(sk

αi−→ sl)
)
)

∧ fm

For instance, the set of products for the test case (free, soda, serveSoda, open,
close), derived from the vending machine FTS, contains all the products of the
SPL that offer free soda. Similarly, for a test suite, we have:

Definition 14 (Test suite product selection). Given an FTS fts = (S, Act,
T rans, I, AP, L, fm, γ) and a test suite s = {t1, . . . , tn}, where t1, . . . , tn are
positive abstract test cases, the set of products able to execute the test suite:

prod(fts, s) =
⋃

ti∈s

prod(fts, ti)

If we have a test suite (s) with two test cases (free, soda, serveSoda, open,
close) and (free, tea, serveTea, open, close), the set of products contains all the
products of the SPL that offers free soda or free tea.

www.manaraa.com

A Decade of Featured Transition Systems 299

We will consider that for a given test suite (s), a set of products (M) is
adequate, if M contains enough products to execute the test cases in s:

Definition 15 (s-adequate set of products). Let fts be an FTS and s =
{t1, . . . , tn} be an abstract test suite where t1, . . . , tn are positive abstract test
cases. The set of products M is s-adequate, denoted M

s=⇒, if each test case in
s may be executed by at least one product in M :

∀t ∈ s : ∃p ∈ M,∃i ∈ I, fts |p
t=⇒ i

Since one of the main concerns in SPL testing is to reduce the number of
products needed to execute the tests, we also define the selection of the minimal
s-adequate set of products required to execute a test suite:

Definition 16 (P-Minimal test suite product selection). Let fts be an
FTS and s = {t1, . . . , tn} be an abstract test suite where t1, . . . , tn are positive
abstract test cases. A minimal s-adequate set of products needed to execute the
test suite, denoted mprod(fts, s) = M , is a subset of prod(fts, s) such that M is
s-adequate and there is no subset of M that is s-adequate:

(
M

s=⇒
)

∧
(

∀M ′ ⊂ M,M ′ s

=⇒
)

For instance, there are two products able to execute all the test cases in
the test suite s: one that allows to cancel purchase and one that doesn’t. The
p-Minimal set of products for s is a set with only one of those two products. The
decision of the products to include (or not) should be taken by the test engineer,
depending for instance on the cost linked to the derivation of each product.

4.2 Selection Criteria

In order to efficiently select test cases, the test engineer has to provide selection
criteria [73,93], defined hereafter as a function, returning for a given FTS and
a test suite, a value between 0 and 1 specifying the coverage degree of the
executable abstract test suite over the FTS: 0 meaning no coverage and 1 the
maximal coverage.

Definition 17 (coverage criterion). A coverage criterion is a function cov
that associates an FTS and a test suite over this FTS to a real value in [0, 1].

Structural Coverage. Classical structural coverage criteria are expressed
using the structural elements of the model [73,93] (in this case, FTSs) covered
by the execution of a test case.

Definition 18 (State/All-states coverage). The state coverage criterion is
related to the ratio between the states visited by the test cases pertaining to the
test suite and all the states of the FTS. When the value of the function equals
to 1, the test suite satisfies the all-states coverage.

www.manaraa.com

300 M. Cordy et al.

Definition 19 (Action/All-actions coverage). The action coverage crite-
rion is related to the ratio between the actions triggered by the test cases pertain-
ing to the test suite and all the actions of the FTS defined. When the value of
the function equals 1, the test suite satisfies all-actions coverage.

Definition 20 (Transition/All-transitions coverage). Transition coverage
is related to the ratio between transitions covered when running test cases on the
FTS and the total number of transitions of the FTS. When this ratio equals to
1, then the test suite satisfies all-transitions coverage.

Definition 21 (Transition-pair/All-pairs coverage). The transition-pairs
coverage considers adjacent transitions successively entering and leaving a given
state. When the coverage function reaches the value of 1, then the test suite
covers all-transition-pairs.

Definition 22 (Path/All-paths coverage). Path coverage takes into account
simple executable paths (i.e., paths that does not fire the same transition twice),
that is sequences of transitions starting from and ending in an initial state. If
the coverage function value computing the ratio between the number of simple
executable paths covered by the test cases and total number of simple executable
paths in the FTS is 1, all-paths coverage has been reached.

The all-path coverage is the strongest coverage criterion. It specifies that each
simple executable path in the FTS should be followed at least once when exe-
cuting the test suite. Depending on the FTS, this coverage criterion might not
be scalable.

Dissimilarity-Based Coverage. Dissimilarity testing is a technique used to
select a test suite among all possible test cases, which aims to maximise the fault
detection rate by increasing diversity among test cases [20,55]. This diversity is
characterized by a dissimilarity distance defined over the different test cases.
For instance, Henard et al. [57] applied dissimilarity testing to SPL in order to
sample and prioritize products to test. The idea was to mimic the combinatorial
interaction testing (CIT) sampling for SPLs [69,83], in which valid combinations
of features are covered at least once.

Applied to FTS, dissimilarity-based coverage extends Henard et al.’s
work [57] by formulating the abstract test case selection as a bi-objective prob-
lem [40] where one wants to maximize dissimilarity between the products, but
also the exercised behaviors. Formally, we define the dissimilarity between two
test cases as follows:

Definition 23 (Test cases dissimilarity). Given an FTS fts and two test
cases t1 = (α1, . . . , αn) and t2 = (β1, . . . , βn) derived from fts, the dissimilarity
between t1 and t2 is defined as:

diss(fts, t1, t2) = dissp(prod(fts, t1), prod(fts, t2))
⊗ dissa((α1, . . . , αn), (β1, . . . , βn))

www.manaraa.com

A Decade of Featured Transition Systems 301

Where dissp : [[d]] × [[d]] → [0, 1] computes a dissimilarity distance between the
products, dissa : Act+ ×Act+ → [0, 1] computes a dissimilarity distance between
the actions of the test cases, and ⊗ : [0, 1]× [0, 1] → [0, 1] is an operator combin-
ing the products and actions distances to return a global dissimilarity distance
between the two test cases.

The dissimilarity between products (dissp) may for instance be the Jaccard index
(i.e., the the ratio between the number of products common to prod(fts, t1) and
prod(fts, t2), and the total number of products in both) [57,58]. In our previous
work [40], we defined several dissimilarity distances dissa for the actions executed
by two test cases (including the Jaccard index which gave best results in our
evaluation) and used Definition 23 to drive the selection of abstract test cases
using a (1+1) evolutionary algorithm [46].

4.3 Test Case and Test Suite Minimality

Usually, when performing test case selection, one wants to have a test suite as
small as possible while ensuring the best coverage. Contrary to single systems
where only the size of the test suite is taken into account, when performing SPL
testing, we also have to consider the number of products needed to execute the
test suite. We define the size of a test suite as the number of transitions triggered
by its test cases.

Definition 24 (Test suite size). The size of a test suite s corresponds to the
number of transitions triggered in a FTS fts when executing the test cases of s
on fts, denoted

fts s=⇒
This allows to differentiate a test suite s1 with test cases only triggering a min-
imal set of transitions to satisfy a coverage criterion from a test suite s2 also
satisfying this coverage criterion, but with longer test cases triggering transitions
that do not contribute to the coverage. For a given FTS fts, we denote s1 < s2
if (

fts s1=⇒
)

<
(
fts s2=⇒

)

As opposed to current practice, the size of the test suite does not take the
number of test cases into account. Two test suites with the same size may have
different number of test case. This metric is more representative of the behaviour
of the SPL covered by a test suite. As for test suites, we define the size of a test
case as the number of transitions triggered by this test case.

Definition 25 (Test case size). The size of a test case t corresponds to the
number of transitions triggered in a FTS fts when executing t on fts, denoted

fts t=⇒

www.manaraa.com

302 M. Cordy et al.

Depending on the product line under test, the test engineer decides if the test
suite has to contain lots of small test cases, to ease the debugging process when
a test case fails for instance, or few longer test cases, if the setup required to
execute each test is expensive for instance.

For such a distribution of test cases sizes in a test suite, the selection process
compromises between the size of the test suite and the number of products
needed to execute this test suite. We define the former as the minimal test suite
property, and the latter as the P-minimal test suite property.

Property 1 (Minimal test suite). A test suite s over a given FTS fts = (S, Act ,
trans, i, d, γ) is minimal w.r.t. a selection criteria cov iff � s′ such that s′ < s
and cov(fts, s′) ≥ cov(fts, s).

Property 2 (P-minimal test suite). A test suite s over a given FTS fts = (S, Act ,
trans, i, d, γ) is product-minimal (p-minimal) regarding a selection criteria cov
iff � s′ such that (cov(fts, s′) ≥ cov(fts, s))∧(#mprod(fts, s′) < #mprod(fts, s)).

In other words, a test suite is minimal if there exists no smaller test suite
with a better coverage, and a p-minimal test suite represents the minimal set of
test cases (with the best coverage) such that the number of products needed to
execute all of them is minimal.

4.4 Related Work

The first approaches of SPL testing considered the impact of the intertwined
domain engineering and application engineering processes on test planning,
design and execution activities [74,84]. Early contributions focused notably on
the relationship between SPL use cases [17] and tests [18]. In the latter, Bertolino
and Gnesi adapt the SPL use cases into test plans with tags. These tags allows
to specify which scenarios and which properties must be tested depending on the
activated features (mandatory, alternative, optional, etc.). Another approach is
to combine high-level “test patterns” during product derivation and synthesize
such scenarios as LTS in order to take advantage of model-based test generation
techniques [76]. Incremental testing approaches have also been more recently
adapted in the SPL context [63,70,81,94]. For example, Lochau et al. [68,70]
proposed a model-based approach that shifts from one product to another by
applying deltas to state machine models. These deltas enable automatic reuse
and adaptation of the test model and derivation of retest obligations. Oster
et al. [81] extend combinatorial interaction testing with the possibility to specify
a predefined subset of products in the set of products to test. These approaches
assume that we know already which products to test.

Sampling techniques, such as t-wise approaches [28,29,59,83], strive to
answer to this question by exploring configurations allowed by the feature model.
These techniques are based on the systematic coverage of the interaction of two
more features, a criteria that has been shown empirically to cover 80% of bugs
[64]. T-wise sampling being NP-complete in the presence of constraints, various

www.manaraa.com

A Decade of Featured Transition Systems 303

heuristics have been proposed [71], from greedy algorithms [28,59] to meta-
heuristics [48,50]. Meta-heuristics are also at the heart of dissimilarity sampling
techniques that maximize distances between configurations [1,57]. There are also
approaches that combines several objectives (coverage, cost of configurations,
etc.) [53,56,87].

Efforts to combine sampling techniques with modelling ones (e.g., [69]) exist.
These approaches are product-based, meaning that they may miss opportunities
to reuse tests among sampled products [85]. There are also approaches focused
on the SPL code by building variability-aware interpreters for various languages
[61]. Based on symbolic execution techniques such interpreters are able to run
a very large set of products with respect to one given test case [77]. Cichos
et al. [22] use the notion of 150% test model (i.e., a test model of the behaviour
of a product line) and test goal to derive test cases for a product line but do
not redefine coverage criteria at the SPL level. At the code level, Li et al. [67]
focuses on test specification and values reuse from one product to another by
using a genetic algorithm that integrates software fault localization techniques
and structural coverage of the program. Finally, Beohar et al. [13,15,16] propose
to adapt the ioco framework proposed by Tretmans [91] to FTSs.

As we have seen, the FTS formalism offers an ideal language to study model-
based testing of SPLs. Though we initially focused on family-based approaches
to exploit the sharing opportunities amongst test cases, the impact of sampling
techniques can be assessed and we can envision both in a multi-objective setting
[40]. We believe that the FTS formalism, natively equipped with features as a
first-class concept, is pivotal to inter-model verification support and supports
combination of quality assurance techniques both at the domain and application
engineering levels.

5 Perspectives

Ten years after the inception of featured transition systems, we (and others)
demonstrated its relevance to lay the foundations for model-based and formal
quality assurance of variability-intensive systems. This in turn enabled us to
derive efficient algorithms and to integrate them in the ProVeLines and ViBES
frameworks [36,42]. In this section, we would like to discuss some perspectives
that would possibly lead us to work on and extend FTS for next decade.

5.1 Optimisation of Quality Requirements

The initial endeavour surrounding FTS and the work presented in this paper
mainly targets the verification and validation of functional requirements in VIS.
FTS-based approaches for checking non-functional (aka quality) requirements
have also been targeted in the recent years, most of them focusing on one par-
ticular non-functional aspect (e.g. execution time [30,72], reliability [86], income
[80], quality of service [78]). Our recent work [65] proposes an end-to-end frame-
work to efficiently assess multiple quality attributes across all variants and find
the variant optimizing the trade-off between those attributes.

www.manaraa.com

304 M. Cordy et al.

This quest for optimum paves the way for future research that exploit sam-
pling techniques to efficiently search for such optimal variants. Our preliminary
work [33] shows that this problem is non trivial and call for new endeavour lying
at the intersection of VIS verification, configuration sampling and statistical
model checking.

5.2 Grand Verification Challenges: Cyber-Physical and Learning
Systems

The last decade has seen a tremendous increase in the integration of hardware
and software in number of connected devices and sensors, leading to the advent
of the internet-of-things (IoT). IoT has pervaded every domain of our lives from
the most useless gadget to more safety-critical Cyber-Physical Systems (CPS)
embedded in cars and planes. According to Briand et al., even a simple car
controller can be untestable [19]. Indeed, the large input space and the necessity
to evaluate the outputs continuously over a time period is not adapted to discrete
testing and verification approaches. The fact that CPS are also VIS, in the
sense that they can dynamically adapt to their environment and the difficulty
to predict this environment precisely forms an additional challenge.

Connected devices and sensors produce an enormous amount of data that are
processed by intelligent systems increasingly relying on artificial intelligence (AI)
algorithms. AI-enabled systems have shown their power in a variety of domains
from the game of Go to autonoumous driving. “With great power comes great
responsibility” is a cliché that perfectly applies to artificial intelligence (AI).
As technology is progressing faster than ever before towards software with more
and more abilities, adaptation and autonomy, the risks are becoming increasingly
apparent. Adversarial machine learning [51] has shown how to have a given AI
algorithm to misclassify a panda as a gibbon thanks to a few transformations
to the image, sometimes invisible. Slight changes in luminosity may lead to the
wrong turn on the road [90]. With recent work showing that learnability may be
undecidable, the hope of fully verifiable AI vanishes [12].

5.3 Extended FTS for Cyber-Physical and AI-Ready Systems

The aforementioned challenges suggest two research directions in order to extend
the FTS formalism and its verification and validation algorithms for these highly
complex, dynamic and configurable systems.

Anytime FTS. FTS were initially thought in the usual product line setting
where all the features and their relationships could be specified in advance ans
were not allowed to change. Adaptation to the environment and learning imply
that this assumption does not hold anymore: features will disappear and new
ones may appear as normal operation of the system. We previously envisioned
the scenario where cars receive new features such as autopilot that can be down-
loaded and activated on demand via a software marketplace [82]. Since these

www.manaraa.com

A Decade of Featured Transition Systems 305

cars dynamically adapt - the behaviour of the car is itself variability-aware and
context-dependent - verifying if the introduction of a new feature is safe, the
car should itself embeds its FTS and model-checker. To be efficient, on-the-fly
reduction techniques of the verification space must be employed: for example,
Kim et al. prune statically configurations that cannot violate a given property,
reducing the number of configurations to monitor at runtime [62]. Cordy et al.
have proposed incremental verification of software product lines to deal with
partial configurations [35], though this technique has not been extended to run-
time scenarios yet. These challenges lead us to conjecture that the upcoming
techniques should be able to mix design time and runtime V&V techniques in a
seamless manner.

Stochastic FTS. The uncertain nature of the targeted systems lead us to
pursue the work on stochastic FTS and their relation with other formalisms such
as markov chains, markov decision processes or modal transition systems (see
Sect. 3.4). As we have seen, there is no predetermined winning strategy between
family-based and product-based scenarios. It has to be noted that stochasticity
does not only concern behaviour but also decisions as it is the nature of machine
learning algorithms to take decisions on probabilities rather than on logic. In
other words, V&V algorithms will have to deal with feature models that are
themselves probabilistic [37].

6 Conclusion

In this paper, we covered almost a decade of VIS modelling, verification and
testing for and with Featured Transition Systems. Initially dedicated to model-
checking it also demonstrated it suitability for model-based testing and sup-
ported applications even beyond VIS such as offering solutions to speed up the
analysis of mutants [41]. We believe that the universality and simplicity of FTS
contributed to this diversity of FTS-related contributions. From a more personal
perspective, it enabled the dialogue between the authors issued from the formal
verification and testing communities, yielding fruitful collaborations. Given the
challenges ahead, we are convinced that the combination of techniques and the
removal of the frontiers between these communities is a prerequisite to future
advances in VIS V&V and we look forward to it.

References

1. Al-Hajjaji, M., Thüm, T., Meinicke, J., Lochau, M., Saake, G.: Similarity-based pri-
oritization in software product-line testing. In: 18th International Software Product
Line Conference, SPLC 2014, Florence, Italy, 15–19 September 2014, pp. 197–206
(2014). https://doi.org/10.1145/2648511.2648532

2. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37521-7

https://doi.org/10.1145/2648511.2648532
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7

www.manaraa.com

306 M. Cordy et al.

3. Apel, S., von Rhein, A., Wendler, P., Größlinger, A., Beyer, D.: Strategies for
product-line verification: case studies and experiments. In: ICSE 2013, pp. 482–
491 (2013)

4. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: Formal description of variability
in product families. In: 15th International Conference on Software Product Lines,
SPLC 2011, Munich, Germany, 22–26 August 2011, pp. 130–139 (2011)

5. Atlee, J.M., Beidu, S., Fahrenberg, U., Legay, A.: Merging features in featured tran-
sition systems. In: Proceedings of the 12th Workshop on Model-Driven Engineering,
Verification and Validation Co-located with ACM/IEEE 18th International Confer-
ence on Model Driven Engineering Languages and Systems, MoDeVVa@MoDELS
2015, Ottawa, Canada, 29 September 2015, pp. 38–43. CEUR-WS.org (2015)

6. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

7. ter Beek, M.H., Damiani, F., Gnesi, S., Mazzanti, F., Paolini, L.: From featured
transition systems to modal transition systems with variability constraints. In:
Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 344–359.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-0 24

8. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing
variability in product families: model checking of modal transition systems with
variability constraints. J. Log. Algebr. Meth. Program. 85(2), 287–315 (2016).
https://doi.org/10.1016/j.jlamp.2015.11.006

9. ter Beek, M.H., Legay, A., Lluch-Lafuente, A., Vandin, A.: Statistical analysis
of probabilistic models of software product lines with quantitative constraints. In:
Proceedings of the 19th International Conference on Software Product Line, SPLC
2015, Nashville, TN, USA, 20–24 July 2015, pp. 11–15. ACM (2015)

10. Ter Beek, M.H., de Vink, E.P., Willemse, T.A.C.: Family-based model checking
with mCRL2. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp.
387–405. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-
5 23

11. Belder, T., ter Beek, M.H., de Vink, E.P.: Coherent branching feature bisimulation.
In: Atlee, J.M., Gnesi, S. (eds.) Proceedings 6th Workshop on Formal Methods and
Analysis in SPL Engineering, FMSPLE@ETAPS 2015, London, UK, 11 April 2015.
EPTCS, vol. 182, pp. 14–30 (2015). https://doi.org/10.4204/EPTCS.182.2

12. Ben-David, S., Hrubeš, P., Moran, S., Shpilka, A., Yehudayoff, A.: Learnability can
be undecidable. Nat. Mach. Intell. 1(1), 44–48 (2019). https://doi.org/10.1038/
s42256-018-0002-3

13. Beohar, H., Mousavi, M.R.: Input-output conformance testing based on featured
transition systems. In: Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC 2014, pp. 1272–1278. ACM Press (2014). https://doi.
org/10.1145/2554850.2554949

14. Beohar, H., Mousavi, M.R.: Input-output conformance testing for software product
lines. J. Log. Algebr. Meth. Program. 85(6), 1131–1153 (2016). https://doi.org/
10.1016/j.jlamp.2016.09.007

15. Beohar, H., Mousavi, M.: Spinal test suites for software product lines. ArXiv
e-prints (2014)

16. Beohar, H., Varshosaz, M., Mousavi, M.R.: Basic behavioral models for software
product lines: expressiveness and testing pre-orders. Sci. Comput. Program., July
2015. http://www.sciencedirect.com/science/article/pii/S0167642315001288

https://doi.org/10.1007/978-3-319-22969-0_24
https://doi.org/10.1016/j.jlamp.2015.11.006
https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.4204/EPTCS.182.2
https://doi.org/10.1038/s42256-018-0002-3
https://doi.org/10.1038/s42256-018-0002-3
https://doi.org/10.1145/2554850.2554949
https://doi.org/10.1145/2554850.2554949
https://doi.org/10.1016/j.jlamp.2016.09.007
https://doi.org/10.1016/j.jlamp.2016.09.007
http://www.sciencedirect.com/science/article/pii/S0167642315001288

www.manaraa.com

A Decade of Featured Transition Systems 307

17. Bertolino, A., Fantechi, A., Gnesi, S., Lami, G.: Product line use cases: scenario-
based specification and testing of requirements. In: Käköla, T., Duenas, J.C. (eds.)
Software Product Lines, pp. 425–445. Springer, Heidelberg (2006). https://doi.org/
10.1007/978-3-540-33253-4 11

18. Bertolino, A., Gnesi, S.: PLUTO: a test methodology for product families. In:
van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 181–197. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24667-1 14

19. Briand, L., Nejati, S., Sabetzadeh, M., Bianculli, D.: Testing the untestable: model
testing of complex software-intensive systems. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering Companion, ICSE 2016, pp. 789–792.
ACM, New York, NY, USA (2016). https://doi.org/10.1145/2889160.2889212

20. Cartaxo, E.G., Machado, P.D.L., Neto, F.G.O.: On the use of a similarity function
for test case selection in the context of model-based testing. Softw. Test. Verifica-
tion Reliab. 21(2), 75–100 (2011). https://doi.org/10.1002/stvr.413

21. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Asp. Comput.
30(1), 45–75 (2018). https://doi.org/10.1007/s00165-017-0432-4

22. Cichos, H., Oster, S., Lochau, M., Schürr, A.: Model-based coverage-driven test
suite generation for software product lines. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 425–439. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24485-8 31

23. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking
software product lines with SNIP. STTT 14(5), 589–612 (2012)

24. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.: Formal seman-
tics, modular specification, and symbolic verification of product-line behaviour.
Sci. Comput. Program. 80, 416–439 (2014). https://doi.org/10.1016/j.scico.2013.
09.019

25. Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured
transition systems: foundations for verifying variability-intensive systems and their
application to LTL model checking. IEEE Trans. Software Eng. 39(8), 1069–1089
(2013). https://doi.org/10.1109/TSE.2012.86

26. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking of
software product lines. In: ICSE 2011, pp. 321–330. ACM (2011)

27. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: efficient verification of temporal properties in software product
lines. In: ICSE 2010, pp. 335–344. ACM (2010)

28. Cohen, M., Dwyer, M., Shi, J.: Constructing interaction test suites for highly-
configurable systems in the presence of constraints: a greedy approach. IEEE Trans.
Software Eng. 34(5), 633–650 (2008)

29. Cohen, M.B., Dwyer, M.B., Shi, J.: Coverage and adequacy in software product
line testing. In: Proceedings of the ISSTA 2006 Workshop on Role of Software
Architecture for Testing and Analysis - ROSATEA 2006, pp. 53–63 (2006). http://
portal.acm.org/citation.cfm?doid=1147249.1147257

30. Cordy, M., Classen, A., Perrouin, G., Heymans, P., Schobbens, P.Y., Legay, A.:
Simulation-based abstractions for software product-line model checking. In: ICSE
2012, pp. 672–682. IEEE (2012)

31. Cordy, M., Classen, A., Perrouin, G., Schobbens, P., Heymans, P., Legay, A.:
Simulation-based abstractions for software product-line model checking. In: 34th
International Conference on Software Engineering, ICSE 2012, 2–9 June 2012,
Zurich, Switzerland, pp. 672–682. IEEE Computer Society (2012)

https://doi.org/10.1007/978-3-540-33253-4_11
https://doi.org/10.1007/978-3-540-33253-4_11
https://doi.org/10.1007/978-3-540-24667-1_14
https://doi.org/10.1145/2889160.2889212
https://doi.org/10.1002/stvr.413
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/978-3-642-24485-8_31
https://doi.org/10.1016/j.scico.2013.09.019
https://doi.org/10.1016/j.scico.2013.09.019
https://doi.org/10.1109/TSE.2012.86
http://portal.acm.org/citation.cfm?doid=1147249.1147257
http://portal.acm.org/citation.cfm?doid=1147249.1147257

www.manaraa.com

308 M. Cordy et al.

32. Cordy, M., Heymans, P., Legay, A., Schobbens, P., Dawagne, B., Leucker, M.:
Counterexample guided abstraction refinement of product-line behavioural models.
In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, (FSE-22), Hong Kong, China, 16–22 November
2014, pp. 190–201. ACM (2014)

33. Cordy, M., Legay, A., Lazreg, S., Collet, P.: Towards sampling and simulation-
based analysis of featured weighted automata. In: FORMALISE@ICSE 2019, pp.
61–64 (2019)

34. Cordy, M., Schobbens, P., Heymans, P., Legay, A.: Behavioural modelling and
verification of real-time software product lines. In: 16th International Software
Product Line Conference, SPLC 2012, Salvador, Brazil, 2–7 September 2012, vol.
1, pp. 66–75. ACM (2012)

35. Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Towards an incremental
automata-based approach for software product-line model checking. In: Proceed-
ings of the 16th International Software Product Line Conference, vol. 2, pp. 74–81.
ACM (2012)

36. Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: ProVeLines: a product-line
of verifiers for software product lines. In: SPLC 2013, pp. 141–146. ACM (2013)

37. Czarnecki, K., She, S., Wasowski, A.: Sample spaces and feature models: There
and back again. In: Proceedings of the 2008 12th International Software Product
Line Conference, SPLC 2008, pp. 22–31. IEEE Computer Society, Washington,
DC, USA (2008). https://doi.org/10.1109/SPLC.2008.49

38. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: there and back again.
In: SPLC 2007, pp. 23–34. IEEE Computer Society (2007)

39. Devroey, X., et al.: Statistical prioritization for software product line testing:
an experience report. Softw. Syst. Model. 16(1), 153–171 (2017). http://link.
springer.com/10.1007/s10270-015-0479-8

40. Devroey, X., Perrouin, G., Legay, A., Schobbens, P.Y., Heymans, P.: Search-based
similarity-driven behavioural SPL Testing. In: Proceedings of the Tenth Interna-
tional Workshop on Variability Modelling of Software-intensive Systems - VaMoS
2016, pp. 89–96. ACM Press, Salvador, Brazil, January 2016

41. Devroey, X., Perrouin, G., Papadakis, M., Legay, A., Schobbens, P., Heymans, P.:
Featured model-based mutation analysis. In: Dillon, L.K., Visser, W., Williams, L.
(eds.) Proceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, 14–22 May 2016, pp. 655–666. ACM (2016). https://
doi.org/10.1145/2884781.2884821

42. Devroey, X., Perrouin, G., Schobbens, P.Y., Heymans, P.: Poster: VIBeS, transition
system mutation made easy. In: 2015 IEEE/ACM 37th IEEE International Con-
ference on Software Engineering, ICSE 2015, vol. 2, pp. 817–818. IEEE, Florence,
Italy, May 2015. https://doi.org/10.1109/ICSE.2015.263, http://ieeexplore.ieee.
org/document/7203084/

43. Dimovski, A.S., Legay, A., Wasowski, A.: Variability abstraction and refinement
for game-based lifted model checking of full CTL. In: Hähnle, R., van der Aalst, W.
(eds.) FASE 2019. LNCS, vol. 11424, pp. 192–209. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-16722-6 11

44. Dimovski, A.S., W ↪asowski, A.: From transition systems to variability models and
from lifted model checking back to UPPAAL. In: Aceto, L., Bacci, G., Bacci, G.,
Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and
Tools. LNCS, vol. 10460, pp. 249–268. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63121-9 13

https://doi.org/10.1109/SPLC.2008.49
http://link.springer.com/10.1007/s10270-015-0479-8
http://link.springer.com/10.1007/s10270-015-0479-8
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1109/ICSE.2015.263
http://ieeexplore.ieee.org/document/7203084/
http://ieeexplore.ieee.org/document/7203084/
https://doi.org/10.1007/978-3-030-16722-6_11
https://doi.org/10.1007/978-3-030-16722-6_11
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-319-63121-9_13

www.manaraa.com

A Decade of Featured Transition Systems 309

45. Dimovski, A.S., W ↪asowski, A.: Variability-specific abstraction refinement for
family-based model checking. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS,
vol. 10202, pp. 406–423. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54494-5 24

46. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoret. Comput. Sci. 276(1), 51–81 (2002). http://www.sciencedirect.
com/science/article/pii/S0304397501001827

47. Dubslaff, C., Klüppelholz, S., Baier, C.: Probabilistic model checking for energy
analysis in software product lines. In: 13th International Conference on Modularity,
MODULARITY 2014, Lugano, Switzerland, 22–26 April 2014, pp. 169–180. ACM
(2014)

48. Ensan, F., Bagheri, E., Gašević, D.: Evolutionary search-based test generation for
software product line feature models. In: Ralyté, J., Franch, X., Brinkkemper, S.,
Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 613–628. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31095-9 40

49. Fantechi, A., Gnesi, S.: A behavioural model for product families. In: Proceedings
of the 6th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2007, Dubrovnik, Croatia, 3–7 September 2007, pp. 521–524 (2007)

50. Garvin, B.J., Cohen, M.B., Dwyer, M.B.: Evaluating improvements to a meta-
heuristic search for constrained interaction testing. Empir. Softw. Eng. 16(1), 61–
102 (2011)

51. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial exam-
ples. In: International Conference on Learning Representations (2015). http://
arxiv.org/abs/1412.6572

52. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol.
5051, pp. 113–131. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68863-1 8

53. Guo, J., et al.: SMTIBEA: a hybrid multi-objective optimization algorithm for
configuring large constrained software product lines. Softw. Syst. Model., July
2017. https://doi.org/10.1007/s10270-017-0610-0

54. Halin, A., Nuttinck, A., Acher, M., Devroey, X., Perrouin, G., Baudry, B.: Test
them all, is it worth it? assessing configuration sampling on the JHipster web
development stack. Empir. Softw. Eng. 24(2), 674–717 (2019). https://doi.org/10.
1007/s10664-018-9635-4

55. Hemmati, H., Arcuri, A., Briand, L.: Achieving scalable model-based testing
through test case diversity. ACM Trans. Softw. Eng. Methodol. 22(1), 1–42 (2013).
http://dl.acm.org/citation.cfm?id=2430536.2430540

56. Henard, C., Papadakis, M., Harman, M., Le Traon, Y.: Combining multi-objective
search and constraint solving for configuring large software product lines. In: Pro-
ceedings of the 37th International Conference on Software Engineering, vol. 1, ICSE
2015, pp. 517–528. IEEE Press, Piscataway, NJ, USA (2015). http://dl.acm.org/
citation.cfm?id=2818754.2818819

57. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Heymans, P., Le Traon, Y.:
Bypassing the combinatorial explosion: using similarity to generate and prioritize
T-wise test configurations for software product lines. IEEE Trans. Softw. Eng.
40(7), 650–670 (2014)

58. Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes
et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579
(1901)

https://doi.org/10.1007/978-3-662-54494-5_24
https://doi.org/10.1007/978-3-662-54494-5_24
http://www.sciencedirect.com/science/article/pii/S0304397501001827
http://www.sciencedirect.com/science/article/pii/S0304397501001827
https://doi.org/10.1007/978-3-642-31095-9_40
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1007/s10270-017-0610-0
https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1007/s10664-018-9635-4
http://dl.acm.org/citation.cfm?id=2430536.2430540
http://dl.acm.org/citation.cfm?id=2818754.2818819
http://dl.acm.org/citation.cfm?id=2818754.2818819

www.manaraa.com

310 M. Cordy et al.

59. Johansen, M.F., Haugen, Ø., Fleurey, F.: An algorithm for generating t-wise cov-
ering arrays from large feature models. In: Proceedings of the 16th International
Software Product Line Conference on - SPLC 2012, vol. 1, p. 46. ACM Press (2012)

60. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical report CMU/SEI-90-TR-21, Carnegie
Mellon University (1990)

61. Kästner, C., et al.: Toward variability-aware testing. In: Proceedings of the 4th
International Workshop on Feature-Oriented Software Development, FOSD 2012,
pp. 1–8. ACM Press (2012). http://doi.acm.org/10.1145/2377816.2377817

62. Kim, C.H.P., Bodden, E., Batory, D., Khurshid, S.: Reducing configurations to
monitor in a software product line. In: Barringer, H., et al. (eds.) RV 2010. LNCS,
vol. 6418, pp. 285–299. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16612-9 22

63. Knapp, A., Roggenbach, M., Schlingloff, B.H.: On the use of test cases in model-
based software product line development. In: Proceedings of the 18th International
Software Product Line Conference, vol. 1, SPLC 2014, pp. 247–251. ACM Press
(2014). http://doi.acm.org/10.1145/2648511.2648539

64. Kuhn, D., Wallace, D., Gallo, A.: Software fault interactions and implications for
software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004)

65. Lazreg, S., Cordy, M., Collet, P., Heymans, P., Mosser, S.: Multifaceted automated
analyses for variability-intensive embedded systems. In: ICSE 2019, pp. 854–865
(2019)

66. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

67. Li, X., Wong, W.E., Gao, R., Hu, L., Hosono, S.: Genetic algorithm-based test
generation for software product line with the integration of fault localization tech-
niques. Empir. Softw. Eng., pp. 1–51 (2017). https://doi.org/10.1007/s10664-016-
9494-9

68. Lochau, M., Lity, S., Lachmann, R., Schaefer, I., Goltz, U.: Delta-oriented
model-based integration testing of large-scale systems. J. Syst. Softw. 91, 63–
84 (2014). https://doi.org/10.1016/j.jss.2013.11.1096. http://linkinghub.elsevier.
com/retrieve/pii/S0164121213002781

69. Lochau, M., Oster, S., Goltz, U., Schürr, A.: Model-based pairwise testing
for feature interaction coverage in software product line engineering. Software
Qual. J. 20(3–4), 567–604 (2012). http://www.springerlink.com/index/10.1007/
s11219-011-9165-4

70. Lochau, M., Schaefer, I., Kamischke, J., Lity, S.: Incremental model-based testing
of delta-oriented software product lines. In: Brucker, A.D., Julliand, J. (eds.) TAP
2012. LNCS, vol. 7305, pp. 67–82. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30473-6 7

71. Lopez-Herrejon, R.E., Fischer, S., Ramler, R., Egyed, A.: A first systematic map-
ping study on combinatorial interaction testing for software product lines. In: 2015
IEEE Eighth International Conference on Software Testing, Verification and Vali-
dation Workshops (ICSTW), pp. 1–10. IEEE (2015)

72. Luthmann, L., Stephan, A., Bürdek, J., Lochau, M.: Modeling and testing product
lines with unbounded parametric real-time constraints. In: Proceedings of the 21st
International Systems and Software Product Line Conference - Volume A, SPLC
2017, pp. 104–113. ACM, New York, NY, USA (2017). http://doi.acm.org/10.
1145/3106195.3106204

http://doi.acm.org/10.1145/2377816.2377817
https://doi.org/10.1007/978-3-642-16612-9_22
https://doi.org/10.1007/978-3-642-16612-9_22
http://doi.acm.org/10.1145/2648511.2648539
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/s10664-016-9494-9
https://doi.org/10.1007/s10664-016-9494-9
https://doi.org/10.1016/j.jss.2013.11.1096
http://linkinghub.elsevier.com/retrieve/pii/S0164121213002781
http://linkinghub.elsevier.com/retrieve/pii/S0164121213002781
http://www.springerlink.com/index/10.1007/s11219-011-9165-4
http://www.springerlink.com/index/10.1007/s11219-011-9165-4
https://doi.org/10.1007/978-3-642-30473-6_7
https://doi.org/10.1007/978-3-642-30473-6_7
http://doi.acm.org/10.1145/3106195.3106204
http://doi.acm.org/10.1145/3106195.3106204

www.manaraa.com

A Decade of Featured Transition Systems 311

73. Mathur, A.P.: Foundations of Software Testing. Pearson Education, India (2008)
74. McGregor, J.D.: Testing a software product line. In: Borba, P., Cavalcanti, A.,

Sampaio, A., Woodcook, J. (eds.) PSSE 2007. LNCS, vol. 6153, pp. 104–140.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14335-9 4

75. Mendonca, M., Branco, M., Cowan, D.: S.P.L.O.T.: Software product lines online
tools. In: Proceedings of OOPSLA 2009, pp. 761–762. ACM, New York, NY, USA
(2009). http://doi.acm.org/10.1145/1639950.1640002

76. Nebut, C., Pickin, S., Le Traon, Y., Jézéquel, J.M.: Automated requirements-based
generation of test cases for product families. In: 2003 Proceedings of 18th IEEE
International Conference on Automated Software Engineering, pp. 263–266. IEEE
(2003)

77. Nguyen, H.V., Kästner, C., Nguyen, T.N.: Exploring variability-aware execution
for testing plugin-based web applications. In: Proceedings of the 36th International
Conference on Software Engineering - ICSE 2014, pp. 907–918. ACM Press (2014).
http://dl.acm.org/citation.cfm?doid=2568225.2568300

78. Olaechea, R., Atlee, J., Legay, A., Fahrenberg, U.: Trace checking for dynamic
software product lines. In: Proceedings of the 13th International Conference on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2018, pp.
69–75. ACM (2018)

79. Olaechea, R., Fahrenberg, U., Atlee, J.M., Legay, A.: Long-term average cost in
featured transition systems. In: Proceedings of the 20th International Systems and
Software Product Line Conference, SPLC 2016, Beijing, China, 16–23 September
2016, pp. 109–118. ACM (2016)

80. Olaechea, R., Fahrenberg, U., Atlee, J.M., Legay, A.: Long-term average cost in
featured transition systems. In: Proceedings of the 20th International Systems and
Software Product Line Conference, SPLC 2016, pp. 109–118. ACM, New York,
NY, USA (2016). http://doi.acm.org/10.1145/2934466.2934473

81. Oster, S., Markert, F., Ritter, P.: Automated incremental pairwise testing of soft-
ware product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp.
196–210. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15579-
6 14

82. Perrouin, G., Acher, M., Davril, J., Legay, A., Heymans, P.: A complexity tale: web
configurators. In: Proceedings of the 1st International Workshop on Variability and
Complexity in Software Design, VACE@ICSE 2016, Austin, Texas, USA, 14–22
May 2016, pp. 28–31. ACM (2016). https://doi.org/10.1145/2897045.2897051

83. Perrouin, G., Oster, S., Sen, S., Klein, J., Baudry, B., le Traon, Y.: Pairwise testing
for software product lines: comparison of two approaches. Softw. Qual. J. 20(3–4),
605–643 (2011). http://dx.doi.org/10.1007/s11219-011-9160-9

84. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

85. von Rhein, A., Apel, S., Kästner, C., Thüm, T., Schaefer, I.: The PLA model: on
the combination of product-line analyses. In: VaMoS, p. 14 (2013)

86. Rodrigues, G.N., et al.: Modeling and verification for probabilistic properties in
software product lines. In: 16th IEEE International Symposium on High Assurance
Systems Engineering, HASE 2015, Daytona Beach, FL, USA, 8–10 January 2015,
pp. 173–180 (2015)

87. Sayyad, A.S., Menzies, T., Ammar, H.: On the value of user preferences in search-
based software engineering: a case study in software product lines. In: ICSE 2013,
pp. 492–501 (2013)

https://doi.org/10.1007/978-3-642-14335-9_4
http://doi.acm.org/10.1145/1639950.1640002
http://dl.acm.org/citation.cfm?doid=2568225.2568300
http://doi.acm.org/10.1145/2934466.2934473
https://doi.org/10.1007/978-3-642-15579-6_14
https://doi.org/10.1007/978-3-642-15579-6_14
https://doi.org/10.1145/2897045.2897051
http://dx.doi.org/10.1007/s11219-011-9160-9
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1

www.manaraa.com

312 M. Cordy et al.

88. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps, Y.: Feature diagrams: a
survey and a formal semantics. In: RE 2006, pp. 139–148 (2006)

89. Ter Beek, M., Legay, A., Lluch Lafuente, A., Vandin, A.: A framework for quantita-
tive modeling and analysis of highly (re)configurable systems. IEEE Trans. Softw.
Eng., p. 1 (2018). https://doi.org/10.1109/TSE.2018.2853726

90. Tian, Y., Pei, K., Jana, S., Ray, B.: DeepTest: automated testing of deep-neural-
network-driven autonomous cars. In: ICSE 2018, pp. 303–314. ACM, New York,
NY, USA (2018)

91. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1. http://www.springerlink.com/index/y390356226x154j0.pdf

92. Tretmans, J.: Model-based testing and some steps towards test-based modelling.
In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 297–326.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4 9

93. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann, San Francisco (2007)

94. Uzuncaova, E., Khurshid, S., Batory, D.: Incremental test generation for software
product lines. IEEE Trans. Softw. Eng. 36(3), 309–322 (2010)

95. Vanhecke, J., Devroey, X., Perrouin, G.: AbsCon : a test concretizer for model-
based testing. In: 2019 IEEE Twelfth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), A-MOST 2019. IEEE, Xi’an,
China (2019)

96. Vojnar, T., Zhang, L. (eds.): TACAS 2019. LNCS, vol. 11428. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1

https://doi.org/10.1109/TSE.2018.2853726
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1
http://www.springerlink.com/index/y390356226x154j0.pdf
https://doi.org/10.1007/978-3-642-21455-4_9
https://doi.org/10.1007/978-3-030-17465-1

www.manaraa.com

Product Line Verification via Modal Meta
Model Checking

Tim Tegeler, Alnis Murtovi, Markus Frohme, and Bernhard Steffen(B)

Chair for Programming Systems, TU Dortmund University, Dortmund, Germany
{tim.tegeler,alnis.murtovi,markus.frohme,steffen}@cs.tu-dortmund.de

Abstract. Modal Meta Model Checking (M3C) is a method and tool
supporting meta-level product lining and evolution that comprises both
context-free system structure and modal refinement. The underlying
Context-Free Modal Transition Systems (CFMTSs) can be regarded as
loose specifications of meta models, and modal refinement as a way to
increase the specificity of allowed domain specific languages (DSLs) by
constraining the range of allowed syntax specifications. Model checking
with M3C allows one to verify properties specified in a branching-time
logic for all DSLs of a given level of specificity in one go. The paper
illustrates the impact of M3C in an industrial setting where well-formed
documents serve as contracts between a provider and its customers in two
steps: it establishes CFMTS as a formalism to specify product lines of
document description types (DTDs – or related formalisms like JSON
schema), and it shows how M3C-based product line verification can
be used to guarantee that violations of essential well-formedness con-
straints of a corresponding user document are detected by standard
DTD-checkers. The resulting hierarchical product line verification allows
Creios GmbH, a service provider for E-commerce systems to provide a
wide range of tailored shop applications whose essential business rules
are checked by a standard DTD-checker.

Keywords: Modal Transition Systems ·
Context-free/Procedural transition systems · Modal refinement ·
Second-order model checking · Meta model ·
Domain-specific languages · Predicate/property transformers ·
Compositionality · Product lines · Variation · Document description

1 Introduction

Generalizing system validation and control from individual systems to product
lines [31] is a topic of my (Bernhard’s) heart since the GAIN project on telephony
services in 1995/96 with Siemens Nixdorf [35]. Unfortunately, due to certain
non-disclosure agreements this work has never been decently published. Stefania
Gnesi was one of the first who went in the same direction, first from a testing
perspective [6,7] and later [1–4,18] to also use modal transition systems (MTS)
[26] in order to capture classes of implementation in one specification. However,
her work did not (explicitly) exploit the property-preservation of modal refine-
ment [26] for showing that the successful verification of a property of an MTS
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 313–337, 2019.
https://doi.org/10.1007/978-3-030-30985-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_19&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_19

www.manaraa.com

314 T. Tegeler et al.

captures all products that can be constructed via refinement – an “inheritance
property” which can be regarded as the conceptual backbone of this paper.

An alternative way to impose/control properties beyond single instances is
the way of tailored domain specific languages (DSLs): all systems developed in
such a language are typically guaranteed to satisfy the properties/constraints
imposed by the DSLs’ meta model (cf. [38]). Corresponding checks are typically
done by parsers, but using context-free model checking [9–11], it is also possible
to model check interesting properties of DSLs, whose impact on the individ-
ual systems typically increases with the specificity of the considered DSL. [36]
proposes an approach that elaborates on the idea to control/guide software evo-
lution and product lining by lifting the software evolution process (in part) to
the meta level.

In fact, work on featured transition systems (FTSs) [13–15] can be regarded
as an approach in this direction: FTSs are an expressive and concise graphical
specification language, and they allow for techniques that help avoiding (some)
redundancy when verifying all the corresponding admissible product variants
with significant performance gains.1 However, similarly to Stefania’s work, there
is no discussion of property preservation along product specialization like the
MTS-based inheritance of temporal properties along modal refinement. The work
on FTSs rather focuses on expressivity, which contrasts our approach that focuses
on simplicity [28]. Our extension towards the meta level maintains all the nice
properties known for MTSs, while it introduces property-preserving language
refinement: Properties of MTS specifications are inherited for all systems spec-
ified as (refined) MTS specifications with additional constraints like, e.g., that
declarations have to precede uses. Similarly, all properties of those languages
are preserved when adding constraints of the final products, e.g., that every
terminating run has to execute a certain action. In our accompanying example
this could define a payment feature that guarantees that every complete order
process has to pass a payment action.

M3C is a method and tool supporting meta-level product lining and evo-
lution that comprises both context-free system structure and modal refine-
ment [37]. The underlying Context-Free Modal Transition Systems (CFMTSs)
can be regarded as loose specifications of meta models, and modal refinement
as a way to increase the specificity of allowed DSLs constraining the range of
allowed syntax specifications. Model checking with M3C allows one to verify
properties specified in a branching-time logic for all DSLs of a given level of
specificity in one go. For example see Fig. 1 where the initial CFMTS contains
two may transitions (a and c). In the following CFTS these transitions are either
turned into must transitions or eliminated.

In this paper we illustrate the impact of M3C in an industrial setting where
well-formed documents serve as contracts between a provider and its customers.
In our setup CFMTSs serve as a formalism to specify product lines of document
description types (DTDs – or related formalisms like JSON schema) and M3C

1 Our meta tooling suite CINCO [29] would, indeed, be ideally suited to generate an
FTS-based development environment.

www.manaraa.com

Product Line Verification via Modal Meta Model Checking 315

CFMTS

c

a1

b

2

<a/>

</xml>

3

CFTS 1
a1

b

2

3

<xml>
<c/>

</xml>

CFTS 2

c

1

3

CFTS 3

c

a1

b

2

3

<xml>
<c/>

</xml>

<xml>
<a/>

</xml>

<xml>

Fig. 1. Example of CFMTS with CFTS refinements and XML documents

as a method to verify that the specified product lines satisfy essential well-
formedness constraints. Each user document (see XML documents in Fig. 1)
that conforms to one of the corresponding document description types (i.e. to a
product of the product line) has certain guaranteed properties.

The functioning and impact of this hierarchical approach to product line
verification may become clearer when looking at a concrete example:

– The product line specification may describe certain online-shop applications
for selling customized print goods.2

– Typical properties concern configuration constraints, e.g., business cards will
always be guaranteed to have 120 g grammage (paper density), and business
constraints, like that goods are only shipped when the payment is confirmed
in the document.

In this setting, the shipping requirement may be regarded as a general policy
binding for all products, whereas the property concerning business cards may
only be true for certain shops.3

Please note, that the properties verified for DTDs (and therefore for their cor-
responding online shops) via M3C at the meta-level automatically guarantee that
corresponding violations within a print good document are automatically detected

2 We avoid the standard notion print product here in order to avoid confusion: the
products of the product line are shop applications which allow customers to configure
their print goods.

3 It is accidental that it holds for the four products discussed in Sect. 4.1.

www.manaraa.com

316 T. Tegeler et al.

by standard DTD-checkers. This can be exploited, e.g., by Creios GmbH4 to pro-
vide a wide range of tailored shop applications whose essential business rules are
automatically checked without requiring to install any additional checking soft-
ware for the customer. Responsible for this fact is the approach to turn essential
properties into what we call rigid archimedean points in [38], i.e. into primary lan-
guage features that are enforced by the underlying meta model. The (meta) DSL
for specifying the print good DSLs and its corresponding graphical IDE described
in this paper was developed with our meta tooling suite CINCO [29].

Technically, M3C is based on second-order model checking [9–11] which
determines how procedure calls affect the validity of the properties of interest.
The corresponding second-order analysis for determining the predicate trans-
formers (the effects) for the individual procedures is characterized by its hier-
archical fixpoint iteration: a higher-level iteration for exchanging approximate
predicate transformers of the involved procedures, and a (local) lower level iter-
ation for updating the individual predicates transformers on the basis of the
current approximate transformers for the procedures.

The inherent compositionality of the second-order approach leads to a run-
time complexity linear in the size of the procedural system representation, whose
corresponding transition systems typically have infinitely many states. In fact,
second-order model checking can be regarded as a means to tame state explosion
via “procedural abstraction”, a technique which may well be beneficial also for
regular (recursion-free) systems: during higher-level iterations, entire subsystems
are just considered as predicate transformers, i.e., as second-order versions of the
predicate abstractions introduced in [22].

Abstraction, the art of focusing on the essential details, is also a guiding
principle for modal refinement. In a sense, the may transitions of MTSs can be
regarded as a form of don’t-care-transition, providing future implementations
with a freedom of choice, which may profitably be used for optimization or future
system evolution. The fact that modal refinement supports a notion of property-
preserving abstraction in the sense of [27] allows one to cover even infinite classes
of implementations with one check or to minimize given implementations in a
don’t-care fashion along the lines of [21,23,24].

Outline. We continue with introducing formal notions and definitions in Sect. 2
and present the model-checking concepts of M3C in Sect. 3. Section 4 presents the
use-case of Creios GmbH and how our M3C approach can be used to verify product
line properties in an industrial environment. Section 5 concludes the paper.

2 Preliminaries

In this section we recall Context-Free Modal Transition Systems (CFMTSs)
which extend Modal Transition Systems (MTSs) to mutually recursive systems of

4 https://www.creios.net.

https://www.creios.net

www.manaraa.com

Product Line Verification via Modal Meta Model Checking 317

MTSs [37]5 and the considered property language, the (alternation-free) modal
μ-calculus.

2.1 Context-Free Modal Transition Systems

MTSs and their extension with mutual recursion presented in this section
come with a notion of refinement that establishes a powerful specification-
implementation relation. They allow one to model check properties at the
specification-level that are then guaranteed to hold for each implementation.

Definition 1 (Modal Transition Systems [25]). Let S be a set of states and
Act an alphabet of action symbols. M = (S, s0, Act, ���,−→) is called a (rooted)
Modal Transition System (MTS) with root s0 if the following condition holds:

−→⊆���⊆ (S × Act × S)

Elements of ��� are called may transitions, those of −→ must transitions.
As usual, we will write s

a−−→ s′ iff (s, a, s′) ∈−→ and s
a−−→ to abbreviate

∃s′. s a−−→ s′, s
a��� s′ and s

a��� are defined analogously.

MTSs denote sets of Labeled Transition Systems (LTSs), which can simply
be defined as MTS where all transitions are must transitions. Modal refinement,
the corresponding specification-implementation relation, defines these sets as the
minimal elements of the refinement ordering:

Definition 2 (MTS refinement [25]). Let M1 = (S1, s
1
0, Act1, ���1,−→1),

M2 = (S2, s
2
0, Act2, ���2,−→2) be two MTSs. A relation ≤r ⊆ (S1×S2) is called

a refinement if the following holds for all (p, q) ∈≤r:

1. ∀(p, a, p′) ∈���1,∃(q, a, q′) ∈���2: (p′, q′) ∈≤r

2. ∀(q, a, q′) ∈−→2,∃(p, a, p′) ∈−→1: (p′, q′) ∈≤r

An MTS M1 refines an MTS M2, written M1 ≤r M2, if there exists a refine-
ment ≤r with (s10, s

2
0) ∈ ≤r. Intuitively, refinement is closed under node-

splitting/duplication of states and allows may transitions to be either turned
into must transitions or to be eliminated, while it requires all must transitions
to be maintained. Like bisimulation, it preserves all temporal properties of finite
state systems [26]. In fact, the restriction to finite state is not essential for the
induction proof along the structure of the temporal formulas, which makes modal
refinement an ideal tool for product line verification also for the here considered
infinite state case.

The following notion of procedural modal transition systems (PMTSs)
extends MTSs to comprise call transitions that allows one to define mutu-
ally recursive sets of MTSs, later formalized as Context-Free Modal Transition
Systems (CFMTSs).
5 Alternatively, one can regard CFMTSs also as an extension of Context-Free Process

Systems [9] to also allow may transitions.

www.manaraa.com

318 T. Tegeler et al.

Definition 3 (Procedural Modal Transition Systems). Aproceduralmodal
transition system is defined as P = (ΣP , T rans := Act ∪ N, ���P ,−→P , σs

P , σe
P),

where:

– ΣP is a set of state classes,
– Trans := Act ∪ N is a set of transformations (Act is a set of actions, N is

a set of procedure names),
– −→P :=−→Act

P ∪ −→N
P is the must transition relation

– ���P :=���Act
P ∪ ���N

P is the may transition relation,
where −→Act

P ⊆���Act
P ⊆ ΣP × Act × ΣP and −→N

P ⊆���N
P ⊆ ΣP × N × ΣP

– σs
P ∈ ΣP is a class of start states and σe

P ∈ ΣP is a class of end states.

A procedural MTS can be seen as an MTS that is extended by the possibility
of having transitions whose effect is described by another MTS. For technical
reasons, we require a PMTS P to satisfy the following two constraints:

1. The class of end states σe
P must be terminating in P , i.e. σe

P

α��� does not
hold.

2. P must be guarded, i.e. all initial transitions of P must be labeled with atomic
actions.

Definition 4 (Context-Free Modal Transition Systems (CFMTSs)). A
context-free modal transition system is a quadruple P = (N,Act, C, P0), where:

– N := {N0, . . . , Nn−1} is a set of names,
– Act is a set of actions,
– C := {Ni = PMTSi | 0 ≤ i < n} is a finite set of PMTS definitions where

PMTSi is a finite PMTS with name Ni ∈ N and
– P0 is the main PMTS. Moreover we denote Σ =

⋃n−1
i=0 ΣPi

, −→=
⋃n−1

i=0 −→Pi

and ���=
⋃n−1

i=0 ���Pi
.

As detailed in [9,19,20],6 CFMTSs serve as finite representations of the com-
plete, typically infinite-state expansion of the corresponding main PMTS P0.

2.2 The Alternation-Free Modal µ-Calculus

The modal μ-calculus is a branching-time logic that is used to specify properties
of transition systems. Characteristic are its greatest fixed point operator ν and a
least fixed point operator μ that provide an enormous expressive power, however
at the price of increased intricacy [8].

Let V ar be a (countable) set of variables, AP a set of atomic propositions
and Act a set of Actions. Furthermore let X ∈ V ar, A ∈ AP and a ∈ Act. The
syntax is then given by the following Backus-Naur form:

φ ::=A | X | φ ∨ φ | φ ∧ φ | 〈a〉φ | [a]φ | νX.φ | μX.φ.

6 In [19,20] a conceptually similar structure to CFMTSs is called Systems of Procedural
Automata (SPAs) to better match the terminology used in the field of automata
learning.

www.manaraa.com

Product Line Verification via Modal Meta Model Checking 319

The semantics are given with respect to an MTS (S,Act, ���,−→), a valua-
tion V which maps atomic propositions to subset of states of S and an environ-
ment e, mapping variables to subsets of S. The semantic function �·�e maps a
formula to the set of states which satisfy the formula [9].

�A�e = V (A)
�X�e = e(X)

�φ1 ∨ φ2�e = �φ1�e ∪ �φ2�e

�φ1 ∧ φ2�e = �φ1�e ∩ �φ2�e

�〈a〉φ�e = {s | ∃s′.s a−−→ s′ ∧ s′ ∈ �φ�e}
�[a]φ�e = {s | ∀s′.s

a��� s′ ∧ s′ ∈ �φ�e}
�νX.φ�e =

⋃{T ⊆ S | T ⊆ �φ�e[X:=T]}
�μX.φ�e =

⋂{T ⊆ S | �φ�e[X:=T] ⊆ T}

Thus an atomic proposition A is true in a state s if s ∈ V (A), s satisfies X
if s ∈ e(X), and conjunction and disjunction are defined as usual. Special are
the diamond -operator 〈a〉 and box -operator [a]. The diamond-operator is true
if there exists a s′ ∈ S with s

a−−→ s′ that satisfies φ, while the box-operator is
true if all successors of s that are connected by an edge labeled by the action a
satisfy φ.

The modal μ-calculus is not very “user friendly”. On the other hand, it is a
very good basis for a tool as many more convenient temporal logics, like CTL, can
easily be expressed in the μ-calculus [12,17]. This property is, e.g., also exploited
by KandISTI7 [5], the model checker suite of Stefania’s research group.

3 Model Checking Context-Free Modal Transition
System

In this section we sketch the approach of [37] for extending the second-order
model checking algorithm described in [9] to capture CFMTSs. Like there, our
algorithmic description also requires the representation of the modal μ-calculus
formulas that serve as input in terms of hierarchical equational systems.

3.1 Hierarchical Equational Systems

Hierarchical equational systems are composed of equational blocks which, due
to the underlying hierarchy, can be evaluated in a hierarchical fashion.

Definition 5 (Equational Block [9]). An equational block has one of two
forms, min{E} or max{E}, where E is a list of (mutually recursive) equations

X1 = φ1, . . . , Xn = φn

7 http://fmt.isti.cnr.it/kandisti/.

http://fmt.isti.cnr.it/kandisti/

www.manaraa.com

320 T. Tegeler et al.

where φ1, . . . , φn are basic formulas, i.e., can be written using the following
grammar:

φbasic ::=A | X ∨ X | X ∧ X | 〈a〉X | [a]X
The set of all variables Xi appearing in a block B are denoted by VB, or simply
by V in case B is clear from the context.

Min-blocks are used for capturing the least fixed point operator and Max-
blocks for capturing the greatest fixed point operator, respectively. An equational
system is a list of equational blocks B = (B1, . . . , Bm) where the variables
appearing on the left-hand side of some block are all distinct.

Fig. 2. Dependency graph of the equational system of φ

Example 1. Let φ = νX.[·]X ∧ (μY.A ∨ 〈·〉Y). The formula φ specifies that “it is
always possible that A will hold”. The dot ‘ · ’ specifies that the box-/diamond-
operator holds regardless of the transition label. In CTL we could express this as
AG EF A [8]. The equational system consists of two blocks. We need one block
for greatest fixed point νX and one for the least fixed point μY . The equational
system corresponding to φ then looks as follows:

max{ X1 = X2 ∧ X3

X2 = [·]X1}
min{ X3 = X4 ∨ X5

X4 = A
X5 = 〈·〉X3}

“Hierarchical” in the term hierarchical equational systems means that there are
no cyclic dependencies between blocks in the sense defined below:

Definition 6 (Hierarchical Equational System [9]). An Equational System
B = (B1, . . . , Bn) is hierarchical if the existence of a left-hand side variable of a
block Bj, 1 ≤ j ≤ n, appearing in a right-hand side formula of a block Bi implies
i ≤ j.

www.manaraa.com

Product Line Verification via Modal Meta Model Checking 321

The constraint to exclude cyclic dependencies between blocks limits the
expressive power of hierarchical equational systems to the alternation-free frag-
ment of the modal μ-calculus [16].

The model checking algorithm presented in the next subsection propagates
information between the variables of equational blocks in an ordering reverse
to the dependency relation: Fig. 2 shows the dependency graph of the formula
φ = νX.[·]X ∧(μY.A∨〈·〉Y) presented in the previous example. Please note, that
in this graph every loop has an edge labeled with some box or diamond modality,
a property of equational systems which we can enforce without loosing expressive
power, and which is sufficient to guarantee a hierarchical evaluation/updating
strategy for each state. In the following we will therefore assume that the depen-
dency graphs of all equational blocks have this property.

The specification language used to specify the properties in Sect. 4 is CTL
(Computation Tree Logic) with slightly extended operators. The label for a
diamond or box operator can either be defined over a single transition label
a ∈ Act or over the disjunction of a set of labels. The box operator for e.g.
[a ∨ b]φ holds in a state iff all successor states reached by an transition labeled
by an ‘a’ or a ‘b’ satisfy φ.

φ ::= Act | tt | ff | φ ∧ φ | φ ∨ φ
| [Act∨]φ | 〈Act∨〉φ
| AGφ | EGφ | AFφ | EFφ
| A(φ U φ) | E(φ U φ) | A(φ WU φ) | E(φ WU φ)

It is common knowledge that formulas of this kind can easily be translated into
the modal μ-calculus and therefore also in hierarchical equational systems.

3.2 The Second-Order Model Checking Algorithm

(Classical) first-order model checking for a block B computes a mapping that
associates each state s of the considered MTS with the subset of V that contains
all formulas that are valid at s. This means that model checking computes a
fixpoint in the power set lattice 2V . Second-order model checking lifts the fixpoint
computation to the lattice of corresponding (monotonic) predicate transformers
D = 2V −→ 2V . This allows one to formulate model checking as a fixpoint
computation that computes a predicate transformer PTσ ∈ D for each state
class σ of a PMTS P in the considered CFMTS that aggregates the effect of
the fragment of P that starts in σ and terminates with P ’s end state σe

P in the
following sense: For any V ′ ∈ 2V , PTσ(V ′) is the set of all variables of V that
hold at σ in case that all formulas of V ′ hold at the end state of P . After this
fixpoint computation the original model checking problem can be answered for
the considered CFMTS simply by checking whether the input formula X1 lies
in PTσs

P
(Vdeadlock), where Vdeadlock denotes the set of variables that hold for the

deadlocked state. For example, for the block whose dependency graph is shown
in Fig. 2 this would only be X4 in case A happens to hold at the considered
deadlocked state, otherwise Vdeadlock would just be the empty set.

www.manaraa.com

322 T. Tegeler et al.

In the following we sketch how PTσs
P

can be computed for all CFMTSs P
and equational systems E while focusing on the peculiarities of the second-order
approach and, in particular, of the implications of allowing also may transitions.

The global structure for hierarchically dealing with hierarchical equational
systems in a depth-first fashion is identical to the first-order case. Thus we only
need to consider the treatment of blocks in more detail, and we can focus on
min blocks only, as the treatment of max blocks is completely dual.

Algorithm 1 shows the classical workset pattern for the corresponding fix-
point computation, which consists of an initialization phase, an iterative update
of the property transformers, and the update of the workset.

Initialize the property transformers PTσ of all state classes σ.
workset = Σ
while workset �= ∅ do

LET σ ∈ workset;
workset = workset\{σ};
PTσ.old = PTσ;
α1, . . . αn = outgoing edge labels of σ;
PTσ = �σ

j=1,...,nPT[aj] ◦ PTσj ;
if PTσ �= PTσ.old then

if σ = σs
Pi

for some i ∈ N then

workset = workset ∪ {σ′ | σ′ Pi���� };
end
workset = workset ∪ {σ′ | σ′ α��� σ};

end
end

Algorithm 1: Algorithm: Model checking of CFMTSs [9]

The property transformers associated with end states are generally initialized
with the identity function, and this setting is maintained during the fixpoint
computation. As we are considering min blocks, all other property transformers
are initialized to the constant function false. Also the update of the workset is
simple. As in the classical case of a backward analysis, all predecessors of a state
whose property transformer has changed are added to the workset. Special is
only the situation for start states. Changes there affect all states that call the
corresponding PMTS. Thus they must also be added to the workset.

The most intricate part is the iterative update of the property transformers
for a state class σ which proceeds in two steps: the determination of the prop-
erty transformers for the individual choices of σ’s outgoing transitions, and the
aggregation of the common effect of all these individual property transformers
on σ’s property transformer.

The property transformer for an outgoing transition σ
α−−→ σ′ is defined as

PT[α] ◦ PT[σ′]

www.manaraa.com

Product Line Verification via Modal Meta Model Checking 323

where PT[α], the effect of taking step α, is defined as follows:
In case α = Pi, we have PT[α] = PT[Pi] = PTσs

Pi
, i.e., PT[α] is the current

approximation of the effect of Pi. Otherwise, i.e., in case α = a ∈ Act, PT[α] is
characterized by

Xi ∈ PT[α](M) iff

⎧
⎨

⎩

φi = 〈a〉Xj and Xj ∈ M and α−−→∈−→
φi = [a]Xj and Xj ∈ M
φi = [b]Xj and b �= a

⎫
⎬

⎭

for M ⊆ V and an equation Xi = φi of block B.
Please note, that may transitions do not contribute when considering

diamond-subformulas, as they cannot be guaranteed to exist in an actual imple-
mentation. In contrast, box subformulas are insensitive to the nature of may and
must transitions.

Finally, the aggregation of the common effect of all the individual property
transformers for outgoing transitions on σ’s property transformer is defined by
the function (�σ

i=1,...,kPTi(M)) = M ′ which is characterized by

Xj ∈ M ′ iff

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φj = A and σ ∈ V (A)
φj = Xj1 ∧ Xj2 and (Xj1 ∈ M ′ and Xj2 ∈ M ′)
φj = Xj1 ∨ Xj2 and (Xj1 ∈ M ′ or Xj2 ∈ M ′)
φj = 〈a〉ψ and ∃.1 ≤ i ≤ k with Xj ∈ PTi(M)
φj = [a]ψ and ∀.1 ≤ i ≤ k with Xj ∈ PTi(M)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

for M ⊆ V , equations Xj = φj of B, and the convention that property trans-
formers belonging to outgoing must transitions are emphasized in bold face (see
line four). Like before, also here only the diamond subformulas are sensitive to
the distinction between may and must transitions.

4 Verifying Software Product Lines Using M3C

In this section, we show how our M3C approach can be used in practice to
verify software properties over product lines. For this example, we especially
focus on software for data processing, i.e. software that either collects some kind
of data or transforms existing data. Characteristic of this kind of software is that
it produces some form of document that is consumed by subsequent software
processes within a larger workflow. For a successful execution it is required that
the created documents adhere to certain constraints. This often not only includes
syntactical properties (e.g. the documents’ content must be encoded in XML or
JSON) but also semantic properties (i.e. no data should be missing, data should
be verified or documented, etc.).

In the following, we first present the concept of document-driven process
verification, which describes our approach to handle the importance of data
integrity/document integrity. We motivate our example by the real-world use
case of Creios GmbH, which is a german service provider for E-commerce sys-
tems. After presenting the specifics of their data aggregation process, we present
how the required properties can be modeled via CFMTSs and how the M3C
approach can be used to guarantee required properties over software products.

www.manaraa.com

324 T. Tegeler et al.

4.1 Document-Driven Process Verification

The main task of the software systems discussed in this example is the aggre-
gation of data for either further processing or storage. Key requirement for a
successful completion of this task is, that the aggregated document adheres to
certain syntactical constraints (e.g. file-format) as well as semantic constraints
(e.g. order contains an unique identifier). To leverage this emphasis on data
integrity, we introduce the concept of document-driven process verification:

Instead of describing the actual process of aggregating the data, we use
CFMTSs to describe the syntactical meta-structure of the documents that the
software should produce and use M3C to verify semantic properties on these
documents. We see multiple benefits in this approach:

Abstraction from syntactical details. Instead of directly specifying the
explicit document structure (e.g. XML or JSON), we introduce a layer of
abstraction in which the actions of the CFMTSs represent abstract structural
elements. Consequently, we use CFMTSs to describe the meta-structure of
documents. To yield an explicit specification for a software product, we exploit
the fact, that many of the prominent file formats provide syntactical valida-
tion frameworks. For example, the context-free meta specification described
in a CFMTSs may be easily translated into a document type definition (DTD)
for XML documents. In a similar fashion, translating the meta specification
into a JSON schema definition would automatically yield a parser for JSON
documents.
While we are still able to describe arbitrary context-free document structures,
any syntactical details (such as the well-matchedness of XML tags) do not
matter on the meta-level as this property is guaranteed by the respective,
format-specific document validator. Instead, due to our abstraction, we can
ignore these syntactical details and focus on the semantic structure of the
resulting documents, which will be subject to our M3C verification.

Loose coupling of software and documents. Nowadays, it is expected that
software adapts to changing requirements. The trend of agile software devel-
opment endorses this approach. Modern software architectures (e.g. microser-
vices and self-contained systems) and especially the practice of continuous
software engineering aim at rapid develop and deployment cycles [30,32].
This results in quickly evolving software and enlarging systems. Our approach
enables to react to those chances by having a loose coupling of software and
documents. While the implementation of processes can change, the resulting
documents and especially their properties have to stay consistent.

Guaranteeing correctness for further processing. Especially for E-Com-
merce systems, having correct documents (i.e. orders) is crucial. Not only
further processing like manufacturing and delivery processes build upon cor-
rect data, but also national institutions like finance authorities. For example
the german law demands consecutively numbered invoice numbers. Our app-
roach can easily verify and guarantee such requirements.

www.manaraa.com

Product Line Verification via Modal Meta Model Checking 325

4.2 Example

Our example is motivated by the real-world company Creios GmbH. This com-
pany is primarily specializing in custom tailored E-commerce systems for profes-
sional printing of business equipment (e.g. envelopes, letter paper and business
cards). The E-commerce system targets business-to-business relationships, where
Creios GmbH is responsible to develop and operate the system for customers.
Every instance is based upon the same code base but custom tailored for the
requirements of the customer. This results in a product line with various fea-
tures and properties. With growing numbers of customers also the E-commerce
systems become more complex over time. A system like that is hard to maintain
while documents (e.g. orders) produced by processes have to stay correct. The
M3C approach is ideal to support the further development.

Ontology. In our example we present the order process, one of the central compo-
nents of the E-commerce system. Guaranteeing correctness of an order is crucial.
This section introduces the ontology of the order process to define properties and
relations between the entities. It contains a lot of different entities, but we will focus
just on the most important ones for simplicity. The major entities are ORDER, CART,
ITEM, PRODUCT, DATA, CHECK, DELIVERY and PRIVACY.

– ORDER: Top level entity and condenses all other entities.
• validated: Proof that the order was successfully validated.

– CART: Summarizes one or more ITEMs.
– ITEM: Stores the amount and the price of a PRODUCT.

• amount: How many objects of the product are ordered.
• price: Price of all requested products of the given type.

– PRODUCT: Can be personalized and purchased.
• business_card: Product that can be purchased.
• colored: Product should be color printed.
• embossing: Product has a special embossing (e.g. for the logo)
• envelope: Product that can be purchased.
• letter_paper: Product that can be purchased.
• sealed: Envelope can be sealed.
• 120g: Higher grammage of the paper for premium products.

– DATA: Used to personalize a PRODUCT.
• position: Job position a person owned in a company.
• title: Academic title of a person.
• first_name: First name of a person.
• last_name: Last name of a person.
• email: Email address of a person.
• chk: Verification of user-provided data.

– CHECK: Documents that an ORDER is valid.
• escalation: Order has to be validated by a supervisor.
• nok: The order is not validated.
• ok: The order is validated.

www.manaraa.com

326 T. Tegeler et al.

– DELIVERY: Summarizes the shipping of an order.
• appointment: The appointment to pick up the order in house.
• express: Shipping has high priority.
• in_house: Shipping is picked up in house.
• deadline: Latest shipping date for an express shipment.
• default: Shipping has normal priority.

– PRIVACY: Documents the decision of an user if personal data can be stored or
should be deleted.

• address: The personal data to process the shipment.
• keep_data: Decision that the personal data can be stored.
• consent: The consent of the user to store the data.
• delete_data: Personal data has to be deleted.

Product Line Refinement. We begin demonstrating our hierarchical prod-
uct line (Fig. 4) with the weakest modal specification in Fig. 3. In this weakest
modal specification every procedure has the same basic structure. For reasons
of clarity we refrain from displaying every procedure on its own. ORDER serves
as an example for the omitted procedures (CART, ITEM, PRODUCT, DATA, CHECK,
DELIVERY and PRIVACY). The ORDERmodel only contains a single final state whose
outgoing transitions are all self-loops.Note, that for this presentationweuse amore
compactMTSvisualization,whereas ourM3C model checker used the correspond-
ing adapted models, with e.g. only a single final state without any outgoing tran-
sitions, etc.

ORDER

1
CART

CHECK
DELIVERY

validated

Fig. 3. The ORDER pro-
cedure within the weak-
est specification (WS)

While the weakest specification does not allow to
verify any of the semantic properties, the nature of
translating our CFMTS to a syntactic validator, guar-
antees syntactic validity. Even in the weakest semantic
case, our approach allows full syntactical verification
(e.g. well-matched XML tags in case of a DTD valida-
tor). Consequently, the following refinements allow to
solely focus on semantic aspects of the document. The
abstract specification in Fig. 5 already satisfies proper-
ties of interest and therefore guarantees the validity of
these properties in all of its refinements. The function-
ality of each procedure has already been described in
Sect. 4.2. It serves as a basis for the refinements which
will be described in the following.

The following four refinements, PREMIUM, PICKUP, DEFAULT and
DELIVERY, each draw attention to a different aspect of a webshop.
The PREMIUM refinement is characterized as the abstract specification PRODUCT
procedure is defined as seen in Fig. 6. The procedure is refined such that each
option for each product, i.e. business_card, envelope and letter_paper, can
be chosen. A letter paper can for example be colored, embossed and use paper
with 120 grams per square meter.

www.manaraa.com

Product Line Verification via Modal Meta Model Checking 327

refinement hierarchy
WS

[?,?,?,?,?,?]

ABS
[1,?,?,?,?,?]

DELIVERY
[1,?,1,?,?,?]

PICKUP
[1,?,1,?,?,?]

PREMIUM
[1,1,?,?,?,?]

DEFAULT
[1,1,?,?,1,?]

DLVR & PRM
[1,1,1,?,?,?]

DLVR & DEF
[1,1,1,?,1,?]

PCKP & PRM
[1,1,1,?,?,?]

PCKP & DEF
[1,1,1,?,1,?]

PRODUCT 2
[1,1,1,1,0,0]

PRODUCT 1
[1,1,1,0,1,0]

PRODUCT 4
[1,1,1,0,0,0]

PRODUCT 3
[1,1,1,0,1,1]

Fig. 4. Refinement ordering of the variations

abstract specification (ABS)

ORDER

CART

ITEM PRODUCT DATA CHECK DELIVERY

PRIVACY

1

2

CART

3

CHECK

4

DELIVERY

5

validated

1

2

ITEM

ITEM

1

2

PRODUCT

3

amount

4

price

1

2

business_card

3

envelope

4

letter_paper

embossing

5

colored

sealed
colored

7

DATA

embossing
colored
120g

DATA

6

120g

DATA

1

2

firstname

3

lastname

7

lastname

4

title

5

email

6

position chk

chk

chk

chk

chk

chk

1

2

nok

4

ok

3

escalation

CHECK

1

1

2

default

3

express

4

in_house

7

address 5

deadline

6

appointment

address

8

PRIVACY

2

keep_data

3

delete_data

consent

Fig. 5. The abstract specification

The PICKUP, DEFAULT and DELIVERY refinements are defined analogously.
The PICKUP refinement characterizes webshops which only offer the products
to be picked up by the customer and there is no option to ship the products to
the customer.
The DEFAULT refinement can be regarded as the complement of the PREMIUM
refinement as it offers no additional options for the products, i.e. the may tran-
sitions embossing, colored, sealed and 120g are omitted in this refinement.

www.manaraa.com

328 T. Tegeler et al.

PREMIUM (PRODUCT) PICKUP (DELIVERY) DEFAULT (PRODUCT)
1

2

business_card

3

envelope

4

letter_paper

5

embossing

6

colored 8

sealed

9

colored

17

DATA

10

embossing

11

colored

12

120g

DATA

colored

7

120g

DATA

colored

DATA

DATA

13

colored

15

120g

DATA

14

120g

DATA

DATA

16

120g

DATA

DATA

DATA

DATA

1

2

in_house

3

appointment

1

2

business_card

3

envelope

4

letter_paper

5

colored

7

DATA DATA

6

120g

DATA

Fig. 6. The PREMIUM, PICKUP and DEFAULT refinements

The DELIVERY refinement in Fig. 7 adapted the PRIVACY and DELIVERY pro-
cedures. In contrast to the PICKUP refinement, products can only be shipped
either as default or express and they cannot be picked up by the customer. The
keep_data transition is here set to a must transition because customer related
data must be stored within the document.

Four additional refinements, i.e. DLVR&PRM, PCKP&PRM, DLVR&DEF
and PCKP&DEF combine the refinements described above. The refinement
PCKP&PRM e.g. only allows the products to be picked up in-house and all
additional features, as described in the PREMIUM refinement, can be chosen for
the products. The other combinations are defined in the same manner. Finally,
each combination is refined further to a product in which the CFMTS does not
contain any may transitions. The ORDER, CART and ITEM procedures are defined
as in the abstract specification.

Product 1 in Fig. 8 offers business cards, with no additional features, as
their only product. Since Product 1 is a refinement of DELIVERY, the ordered
business cards can only be shipped and not be picked up in-store. As the may

DELIVERY (DELIVERY)

DELIVERY (PRIVACY)

1
2

default

3express
5address

4deadline address

6
PRIVACY

1

2

keep_data 3

delete_data

consent

Fig. 7. The DELIVERY refinement

www.manaraa.com

Product Line Verification via Modal Meta Model Checking 329

transition nok within the CHECK procedure is set to a must transition, it is pos-
sible that certain orders must first be approved and this approval must be docu-
mented. The DATA procedure states that the data input for the product must at
least contain the first and last name and in addition either two titles, an email
address or the position within the company can be input.

The second product is derived from the DLVR&PRM refinement. It offers
business cards and envelopes as their product and the CHECK, DELIVERY and
PRIVACY are defined in the same manner as in the first product. Compared to
Product 1 the DATA procedure allows for more information to be input.

Figure 10 shows the LTSs of Product 3 and Product 4. They are both derived
from the PICKUP refinement and therefore only offer the ordered products to
be picked up in-house. Product 3 is the most basic shop. It does not require the
order to be approved and the only data which must and can be input is the first
and last name. Product 4 differs from Product 1 only in the aspect that the
business cards cannot be shipped and can only be picked up.

In the following the impact of the refinements will be illustrated by means
of properties specified by CTL formulas. While some properties can already be
verified for the abstract specification and therefore for all of its refinements, some
properties only hold for the products.

Properties to Verify. When maintaining software for different customers
through a product line, challenges arise. It is crucial that every software product
satisfies the features requested by the customer while the main (integral) prop-
erties stay intact. We will illustrate the corresponding impact of M3C using six
exemplary properties.

(A) Since further processing relies on correct orders we ensure that every order
is validated.

(B) Business cards are premium products that are intended for repeated use.
Therefore they are printed typically on paper with higher grammage.

(C) Picking “default” or “express” as the delivery option requires the customer
to input information about his address. Because address information are
personal the company must have the user’s consent to save this information
for later reuse.

(D) The E-commerce system offers the complete range of products requested by
a customer, like business equipment for correspondence.

(E) Embossing and sealed are options only available in premium instances. Both
options require more complex manufacturing processes.

(F) Products of customers (e.g. letter papers) can have certain design guidelines
(i.e. corporate identity) that regulates which information is allowed to be
printed.

www.manaraa.com

330 T. Tegeler et al.

Product 1

PRODUCTDATACHECKDELIVERY

PRIVACY

1

2

business_card

3

colored

4

120g

5

DATA

1

2

firstname

3

lastname

9

lastname

4

title

5

email

6

position

7

chk

chk chk chk

8

title

chk

1

2

nok

4

ok

3

escalation

CHECK

1

1

2

default

3

express

5

address 4

deadline

address

6

PRIVACY

2

keep_data

3

delete_data

consent

Fig. 8. Product 1

We are going to use these six discussed properties as input for the specifica-
tion of the various refinements, seen in Fig. 4. The same figure also summarizes
the corresponding model checking results. A question mark indicates that it is
unknown whether the formula holds in this system as refinements exist in which
the property holds but there are also refinements which do not satisfy the prop-
erty. As can be seen the products do not have any question marks in their row
as they do not contain any may transitions and can therefore not be refined
further.

(A) A(¬validatedWU ok)
Since further processing relies on correct orders we ensure that every order
is validated. While the first property (A) does not hold within the weakest
specification, it does hold in the abstract specification and thus in all of
its refinements. The property specifies that it is not possible to perform a
validated transition until an ok is seen. The validated transition can be
regarded as the end of the document which should not be reachable until
the order has been approved by an ok.

www.manaraa.com

Product Line Verification via Modal Meta Model Checking 331

Product 2

PREMIUM(PRODUCT)DATACHECK

DELIVERY

PRIVACY

1

2

envelope

3

letter_paper

4

sealed

5

colored

13

DATA

6

embossing

7

colored

8

120g

DATA

colored

DATA

DATA

9

colored

11

120g

DATA

10

120g

DATA

DATA

12

120g

DATA

DATA

DATA

DATA

1

1

2

firstname

3

lastname

14

lastname

4

title

5

email

6

position

7

chk

chk

8

chk

chkchk

9

email

10

position

11

position

12

chk

chk chk chk

13

position

chk

1

2

nok

4

ok

3

escalation

CHECK

1

2

default

3

express

5

address 4

deadline

address

6

PRIVACY

2

keep_data

3

delete_data

consent

Fig. 9. Product 2

(B) AG[business_card](AF 120g)
Business cards are premium products that are intended for repeated use
and therefore printed typically on paper with higher grammage. The second
property specifies that whenever a transition labeled by business_card is
seen, the option 120g will always be picked for the business_card. The
reason that this property does not hold in some of the refinements is that
it is possible to infinitely often choose embossing and never reach the 120g
transition.

(C)
(
AG[default ∨ express](EF〈keep_data〉consent)

)

The DELIVERY and PICKUP refinements are separated from the PRE-
MIUM and DEFAULT refinements by the third property which states that
whenever a transition labeled by default or express is seen, it is possible
that a transition labeled by keep_data is seen which is then followed by a
consent transition. Since picking default or express as the delivery option
requires the customer to input information about his address, the company
must have the user’s consent to save this information.

www.manaraa.com

332 T. Tegeler et al.

Product 3

PRODUCT

DATA

CHECK

DELIVERY

Product 4

PRODUCTDATA

CHECK

DELIVERY

1

2

letter_paper

1

3

DATA

2

firstname

3

lastname

1

2

ok

1

2

in_house

3

appointment

1

2

business_card

3

embossing

4

colored

colored

5

120g

6

DATA

1

2

firstname

3

lastname

9

lastname

4

title

5

email

6

position

7

chk

chk chk chk

8

title

chk

1

2

nok

4

ok

3

escalation

CHECK

1

2

in_house

3

appointment

Fig. 10. Product 3 & 4

(D) (EF letter_paper) ∧ (EF envelope)
Property (D) specifies that the E-commerce system is guaranteed to offer
both, letter_paper and envelope, as their products. This property can
only hold in refinements in which the letter_paper and envelope transi-
tions within the PRODUCT procedure are must transitions. As seen in
Fig. 4 this only holds for Product 2 because Product 1 does not offer
envelopes and Product 3 offers neither of them. In all other refinements
the transitions labeled by letter_paper and envelope are may transitions
and thus not guaranteed to exist in actual products.

(E) AG(¬embossing ∧ ¬sealed)
Embossing and sealed are options only available in premium web shops,
because they require more complex manufacturing processes. The fifth prop-
erty is satisfied by a refinement if embossing and sealed are not possible
options within the refinement. This is the case for the DEFAULT system
and all of its refinements as DEFAULT does not offer these options.

www.manaraa.com

Product Line Verification via Modal Meta Model Checking 333

(F) AG(¬email ∧ ¬title ∧ ¬position)
Products of customers (e.g. letter papers) can have certain design guidelines
(i.e. corporate identity) that regulates which information is allowed to be
printed. Property (F) states that email, title and position are no information
that will be stored within the document. This property is satisfied only by
Product 3 which offers letter papers as the only product and the data needed
for this consists of the first and last name.

Technical Note. As we have mentioned in Sect. 3, there are well-known prob-
lems in expressing certain properties for LTSs in branching-time logic [33,34]: Our
intention to say that ok must have definitely happened before validated hap-
pens (property (A)) cannot be expressed in our branching-time logic, as there is
no state, e.g. in product 1, for which we can say that ok will definitely happen,
as there is always the possibility to (indefinitely) expand the recursion branch.
That is, the corresponding formula A(¬validatedWU ok) (where we use ok as
a “derived” atomic proposition for states where ok will definitely happen in the
next step) is invalid, even though from the linear-time perspective, it is clear that
we cannot reach validated without going through ok. As we are only interested
in the linear-time perspective and use branching-time logic only for technical rea-
sons, i.e. for having efficient context-free model checking, we solve this problem by
transforming the CFMTS into a precondition CFMTS [33,34], which introduces
additional helper states that allow us to prove the intended property. Figure 11
illustrates this simple model transformation for the check procedure of product 1,
which now has a state where the atomic proposition ok is true. Please note, that
the proof of equivalence for this transformation is out of scope for this paper.

We decided to not force the modelers to provide precondition models and to
apply the corresponding transformations automatically on demand for simplicity

CHECK

1

2

nok

4

ok

3

escalation

CHECK

CHECK

1

2 3

4

nok

6

ok

5

escalation

CHECK

(a) The CHECK
procedure

(b) The CHECK
procedure trans-
formed to a
precondition model

Fig. 11. Transformation to a precondition model

www.manaraa.com

334 T. Tegeler et al.

reasons [28]. We consider it a good compromise to not clutter the models from
the modeler’s perspective and to be nevertheless able to use the efficient model
checking procedure.

5 Conclusion

In this paper we have illustrated the impact of Modal Meta Model Checking
(M3C) in an industrial setting where well-formed documents serve as contracts
between the provider and its customers. The point of the presented M3C-based
approach is that it exploits the well-formedness constraints of the required doc-
uments as requirement specification at two levels:

– During the design of the products of Creios GmbH in order to guarantee
essential properties of the shop applications, and

– at print good definition time, i.e when the customers of Creios GmbH configure
their print goods.

The point of this approach is that print good configurations passing the
check of a standard DTD-checker are guaranteed to obey the intended business
constraints. In addition, using CFMTS as specification language allows one to
apply this approach not only to individual products, but to entire product lines
as has been illustrated in Sect. 4. Technically, the paper is special in that it
exploits the leeway in the linear-time/branching time spectrum: It uses model
transformations (hidden from the user) that preserve a linear-time semantics
to subsequently apply an efficient branching-time algorithm in order to allow
simple user-level specifications that can be efficiently verified (only) after the
transformation. This approach is correct as we only need to preserve the linear-
time semantics. It is our experience that the document-based specifications are
a good basis for narrowing the so-called semantic gap, in particular when using
adequate DSLs for their specification. As mentioned above, these DSLs may look
quite different for different stakeholders, and in particular for the model checker.
In fact, for the user level often a simple constraint language should be sufficient,
and models may not be required at all.

References

1. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: Formal description of variability
in product families. In: 2011 15th International Software Product Line Conference,
pp. 130–139, August 2011. https://doi.org/10.1109/SPLC.2011.34

2. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A logical framework to deal
with variability. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp.
43–58. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16265-7_5

3. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A model-checking tool for
families of services. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE -2011. LNCS,
vol. 6722, pp. 44–58. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21461-5_3

https://doi.org/10.1109/SPLC.2011.34
https://doi.org/10.1007/978-3-642-16265-7_5
https://doi.org/10.1007/978-3-642-21461-5_3
https://doi.org/10.1007/978-3-642-21461-5_3

www.manaraa.com

Product Line Verification via Modal Meta Model Checking 335

4. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing
variability in product families: model checking of modal transition systems with
variability constraints. J. Log. Algebraic Methods Program. 85(2), 287–315 (2016).
https://doi.org/10.1016/j.jlamp.2015.11.006

5. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: States and events in Kan-
dISTI. In: Margaria, T., Graf, S., Larsen, K.G. (eds.) Models, Mindsets, Meta:
The What, the How, and the Why Not? LNCS, vol. 11200, pp. 110–128. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-22348-9_8

6. Bertolino, A., Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Use case description
of requirements for product lines. In: Proceedings of the International Workshop on
Requirements Engineering for Product Lines 2002 - REPL 2002. Technical report:
ALR2002-033, AVAYA, pp. 12–18 (2002)

7. Bertolino, A., Gnesi, S.: PLUTO: a test methodology for product families. In:
van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 181–197. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24667-1_14

8. Blackburn, P., van Benthem, J.F.A.K., Wolter, F.: Handbook of Modal Logic.
Studies in Logic and Practical Reasoning, vol. 3. Elsevier Science Inc., New York
(2006)

9. Burkart, O., Steffen, B.: Model checking for context-free processes. In: Cleaveland,
W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 123–137. Springer, Heidelberg
(1992). https://doi.org/10.1007/BFb0084787

10. Burkart, O., Steffen, B.: Pushdown processes: parallel composition and model
checking. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 98–
113. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1_9

11. Burkart, O., Steffen, B.: Model checking the full modal mu-calculus for infinite
sequential processes. Theor. Comput. Sci. 221(1–2), 251–270 (1999). https://doi.
org/10.1016/S0304-3975(99)00034-1

12. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

13. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model checking
software product lines with SNIP. Int. J. Softw. Tools Technol. Transfer 14(5),
589–612 (2012). https://doi.org/10.1007/s10009-012-0234-1

14. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.:
Featured transition systems: foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE Trans. Software Eng. 39(8),
1069–1089 (2013). https://doi.org/10.1109/TSE.2012.86

15. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: efficient verification of temporal properties in software product
lines. In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, ICSE 2010, vol. 1, pp. 335–344. ACM, New York (2010). https://doi.
org/10.1145/1806799.1806850

16. Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. Form. Methods Syst. Des. 2(2), 121–147
(1993). https://doi.org/10.1007/BF01383878

17. Emerson, E.A.: Model checking and the mu-calculus. In: DIMACS Series in Dis-
crete Mathematics, pp. 185–214. American Mathematical Society (1997)

18. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In: 2008
12th International Software Product Line Conference, pp. 193–202, September
2008. https://doi.org/10.1109/SPLC.2008.45

https://doi.org/10.1016/j.jlamp.2015.11.006
https://doi.org/10.1007/978-3-030-22348-9_8
https://doi.org/10.1007/978-3-540-24667-1_14
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1007/978-3-540-48654-1_9
https://doi.org/10.1016/S0304-3975(99)00034-1
https://doi.org/10.1016/S0304-3975(99)00034-1
https://doi.org/10.1007/s10009-012-0234-1
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1007/BF01383878
https://doi.org/10.1109/SPLC.2008.45

www.manaraa.com

336 T. Tegeler et al.

19. Frohme, M., Steffen, B.: Active mining of document type definitions. In: Howar,
F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 147–161. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00244-2_10

20. Frohme, M., Steffen, B.: Compositional Learning of Mutually Recursive Procedural
Systems (2018, under submission)

21. Garavel, H., Lang, F., Mounier, L.: Compositional verification in action. In: Howar,
F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 189–210. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00244-2_13

22. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6_10

23. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In: Clarke,
E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 186–196. Springer,
Heidelberg (1991). https://doi.org/10.1007/BFb0023732

24. Graf, S., Steffen, B., Lüttgen, G.: Compositional minimisation of finite state sys-
tems using interface specifications. Formal Aspects Comput. 8(5), 607–616 (1996).
https://doi.org/10.1007/BF01211911

25. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of the Third
Annual Symposium on Logic in Computer Science, pp. 203–210. IEEE (1988).
https://doi.org/10.1109/LICS.1988.5119

26. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-
8_19

27. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving
abstractions for the verification of concurrent systems. Formal Methods Syst. Des.
6(1), 11–44 (1995). https://doi.org/10.1007/BF01384313

28. Margaria, T., Steffen, B.: Simplicity as a driver for agile innovation. IEEE Comput.
43(6), 90–92 (2010). https://doi.org/10.1109/MC.2010.177

29. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools. STTT
20(3), 327–354 (2018). https://doi.org/10.1007/s10009-017-0453-6

30. O’Connor, R., Elger, P., Clarke, P.: Continuous software engineering—a microser-
vices architecture perspective. J. Softw. Evol. Process 29 (2017). https://doi.org/
10.1002/smr.1866

31. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering.
Foundations Principles and Techniques. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

32. Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery and deploy-
ment: a systematic review on approaches, tools, challenges and practices. CoRR
abs/1703.07019 (2017). http://arxiv.org/abs/1703.07019

33. Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer, A.R. (eds.)
TACS 1991. LNCS, vol. 526, pp. 346–364. Springer, Heidelberg (1991). https://
doi.org/10.1007/3-540-54415-1_54

34. Steffen, B.: Generating data flow analysis algorithms from modal specifications.
Sci. Comput. Program. 21(2), 115–139 (1993). https://doi.org/10.1016/0167-
6423(93)90003-8

35. Steffen, B.: Method for Incremental Synthesis of a Discrete Technical System
(1998). https://patents.google.com/patent/WO1998024022A1/en

https://doi.org/10.1007/978-3-030-00244-2_10
https://doi.org/10.1007/978-3-030-00244-2_13
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/BFb0023732
https://doi.org/10.1007/BF01211911
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/3-540-52148-8_19
https://doi.org/10.1007/BF01384313
https://doi.org/10.1109/MC.2010.177
https://doi.org/10.1007/s10009-017-0453-6
https://doi.org/10.1002/smr.1866
https://doi.org/10.1002/smr.1866
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
http://arxiv.org/abs/1703.07019
https://doi.org/10.1007/3-540-54415-1_54
https://doi.org/10.1007/3-540-54415-1_54
https://doi.org/10.1016/0167-6423(93)90003-8
https://doi.org/10.1016/0167-6423(93)90003-8
https://patents.google.com/patent/WO1998024022A1/en

www.manaraa.com

Product Line Verification via Modal Meta Model Checking 337

36. Steffen, B., Gossen, F., Naujokat, S., Margaria, T.: Language-driven engineering:
from general-purpose to purpose-specific languages. In: Steffen, B., Woeginger, G.
(eds.) Computing and Software Science: State of the Art and Perspectives, LNCS,
vol. 10000. Springer (2018). https://www.springer.com/gp/book/9783319919072

37. Steffen, B., Murtovi, A.: M 3C : modal meta model checking. In: Howar, F., Barnat,
J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 223–241. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00244-2_15

38. Steffen, B., Naujokat, S.: Archimedean points: the essence for mastering change.
Trans. Found. Mastering Chang. 1, 22–46 (2016). https://doi.org/10.1007/978-3-
319-46508-1_3

https://www.springer.com/gp/book/9783319919072
https://doi.org/10.1007/978-3-030-00244-2_15
https://doi.org/10.1007/978-3-319-46508-1_3
https://doi.org/10.1007/978-3-319-46508-1_3

www.manaraa.com

Towards Model Checking Product Lines
in the Digital Humanities: An Application

to Historical Data

Ciara Breathnach1, Najhan M. Ibrahim1, Stuart Clancy1,
and Tiziana Margaria2(&)

1 Department of History, Health Research Institute and Lero, Dublin, Ireland
{Ciara.Breathnach,najhan.ibrahim,stuart.clancy}@ul.ie
2 Department of Computer Science and Information Systems, Lero and HRI,

University of Limerick, Limerick V94 T9PX, Ireland
tiziana.margaria@ul.ie

Abstract. Rapid development in computing techniques and databases’ systems
have aided in the digitization of, and access to, various historical (big) data, with
significant challenges of analysis and interoperability. The Death and Burial
Data, Ireland project aims to build a Big Data interoperability framework
loosely based on the Knowledge Discovery Data (KDD) process to integrate
Civil Registration of Death data with other data types collated in Ireland from
1864 to 1922.
For our project, we resort to a Document Type Description (DTD) product

line to represent and manage various representations and enrichments of the
data. Well-formed documents serve as contracts between a provider (of the data
set) and its customers (the researchers that consult them). We adopt the Context-
Free Modal Transition Systems as a formalism to specify product lines of DTDs.
The goal is to then proceed to product line verification using context-free model
checking techniques, specifically the M3C checker of [14] to ensure that they
are fit for purpose. The goal is to later implement and manage the corresponding
family of data models and processes in the DIME framework, leveraging its
flexible data management layer to define and efficiently manage the interoper-
able historical data framework for future use.
The resulting hierarchical product line verification will allow our technical

platform to act as a high-quality service provider for digital humanities
researchers, providing them with a wide range of tailored applications imple-
menting the KDD process, whose essential business rules are easily checked by
a standard DTD checker.

Keywords: Digital humanities � Big Data Interoperability � Data integration �
Historical data � Product lines � CFMTS � DIME � Workflow processes �
Model checking

© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 338–364, 2019.
https://doi.org/10.1007/978-3-030-30985-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_20

www.manaraa.com

1 Introduction

Death and Burial Data, Ireland 1864–1922 (DBDIrl), a project funded by the Irish
Research Council, is original in its approach as it will be the first national project to
create linkages between historical registered deaths and other data types in an open
access environment using both an open access framework and open source analytical
tools. Vast quantities of historical Big Data (hBD) are in the public domain but they
exist as silos. Much of it is unstructured or structured in accordance with its original
historical ontologies and consequently the data sets cannot naturally interact or are not
interoperable with one another. Advances in computational power and linked data
techniques, which are “a set of best practices for publishing and connecting structured
data on the Web” [1], provide extraordinary opportunities to create relationships
between disparate data collected for specific purposes. DBDIrl proposes to create and
analyze the relationships between individual level historical death and burial data to
understand how the concept of Nikolas Rose’s (2007) “biological citizenship” [2]
advanced in Ireland, and how power dynamics operated regionally and from gendered
and religious perspectives. It is to state and judicial instruments of Civil Registration
(CR), specifically birth, death and marriage registration, census returns and court
records that this project turns as primary sources of Big Data.

Big Data (BD) is simply defined by Graham, Milligan andWeingart (2017) as “more
data that you could conceivably read yourself in a reasonable amount of time …
information that requires computational intervention to make new sense of it” [3]. We
contend that our core data, Civil Registration (CR) of deaths, meets the requirements
identified by Graham et al. Over the past few decades these CR data have been digitized
in the form of a Microsoft Excel index and corresponding TIFF files containing high
resolution scans of the original handwritten documents. Although Rob Kitchin considers
the measurement of the “bigness” of BD in terms of its ability to fit in a Microsoft Excel
spreadsheet as “a trite proclamation”, it is nonetheless a characteristic of the CR data
used here [4]. Indeed, we received our raw CR data as a Microsoft Excel index of
4.3 million registered deaths each entry containing 11 fields (see Table 1). Due to the
limited functionality of Microsoft Excel to process files in excess of 1 million entries it
was necessary to break it into smaller files. BD can be also defined as database/ datasets,
which conventional spreadsheet software like Microsoft Excel is unable to handle,
process and manipulate. Further to size, BD definitions also encompass the use of data
analytics methods to analyze the data and extract information and knowledge from data
patterns in given sets of data. We will soon receive a data drop of census records from
the National Archives of Ireland, which will be similar in volume to our CR data. Thus
we will face a data integration and interoperability challenge: in order to manipulate our
hBD, a set of techniques and technologies will be required to integrate and discover
potential patterns from these diverse datasets that are in multiple record forms. In this
paper we also argue that data interoperability should form a core part of academic
discourse on BD frameworks to ensure that large scale digitization projects can take
place with reasonable effort. We consider this as a potential longer-term goal, to be
tackled in collaboration with computer science experts who work on innovative IT
system integration using model-based frameworks.

Towards Model Checking Product Lines in the Digital Humanities 339

www.manaraa.com

In this paper, we provide some background about the DBDIrl project (Sect. 2), then
briefly describe why it is a case of Big Data analysis (Sect. 3) and the proposed big data
interoperability framework for DBDIrl (Sect. 4). We then discuss issues related to the
current data representations in the hDB (Sect. 5) introducing and discussing corre-
sponding initial models. Sections 6 and 7 introduce a series of refinements: flat,
hierarchical and recursive, together with simple initial product lines. The models here
span Transition Systems, Modal Transition Systems and Context-free Modal Transi-
tions Systems. Section 8 is devoted to the formulation of some initial constraints and
their model checking. Finally, Sect. 9 draws some reflections and conclusions, in the
context of Stefania Gnesi’s work.

2 Background

In 1864 CR of births, deaths and marriages (for Roman Catholics) was introduced to
Ireland. This involved the collation of large amounts of hand-written personal metadata
about individuals and their next of kin. Because of mass Irish emigration in the period
under review our initial focus is on death data as it enables us to close off a life course
in Ireland, which in turn permits a data verification exercise with other data types like
birth registrations, marriages and census returns gathered during the life course. By
taking death and burial as key themes this study adopts a life events approach to the
study of social class, gender and power in Ireland from macro and microhistory per-
spectives (Ginzburg, 1993) [5]. Table 1 shows an example of the type of information
collated at a death registration: number, date and place of death, name and surname,
sex, condition (marital status), age last birthday, rank, profession or occupation, cer-
tified cause of death and duration of illness, signature, qualification and residence of
informant, when registered and signature of informant. It is currently partially indexed
online and available to search for free on irishgenealogy.ie by name, civil registration
district/office, year range and life event level. For end-users each indexed death is
linked to an image (TIFF file) of the original entry and each page can contain up to 10
entries. Users have to solve a Captcha which is followed by an application to search the
records on an individual level under section 61 of the Civil Registration Act, 2004. Our
aim is to find ways of integrating these categories into domain-specific modeling
frameworks as discussed from Sect. 5 onwards.

Table 1. Structure of the Irish Civil Registration data as required by statute (GROdata) [41].

Deaths registered in the District of [] in the Union of [] in the County of []

No Date and
place of
death

Name
and
Surname

Sex Condition Age last
birthday

Rank,
Profession
or
Occupation

Certified
Cause of
Death and
Duration of
Illness

Signature,
Qualification
and Residence
of Informant

When
registered

Signature
of
Registrar

1 24 January
1864, 10
High Street,
Kingstown

James
Green

Male Married,
Bachelor or
Widower (as
the case may
be)

43
Years

Carpenter Pneumonia,
Two months,
Certified

Sarah Green,
Widow, High
Street, present
at death

25
January
1864

John Cox,
Registrar

340 C. Breathnach et al.

www.manaraa.com

In the longer term, we are particularly interested in automating the process of data
entry to flesh out the partial index to provide a fuller impression of cause of death data,
especially contagious diseases. We intend, with the aid of BD analytics and other tools,
to visualize and map our data to street and household level to identify micro epidemics,
disease under-reporting and to discuss reasons why these patterns emerge.

Historical data presents many opportunities for breakthroughs in BD science and
analytics as it constitutes the necessary components of volume, variety and variability
as defined by (NIST Big Data operability Framework, p. 7) [6] although the veracity of
the indexed data will need to be quality assured and cleaned to ensure uniformity. The
project will initially use a sample from the CR data to create a set of linkages with other
data types. One of our first tasks will be the creation of unique URIs for every death
entry to ensure the veracity of our work. Among our challenges will be the quality
assurance of our data linkages and issues associated with common surnames and the
reuse of ancestral first names.

3 Big Data Analysis

In 1996 Fayad et al. argued the urgency of finding new ways and theoretical under-
pinnings to deal with the “rapidly growing volumes of digital data”. Building on
Platesky-Shapiro’s 1989 theories they identified Knowledge Discovery Databases
(KDD) as a sensible way forward. KDDs quickly became and continue to form the
cornerstone of data analytics [7].

BD analysis encompasses the gathering, management and examination of huge
datasets from various data sources to discover hidden patterns, unknown correlations,
trends preference and other useful information. The hBD that we analyze are not just
large in volume, but also complex in their content. BD also has the ability to identify
the unique properties of the content (multi-dimension, heterogeneous, unstructured,
incomplete, and erroneous) which may require a specific method or approach for
typical data types. The advance of technologies makes it possible to collect more data
to find more useful information, however the generation of more data means potentially
also more ambiguous or abnormal data. Therefore, it is important to find an analytical
method to identify relevant particulars of our data for the specific purpose of the
research study.

The practice of finding useful information/knowledge in data has been defined
broadly as including data mining, knowledge extraction, information discovery, data
pattern processing, etc. The KDD approach comes with a multi-phased process [8]
encompassing several workflow processes such as data selection, data preprocessing,
data transformation, data mining, data interpretations and evaluation as presented in
Fig. 1. According to surveys, KDD is one of the most successful approaches to big data
management [9]. Applied to our research, an adequate implementation of the KDD
approach will enable the development of a complete data analysis cycle that is capable
of identifying useful information and knowledge patterns, and make them available to a
wider range of researchers through adequate user interfaces.

Towards Model Checking Product Lines in the Digital Humanities 341

www.manaraa.com

4 The Proposed Big Data Interoperability Framework
for DBDIrl

In the hDB context and in particular in our DBDIrl project, we face the central issues of
data interoperability across various sources, amenability of data to be analyzed and
manipulated automatically, and the need to support in the best way fellow researchers
and also the general public to pose more or less specialized queries. In all three aspects,
we need to address data modelling issues concerning among others integrity, suit-
ability, compatibility, equivalence, and other more specialized properties. We approach
it through a product line approach and by adopting and adapting the meta-model
checking techniques introduced in detail in [14].

4.1 Heterogeneous Datasets

Figure 2 shows the heterogeneous dataset for our project. The four main data sources
consist of CR Data and Census Data, which are hBD, and Coroners’ records and
miscellaneous databases, which are smaller data. These data can be further classified as
describing life course, life grid, life event and verification data. For example, a death
registration combined with a birth provides the parameters of a life course while a
comparative analysis of the 1901 and 1911 census can produce a life grid of 10 years.
On the other hand, coroners’ records and miscellaneous data can enrich the picture of
an individual’s microhistory by adding other life events or independent verification
data. We concentrate in this paper on the discussion of how to deal with the various
sources and formats available for the CR data (cf. introduction in Sect. 1). We have yet
to determine the census data file type and expect them to be available in a database.
Coroners’ records are not yet fully digitized, and we have experimented with Text
Encoding Initiative to mark up the text in a meaningful way for our research. Several
miscellaneous databases available online are likely to be accessible via structured query
language (SQL). Therefore, the proposed framework needs to be able to integrate these
different types of available data.

Fig. 1. Knowledge discovery databases (KDD) process [8]

342 C. Breathnach et al.

www.manaraa.com

The integration process between multiple types of data sources will bring the four
main local data models into one local model aggregation and then to one final data
model. CR data will be used to generate the life course data model and Census data
will provide a life grid data model. At the same time, coroners’ record will lead to a life
event data model and miscellaneous sources may provide a verification data model.
Ideally, already these 4 distinct models should be crafted in the same technology, to
provide the basis for the data integration model of each individual typical data source.
The local data aggregation model is the main interoperability engine of the proposed
framework. It serves to integrate the local data model types into one schema that refers
to each individual local model of the available data sources. Then a further step will
generate the final model to be used for the research questions, e.g. to identify potential
applications for modern-day global health problems associated with under-reporting of
life events and the implications that this has for public health planning.

Technically, as the KDD-related processes will be modelled and implemented in
DIME [10, 11], the developers responsible for the data integration need to define a
small domain-specific language (DSL) based on the API of the technology underlying
the dataset, e.g. actions to access Excel data, import or export tables. The developers
will make these actions available to DIME users as language elements for the process
models and data models. We expect such a model DSL to be needed for each type of
data source to be integrated (i.e. Excel, Microsoft’s Access database, etc.). Once this
DSL is available, the creation, management, and interpretation of those data compo-
nents are automatically generated by DIME. The impact of such DSL model libraries
becomes significant when looking at the standardization of the process model to
develop a complex application system: once a specific database is integrated as a

Fig. 2. Big Data Interoperability conceptual reference model.

Towards Model Checking Product Lines in the Digital Humanities 343

www.manaraa.com

technology with its DSL, any data set stored in that technology becomes easily
accessible. Therefore, it is strongly argued that using DIME with its underlying DyWA
[29] data integration library concept can assist in the development of complex appli-
cations and realize reusable DSLs for hBD.

We have at this moment a top-level DIME model for the phased KDD approach of
Fig. 1, but it is not yet operational because any automated dataset manipulation hinges
on the existence of automatable, checked, interoperable data models fit for purpose,
that can populate the collection of DyWA schemata for the DBDIrl project shown in
Fig. 2.

4.2 The Models: From LTS to MTS and CFMTS

We recall Context-Free Modal Transition Systems (CFMTSs) along the definitions in
[14] as an extension of Modal Transition Systems (MTSs) to mutually recursive sys-
tems of MTSs. MTSs and their extension with mutual recursion come with a notion of
refinement that establishes a powerful specification-implementation relation. They
allow one to model check properties at the specification-level that are then guaranteed
to hold for each implementation. The considered property language for model checking
is the (alternation-free) modal l-calculus.

Definition 1 (Modal Transition Systems [25]). Let S be a set of states and Act an
alphabet of action symbols. is called a (rooted) Modal
Transition System (MTS) with root s0 if the following condition holds:

Elements of are called may transitions, those of ! must transitions. As usual, we

will write s�!a s0 iff ðs; a; s0Þ 2! and s�!a to abbreviate 9s0:s�!a s0, and
are defined analogously.

MTSs denote sets of Labeled Transition Systems (LTSs), which can simply be
defined as MTS where all transitions are Must transitions. Modal refinement, the
corresponding specification-implementation relation, defines these sets as the minimal
elements of the refinement ordering.

Definition 2 (MTS refinement [25]). Let, ,
be two MTSs. A relation � r �ðS1 � S2Þ is called a

refinement if the following holds for all p; qð Þ 2 � r:

1.
2.

Intuitively, refinement allows May transitions to be either turned into Must transitions
or to be eliminated, while it requires all Must transitions to be maintained. Like
bisimulation, it preserves all temporal properties of finite state systems. In fact, modal
refinement is an ideal tool for product line verification also for the here considered
infinite state case, where procedural MTS are involved.

A procedural MTS can be seen as an MTS that is extended by the possibility of
having transitions whose effect is described by another MTS.

344 C. Breathnach et al.

www.manaraa.com

Definition 3 (Procedural Modal Transition Systems). A procedural modal transi-
tion system is defined as , where:

– RP is a set of state classes,
– Trans :¼ Act [N is a set of transformations (Act is a set of actions, N is a set of

procedure names),
– !P:¼!Act

P [!N
P is the must transition relation,

– is the may transition relation,
where and ,

– rsP 2 RP is a class of start states and reP 2 RP is a class of end states.

We consider only PMTSs P where end states rP are terminating in P and all initial
transitions of P are labeled with atomic actions, i.e. they are guarded.

Call transitions allow one to define mutually recursive sets of MTSs, formalized as
Context-Free Modal Transition Systems (CFMTSs):

Definition 4 (Context-Free Modal Transition Systems (CFMTSs)). A context-free
modal transition system is a quadruple P ¼ N;Act;C;Poð Þ, where:
– N :¼ N0; . . .;Nn�1f g is a set of names,
– Act is a set of actions,
– C :¼ Ni ¼ PMTSij 0� i\ nf g is a finite set of PMTS definitions where PMTSi is

a finite PMTS with name Ni 2 N and
– P0 is the main PMTS. Moreover we denote R ¼ Sn�1

i¼0 RPi ;!
Sn�1

i¼0 ! Pi and

CFMTSs serve as finite representations of the complete, typically infinite-state
expansion of the corresponding main PMTS P0.

5 Current Data Representations in the hDB

In this and the following sections, we present the currently ongoing interdisciplinary
work by historians and computer scientists on the data comprehension, organization,
ontology creation, and modelling. We show some of the most obvious benefits of
adopting the M3C approach as a conceptual guidance and practical tool.

Referring to the KDD approach (Fig. 2), we address its first three steps:

• Selection: we concentrate right now on the data sets relative to deaths recorded in
Dublin in the year 1901. This subset spans ca. 9500 deaths.

• Preprocessing: we work at this stage with the Irish CR data. They are available in a
number of different formats and levels of aggregation of the information, that need
to be examined from the point of view of their suitability to address the research
questions we need to answer.

• As a consequence of their shortcomings, we need to undertake some Transfor-
mations of data format and granularity of information.

Towards Model Checking Product Lines in the Digital Humanities 345

www.manaraa.com

Once this preparation work is done, trained individuals will be able to enter the data
that is not yet available in a digitally analyzable form, and specialists will then check
the data entry quality and its conformity with the original data sources. It is foreseen to
offer the data entry activity (which includes also interpretation of the original sources)
as a research-based project to the ca 20–25 students of module HI4187 - Health, State
And Irish Medical Care, 1837–1948. In this Problem Based Learning project, they will
develop and apply skills of historical analysis and interpretation, demonstrate
knowledge of basic research methods, including the conventions of documentation, in
the context of a specific research project. The DIME application using the data models
designed and refined in this paper and the corresponding DTD checkers will be used by
the students and researchers.

5.1 The Original CR Data Set and the GRO Data

At the outset of our investigations, our immediate aim is to transform the historical
Document Type Definition (DTD) shown in Table 1 into a finer grained and better
searchable format. This historical DTD was devised as part of a digitization project
between the data owners and Accenture resulting in the 9-field Excel index of the
GROdata that was provided as a large CSV with several million entries. As shown in
Table 2, the GROdata 9-field Excel index provides

(1) a unique ID for each entry (column A),
(2) the essential data about the death, and
(3) a link to a page of the original handwritten register. This link is provided via a

pathway to a scan in TIFF format of that page.

The Excel export to a CSV enclosed text file stores the flat data, as numbers and/or
text, in rows (lines) each corresponding to one record and columns, each corresponding
to a data field, in plain text format. Table 2 shows the 9 data fields (columns A to M)

Table 2. Sample of CSV file from the GROdata.

Group
Registration
ID

Deceased
Forename

Deceased
Surname

Deceased
Age at
Death

SR
District/
Reg
Area

Deceased
Date of
Death

Deceased
Year of
Death

Deceased
Civil
Status

TIFF File Path

4519165 CAROLINE DOBBIN 55 Dublin
North

NULL 1901 NULL Deaths_Returns\
deaths_1901\
05712\ 4611332.
tif

4529269 JOHN ONEILL 43 Dublin
North

NULL 1901 NULL Deaths_Returns\
deaths_1901\
05712\
4611353A.tif

4527402 JULIA MOORE 1 Dublin
North

NULL 1901 NULL Deaths_Returns\
deaths_1901\
05712\ 4611348.
tif

346 C. Breathnach et al.

www.manaraa.com

and five sample records (rows 1 to 5). While CSV can be considered as a simple,
conventional and popular data exchange format supported by most organizations and
institutions, it is not at a professional data exchange standard. Using commas as field
separators is simple, but amenable to ambiguity when data fields can themselves
contain commas and other characters like dashes, underscores or any unsupported
values (for example, an ampersand & or a currency symbol like £ or $) that could be
used as alternatives to the comma. Dealing with big data, it is essential to establish
automated ways to search, manipulate, transform and analyze the data at any granu-
larity, and this is impossible if there are inherent ambiguities in the representation and
storage formats. The CSV representation makes it very difficult to maintain and control
the accuracy of data in an automated way. For instance, numeric values may be
mistakenly stored in the alphabetic data fields during the import and export process.
Because Excel does not support value control mechanisms in each row and column
data, there is also a risk that redundancy can occur during the exchange process.

For our project, we resort to a DTD product line to represent and manage various
representations and enrichments of the data. For our purposes well-formed documents
form the basis of the contracts between the provider (the data set) and its customers (the
researchers that consult them. In a first step, we intend to establish the Context-Free
Modal Transition Systems (CFMTS) of [14] as a formalism to specify product lines of
Document Type Descriptions (DTDs) – or related formalisms like JSON schema. The
goal is to then proceed to product line verification using the M3C model checking
techniques of [14, 19] to ensure that they are fit for purpose. We need in fact to
guarantee that violations of essential well-formedness constraints of a corresponding
user document are detected by standard DTD-checkers.

The goal is to later implement and manage the corresponding family of data models
and processes in DIME [10], leveraging its flexible DyWA [29] data management layer
to define and efficiently manage the interoperable hDB framework for future use. The
resulting hierarchical product line verification will allow our hDB platform to act as a
high-quality service provider for digital humanities researchers, providing them with
a wide range of tailored applications implementing the KDD process, whose essential
business rules are easily checked by a standard DTD-checker.

5.2 Initial Ontology and Initial Models

In the notation of [14], we have the following two initial ontologies for the CR data:

(A) CR data (GROdata): it contains the following 11 fields (see Table 1)

Towards Model Checking Product Lines in the Digital Humanities 347

www.manaraa.com

(B) CSV data (GROdata): it contains the following 9 fields (see Table 2)

As we see, there are only syntactically basic types, one per column. While some are
also semantically basic (like deceased_forename), many contain a complex aggregation
of semantically rich information items, like certified_cause_of_death_and_du-
ration_of_illness. For our research they need to be individually analyzable, thus we
need to introduce a granularity transformation step already on this individual dataset,
just in order to make the data collection fit for the research purpose.

Their respective specifications in terms of MTS [14] are amenable to provide for
example a syntactic validator, guaranteeing the syntactic validity for each satisfying
data entry with that structure. As we see in Fig. 3, these checkers are not very useful. In
particular GRODATA_PHYSICAL, corresponding to the original physical archive,
does not rule out any entry because it accepts all symbols as indicated by the label R
(i.e. “any category”) in Fig. 3 (top left). The other two MTS compactly represent one
May transition for each set of label A) and B): they at least restrict acceptance to the
“correct” set of categories present in the respective representations.

Fig. 3. Initial models (MTS) for the physical archive GRODATA_PHYSICAL (top left), the
CSV schema GRO_INDEX (top right) and the original GRO_TIFF_CR data schema (bottom).

348 C. Breathnach et al.

www.manaraa.com

5.3 The Product Models for the CSV and CR Representations

The MTSs of the concrete products for Tablea 1 and 2 are in Fig. 4 and 5, respectively.
There are no May transitions, therefore taken in isolation these are strictly speaking
LTS. In the context of the set of very abstract MTS reported in Fig. 3, we note that
CR_GRODATA (Fig. 4) is a refinement of GRO_TIFF_CR, and CSV_GRODATA
(Fig. 5) is a refinement of GRO_INDEX.

We see that these concrete products have differences: for example, they use dif-
ferent terminology and different granularity for the same information, like
<name_and_surname> in the CR schema vs. <deceased_forename, deceased_sur-
name> in the CSV schema. In this sense, we face an ontology mapping problem in
order to reconcile different representations arising at different times for the same
(physical) data collection.

Even more crucially, as it is clear from the product model in Fig. 5, the CSV
representation we received does not contain many fields necessary for our research in
an automatically searchable and analyzable form. It provides details on the personal
data of the deceased person, but not for example the location nor the cause of death.

The full CR information can be manually retrieved from the CSV in the linked
TIFF, which contains the entire CR information as in Fig. 4. Also here we see that there
is no “proper” date of birth: deceased_age_last_birthday is a simple number, not the
full date/month/year. People had no concept of age in the modern sense back then.

As it is not possible to automatically search the TIFFs, in order to carry out our
research we need to undergo a tedious and manual process of extracting the additional
information needed from the TIFFs and enhance the available CSV information with
these new fields. Thismanual process is expensive (it uses in fact a large part of the project
resources) and error prone, so each record needs to be checked by trained experts once its
additional data is entered in the extended records. In fact, this incompleteness of the data
de facto available for automated analysis is the reason why we have limited ourselves for
the moment to a single year (1901) and a single location (Dublin).

no
date_and_place_of
_death

name_and
_surname sex

condi on

age_last_
birthday

rank_profession_
or_occupa on

cer fied_cause_of
_death_and_
dura on_of_illness

signature_
qualifica on_
and_residence_
of_informant

21 3 4 5

6789

12

10

11

when_registered

signature_of_registrar

CR_GRODATA

Fig. 4. MTS of the concrete CR GROdata product.

Towards Model Checking Product Lines in the Digital Humanities 349

www.manaraa.com

For a precise and comfortable study of the questions central to this project, we need
therefore to create a new, fine grained and well-organized representation, easily
amenable to a number of future adaptations, extensions, filters, and uses.

6 Subject Domain Refinement: The Fine Grained Data
Representation

DBDIrl is interested in the first instance in cause of death data. For example, we aim to
create heatmaps of particular diseases and to correlate these, for example, with age at
death, which in turn can underpin studies of social determinants of health, epigenetic
change in post-Famine Ireland, cohort and gendered analyses of particular diseases.

The original CR GROdata is not optimal for these enquiries: each column in
Table 1 contains a number of unique pieces of information, making it difficult to
analyse this data in its original format. For example, the date and location of a death are
coupled in a single field date_and_place_of_death, but they must be separated for our
envisaged analysis.

The breakdown of categories is limited even further in the Excel file received from
the GRO. This is visible in Table 2. Certain categories were not populated on receipt,
such as deceased_civil_status, which contains NULL values in the vast majority of the
entries, which may have occurred in the file export, thus exposing the vulnerabilities of
the Excel file format.

The same issue is prevalent in the deceased_date_of_death category in the majority
of the records provided to us. Our project aims cannot be met unless we conduct further
data entry and subdivide the categories to a finer grained level that corresponds to the
atomic granularity of enquiry and thus of query. This in turn led to the creation of
fifteen additional fields, which are populated with the relevant data derived from the
TIFF files.

group_
registra on_id deceased_forename deceased_surname

deceased_age_
of_death

sr_district_reg_area

deceased_date_of_
birth

deceased_year_of_
death

deceased_civil_statusff_file_path

21 3 4 5

678910

CSV_GRODATA

Fig. 5. MTS of the CSV GROdata product.

350 C. Breathnach et al.

www.manaraa.com

T
ab

le
3.

T
he

G
R
O
da
ta
-fi
ne

re
pr
es
en
ta
tio

n
w
ith

24
in
di
vi
du

al
ly

m
ea
ni
ng

fu
l
ca
te
go

ri
es
.

G
ro
up

R
eg
is
tr
at
io
n

ID

D
is
tr
ic
t

D
at
e
of

D
ea
th

Pl
ac
e
of

D
ea
th

W
he
re

R
es
id
en
t

Se
x
(M

/F
)

D
ec
ea
se
d

Fo
re
na
m
e

D
ec
ea
se
d

Su
rn
am

e
D
ec
ea
se
d

A
ge

at
D
ea
th

C
iv
il
St
at
us

of
D
ec
ea
se
d

(M
/W

/S
/B
)

SR D
is
tr
ic
t/R

eg
A
re
a

R
an
k,

Pr
of
es
si
on

or
O
cc
up
at
io
n

45
19
16
5

N
o.

1
E
as
t

17
/1
0/
1
90
1

16
6

N
or
th

st
ra
nd

R
oa
d

F
C
A
R
O
L
IN

E
D
O
B
B
IN

55
W

D
ub
lin

N
or
th

H
ou
se
ke
ep
er

45
29
26
9

N
o.

1
N
or
th

C
ity

19
/1
1/
1
90
1

M
.M

.
H
os
pi
ta
l

66 R
os
em

ou
nt

K
ilm

ai
nh
am

M
T
H
O
M
A
S

O
’N

E
IL
L

43
M

D
ub
lin

N
or
th

C
le
rk
s
W
id
ow

45
27
40
2

N
o.
1
N
or
th

C
ity

28
/1
0/
1
90
1

St
.

Jo
se
ph

’s
H
os
pi
ta
l

F
JU

L
IA

M
O
O
R
E

1
S

D
ub
lin

N
or
th

Po
ul
te
rs

C
hi
ld

C
au
se

of
D
ea
th

1
D
ur
at
io
n
of

Il
ln
es
s
1

C
au
se

of
D
ea
th

2
D
ur
at
io
n

of
Il
ln
es
s

2

C
er
tifi

ed
(C
/U
)

N
am

e
of

In
fo
rm

an
t

Q
ua
lifi

ca
tio

n
of

In
fo
rm

an
t

A
t
T
im

e
of

D
ea
th

(P
/N
)

R
es
id
en
ce

of In
fo
rm

an
t

D
at
e
of

R
eg
is
tr
at
io
n

N
am

e
of

R
eg
is
tr
ar

T
iff

Fi
le

Pa
th

C
ar
di
ac

Fa
ilu

re
C

C
ha
rl
ot
te

P
15 T
ur
lo
ug
h

T
er
ra
ce

31
-1
0-
19
01

J.
D
on
ne
lly

D
ea
th
s_
R
et
ur
ns
\

de
at
hs
_1
90
1\

05
71
2\

46
11
33
2.
tif

H
ea
rt

Fa
ilu

re
A
pp
en
di
ci
tis

C
P.

A
lle
n

In
m
at
e

19
-1
1-
19
01

J.
H

M
ca
ul
ey

A
ss
t.

D
ea
th
s_
R
et
ur
ns
\

de
at
hs
_1
90
1\

05
71
2\

46
11
35
3A

.ti
f

G
en
er
al

T
ub
er
cu
lo
si
s

1
D
ay

T
ub
er
cu
la
r

M
en
in
gi
tis
T
ub
er
cu
la
r

M
en
in
gi
tis

2
h

C
M
.J
.
B
yr
ne

In
m
at
e

30
-1
0-
19
01

J.
H

M
ca
ul
ey

A
ss
t.

D
ea
th
s_
R
et
ur
ns
\

de
at
hs
_1
90
1\

05
71
2\

46
11
34
8.
tif

N
ot
e:

T
he

to
p
an
d
bo
tto

m
se
ct
io
ns

ar
e
co
nc
at
en
at
ed
.
N
U
L
L
fi
el
ds

ar
e
le
ft
em

pt
y.

Towards Model Checking Product Lines in the Digital Humanities 351

www.manaraa.com

Table 3 (top) and (bottom) shows how we transformed the individual entries by
conducting data entry and splitting, for example, alphabetic from numerical data. This
is a refinement step in the subject domain1. These additional categories provide a
more meaningful granularity that is fit for purpose for our research agenda. To illustrate
this, Tables 2 and 3 have been populated with sample data from the 1901 GRO records
for Dublin and include a woman (top row), a man (middle row), and a child (bottom
row).

The corresponding product LTS is provided in Fig. 6. The CSV_DATA_R1 refines
the LTS of the CSV GROdata product model of Fig. 5 by incorporating some of the
TIFF file categories and reformulating some other categories. For example, there is no
deceased_year_of_death anymore because it is contained in the date_of_death
provening from the CR model. It also keeps the finer grained category pair for the
deceased forename and surname. As a principle, we choose systematically the most
precise (full date of death vs. only the year) and disaggregated (separate forename and
surname) alternative.

Fitness for Purpose: Key to the geographical analysis of disease presence is the
District and Place Of Death data. The Where Resident category accounts for deaths in
institutions such prisons, hospitals, infirmaries and asylums. The separation of the Date
Of Death category not only allows us to divide our sample studies into select time
periods but allow us to also examine the data in a linear format. This has the potential
to show a timeline of disease outbreaks and provides us with the ability to factor

group_
registra on_id district date_of_death place_of_death

where_resident

civil_status_of_deceased

deceased_forename
deceased_age_at_
death

21 3 4 5

6789

24

10

11

sr_district_reg_
area

name_of_registrar

cause_of_death_1

sex

date_of_registra on

17 161819

12

232221

rank_profession_
or_occupa on

151413

deceased_surname

dura on_of_illness_2

dura on_of_illness_1

cer fied

cause_of_death_2

name_of_informant

present_at_ me_of_death
residence_
of_informant ff_file_path

20

qualifica on_
of_informant

CSV_DATA_R1

24

Fig. 6. CSV_DATA_R1: LTS of the GROdata fine-grained representation of Table 3.

1 This refinement should not be confused with the MTS refinement of Definition 2, that concerns the
May/Must modalities and will play a role in Sect. 7.

352 C. Breathnach et al.

www.manaraa.com

seasonality. These categories can be combined with existing categories in the original
Excel document such as Deceased Age Of Death.

Multiple Occurrence of Categories: Another problematic category in the TIFF files
is Certified Cause Of Death And Duration Of Illness as it contains too many unique
attributes. Our original breakdown included Cause Of Death, Duration Of Illness and
Certified (Y/N) as the only categories clarifying these attributes. On further analysis it
became clear that the tripartite breakdown would have to be extended to allow for the
large number of entries that list more than one cause of death and illness duration. So
Cause Of Death 2 and Duration Of Illness 2 were added. Examples of this need can be
seen in Table 3 in the entries for Julia Moore and Thomas O’Neill.

7 May/Must Refinements, Minimum Specifications and Roles

To prepare our data for automated analysis purposes our source fields should be further
categorised into a series of attributes that Must or May be there. Here we adopt
taxonomy as opposed to an ontological approach and at this preliminary stage we are
also remaining faithful to the original hierarchies defined in Table 1. For a death to be
properly registered we Must have a register number, a name and gender (“unknown” is
entered in cases of unidentified bodies found), a date of death and registration, Table 4
lists how Fig. 1 can be crudely represented in these terms. The Must categories are
typographically evidenced in boldface in Fig. 4.

7.1 Minimum Specification and Roles

A more refined way of expressing the minimum specifications principles for analysis
purposes revolves around the three people involved in the record creation: the Dead
person, the Informant and the Registrar. Under these hierarchical taxonomies are the
associated attributes that we can assign to each person. The only granular data that
Must be or is consistently present for a death to be lawfully registered are the properties
associated with the Registrar. The deceased person May/or may not have a name,
address or gender. For example, a badly decomposed body found in a waterway would

Table 4. May and Must categories for Table 1.

Must May

Number of Registration Condition
Date and place of death Age last birthday
Name and surname Duration of Illness
Sex
Certified Cause of Death Duration of Illness
Signature, Occupation and Residence of Informant
When registered
Signature of Registrar

Towards Model Checking Product Lines in the Digital Humanities 353

www.manaraa.com

be returned as an unknown infant or adult, without a name, address and sometimes
gender as even this might not have been ascertainable. While such instances would
have occasioned a coronial court inquiry, post mortem examinations were not always
comprehensively undertaken [42].

In Table 5 the Registrar’s Taxonomy includes a new field Data Associated with
Admin: this corresponds to the pro forma typed header to each register page (see
Table 1). Here we include the number of the registration as it was generated by that
office and Must be present, although arguably it could be an attribute associated with
the deceased.

7.2 Hierarchy: Introducing Procedures

The model for this minimum specification becomes hierarchical, and as such introduces
procedures and CFMTS. As shown in Fig. 7, a main MTS DBD_IRL_MIN organizes
the essential information relative to the three roles, DEAD_PERSON, INFORMANT
and REGISTRAR. This happens by DBD_IRL_MIN referring to the three role-specific
own MTS, each implementing the pertaining categories listed in the role-describing
columns of Table 5.

In this hierarchical description we start to see potential for local refinement that
takes into consideration the May part of the descriptions. In this case, the refinement is
role based.

Table 5. Minimum Specifications for each role

Dead Person Informant Registrar

Name and
Surname

Signature, Occupation and Residence
of Informant

Data associated with admin
Deaths registered
in the District of []
in the Union of []
in the County of []

Sex Certified Cause of Death,
Duration of Illness

Number of registration

Date and place of death When registered
Signature of Registrar

354 C. Breathnach et al.

www.manaraa.com

7.3 Refinements Including May Categories

We can now enrich the description including also the May categories of Table 4 (right
column) as required categories. This can happen in either of two ways:

• At the DBD_IRL_MIN level. This choice results in the refined model
DBD_IRL_WITH_MAY in Fig. 8, which foresees the new states 5, 6, 7, and 8.
There, path 2 ➔ 5 covers the presence of one May category, paths 2 ➔ 6 ➔ 5 and 2
➔ 7 ➔ 5 the presence of 2 categories and path 2 ➔ 7 ➔ 8 ➔ 5 the presence of all
three categories.

• Observing that all the May fields semantically are pertaining to the DEAD_-
PERSON role, they can be associated with the deceased and enrich their profile as
in the DEAD_PERSON_WITH_MAY model (Fig. 9).
DEAD_PERSON_WITH_MAY includes the original DEAD_PERSON model, and
leads to an alternative refinement DBD_IRL_WITH_MAY_R2 of the entire
description, shown in Fig. 10.

From the point of view of achieving a product line of descriptions, we see that the
refinement so far is still happening through successive creation of new individual
products that incorporate the missing or desirable traits as required: there are no May
transitions yet in these MTS. In the non-technical terms of common-sense under-
standing, the natural reaction to deficiencies is to try to formulate a concrete “super-
product” that covers all the needs. The fact that it may require too much in many
occurring cases is shadowed by the more compelling desire to achieve completeness.

21 3 5

REGISTRAR

data_associated_
with_admin no

4
when_registered signature_of_

registrar

name_and_s
urname sex

1 2 3

DEAD_PERSON

21 3 4

INFORMANT
signature_
qualifica on_
and_residence_
of_informant

cer fied_cause_of_d
eath_and_
dura on_of_illness

date_and_place_
of_death

21 3 4
DEAD_PERSON INFORMANT REGISTRAR

DBD_IRL_MIN

Fig. 7. CFMTS for the hierarchical role-based minimum specification DBD_IRL_MIN.

Towards Model Checking Product Lines in the Digital Humanities 355

www.manaraa.com

7.4 Including Administrative Data in the Registrar Role

At this point, we can easily observe that also the Registrar role is amenable to further
refinement on the basis of the additional administrative data included in Table 5. These
data come from the registration page header information of the original GRO data, as
shown in Table 1. The REGISTRAR_R1 refinement shown in Fig. 11 includes the

21 3 4

DEAD_
PERSON REGISTRAR

DBD_IRL_WITH_MAY

condi on

5

rank_profession_
or_occupa on

age_last_birthday

8

6 rank_profession_
or_occupa on

condi on

INFORMANT

condi on
age_last_birthday

rank_profession_
or_occupa on

age_last_
birthday

7
age_last_birthday

Fig. 8. DBD_IRL_WITH_MAY refinement of DBD_IRL_MIN (Fig. 7 top).

21 6

DEAD_
PERSON

DEAD_PERSON_WITH_MAY

condi on

rank_profession_
or_occupa on

age_last_birthday

5

3

rank_profession_
or_occupa on

condi on

condi on age_last_birthday

age_last_
birthday

4
age_last_birthday

rank_profession_
or_occupa on

Fig. 9. DEAD_PERSON_WITH_MAY refinement of DEAD_PERSON (Fig. 7)

21 3 4
DEAD_PERSON_WITH_MAY INFORMANT REGISTRAR

DBD_IRL_WITH_MAY_R2

Fig. 10. DBD_IRL_WITH_MAY_R2 Refinement of DBD_IRL_MIN, including
DEAD_PERSON_WITH_MAY.

356 C. Breathnach et al.

www.manaraa.com

DATA_ASSOCIATED_WITH_ADMIN model and goes therefore beyond even the
categories of CSV_DATA_R1, which was the extended CFMTS for the GROdata-fine
representation of Table 3.

7.5 Multiple Occurrence of Categories: Recursion in the Informant Role

As described in Sect. 6 and shown in Table 3 for Thomas O’Neill and Julia Moore,
there can be more than one Certified Cause Of Death and relative Duration Of Illness.
The temporary solution adopted in Table 3, just adding a second pair of columns called
Certified Cause Of Death 2 and relative Duration Of Illness 2 is an expedient and not a
clean systematic modelling solution. We decide that there can be one or more such
category pairs, therefore it is opportune to define a sub-model CCD_DI to deal with the
multiplicity aspect.

21 3 5

REGISTRAR-R1

DATA_ASSOCIATED_
WITH_ADMIN no

4
when_registered signature_of_

registrar

21 3 4

DATA_ASSOCIATED_WITH_ADMIN

district union of county_of

Fig. 11. REGISTRAR_R1 refinement of REGISTRAR including administrative data.

21 3 4

INFORMANT-R1
signature_
qualifica on_
and_residence_
of_informant CCD_DI

date_and_place_
of_death

21 3 4

CCD_DI

cer fied_cause_of_
death dura on_of_illness CCD_DI

Fig. 12. CFMTS INFORMANT_R1 refinement of INFORMANT with the recursive CCD_DI.

Towards Model Checking Product Lines in the Digital Humanities 357

www.manaraa.com

As shown in Fig. 12 (bottom), in the CCD_DI model the accepting state 3 covers
the case of single occurrence of the <certified_cause_of_death, duration_of_illness>
information, while accepting state 4 is reached when more than one pair occurs. The
additional pairs are optional, therefore, following the notational conventions for MTS,
the May-transition from state 3 to state 4 is represented by a dashed arrow.

With this CCD_DI model we have now discovered recursion in our data model: it is
now clear that we need formalisms and tools that can deal with context-free structures.
In fact, with INFORMANT_R1 we have reached our first proper CFMTS along
Definitions 1 to 4.

With this CCD_DI model we have now discovered recursion in our data model: it is
now clear that we need formalisms and tools that can deal with context-free structures.

8 Modelling and Analyzing Product Lines

With the May-transition in the CCD_DI model we also have moved from single models
(products) to a product line: this model summarizes the shape of any element of the
family of <certified_cause_of_death, duration_of_illness> we wish to consider. It is a
very simple product line, but it is sufficient for us to be able to express properties that
can be checked on the CFMTS by the higher order model checker of [14].

Taken together, the CFMTS for DBD_IRL_WITH_MAY in Fig. 8 and
DBD_IRL_MIN (Fig. 7 top) define a simple product line too: its CFMTS, shown in
Fig. 13, foresees as alternatives either zero or any combination of the May categories
from Table 4.

21 3 4

DEAD_
PERSON REGISTRAR

DBD_IRL_PL

condi on

5

rank_profession_
or_occupa on

age_last_birthday

8

6 rank_profession_
or_occupa on

condi on

INFORMANT
condi on
age_last_birthday

rank_profession_
or_occupa on

age_last_
birthday

7
age_last_birthday

INFORMANT

Fig. 13. The DBD_IRL Product Line.

358 C. Breathnach et al.

www.manaraa.com

8.1 Model Checking Product Lines

Our work is just starting. We are still discovering the many ways this style of modelling
can be useful to simplify the work for both the historians, who are burdened with many
manual data entries and checks, and the system designers, who try to be supportive of
the researcher’s needs and automate its most tedious and error prone bits.

Automation in our case works through formulation of properties for these products
and product lines and the construction of mechanisms that enforce or check such
properties.

Looking at the DBD_IRL Product Line of Fig. 13, it seems reasonable to ask that
P1: “A Must-specification is sufficient”.
In Hennessy-Milner logic, which is included in the modal mu-calculus [40]

internally adopted by the context-free model checker in [19], this property is formu-
lated as

\DEAD PERSON[\INFORMANT[\REGISTRAR[true

P1 is satisfied by the DBD_IRL_MIN product, but not by the DBD_IRL_-
WITH_MAY refinement, as there the INFORMANT does not directly follow
DEAD_PERSON.

On the DBD_IRL_PL, P1 is satisfied by the upper path only, corresponding to
DBD_IRL_MIN.

P2: “The information about the INFORMANT follows immediately the DEAD_-
PERSON information”.

\DEAD PERSON[\INFORMANT[true

This property is a looser version of P1, but still sufficient in the current product line
as the only location where there are differences among the products is between the call
to DEAD_PERSON and the call to INFORMANT.

As already P1, also this property is satisfied in the DBD_IRL_PL by the
DBD_IRL_MIN product but not by the DBD_IRL_WITH_MAY refinement.

P3: “The May information categories precede the INFORMANT information”.
Using the derived Before operator of CTL, this property is formulated as

(condition _ age_last_birthday _ rank_profession_or_occupation) Before
INFORMANT
and using the definition of Before in terms of the weak until operator it ultimately
becomes

A [(¬ INFORMANT) WU (condition _ age_last_birthday _
rank_profession_or_occupation)]
which is satisfied in the DBD_IRL_PL by DBD_IRL_WITH_MAY but not by
DBD_IRL_MIN.

P4: The converse property is (by negation, using the Strong Until operator)
E [¬ (condition _ age_last_birthday _ rank_profession_or_occupation) SU

INFORMANT]
and it is satisfied on the DBD_IRL_PL by the upper path only, corresponding to
DBD_IRL_MIN.

Towards Model Checking Product Lines in the Digital Humanities 359

www.manaraa.com

9 Conclusion

As we proceed in the project, we are quickly progressing the project from the current
stage of unstructured and mostly manual approach to variability and its management
that used to be common among bio-scientists over a decade ago [16] to a level of
structure and meta-structure that leverages the experts’ understanding as well as
standards and ties into leading edge tools and techniques from the MDD world. The
still manual orientation of the history discipline is exemplified by the Captcha-barrier
posed to the access to the data scans, preventing an automatic access to the data - even
if in image form and thus very difficult to analyse automatically for information
extraction. The automation of search, analysis and management of the data collection is
in fact going to be one of the most precious contributions of the DBDIrl project to the
advancement of the field – additionally to the insights expected of course in the subject
matter. Big Data interoperability has become in fact a significant area of research in the
digital humanities due to the variety of data types and data sources available.

The lack of interoperability awareness in big database and small datasets integration
motivates this research to focus on the development of a reusable Big Data interoper-
ability framework. The main objective of this project is to provide a conceptual big data
interoperability framework that supports flexible Big Data integration between different
sources of historical data. This is to ensure the seamlessness for the process of collecting,
integrating, and analyzing the data. We intend to apply the eXtreme Model Driven
Development environment DIME to design an advanced data integration workflow for
history Big Data amenable to be extended to the special purpose integration of various
data sources. The distant aim is to assess its potential application for modern-day public
health using history Big Data to illustrate its flexibility and robustness.

So far, we have seen the problems that arise from having different ontologies for the
representation of ultimately the same data collection, different granularities of the
information, and different research purposes to fulfill. These differences have been
traditionally solved with manual data capture, data entry, transcription, and checks,
with immensely tedious work at exorbitant costs.

With this work, we intend to leverage the XMDD approach [30, 31] and the
previous work on evolution-oriented software engineering, be it under the aspect of
simplicity [21], continuous systems engineering [22] and the fundamental attention to
usability by non-IT specialists [13]. We build upon over a decade of previous expe-
riences gathered in various application domains, facing problems and settings that are
amenable to transfer to the DBDIrl project and possibly to the domain of digital
humanities. Specifically, our own work in scientific workflows summarized in [12]
included experiences gathered to build platforms for the access to complex genetic data
manipulations in the bioinformatics domain (the Bio-jETI platform of [23, 27] and the
agile Gene-Fisher-P [32]). Similarly, the GIS-related work in the analysis of data
concerning sea-level-rise in [24] and the work on flexibilizing the popular ci:grasp
platform of PIK [33] will be useful here: the advanced project aims concern creating
with GIS technologies heatmaps of particular diseases and to correlate them, for
example, with age at death, which in turn can underpin studies of social determinants of
health, epigenetic change in post-Famine Ireland, cohort and gendered analyses of
particular diseases.

360 C. Breathnach et al.

www.manaraa.com

The tools we intend to use span from the CINCO-products [11] DIME and DyWA
to the most recent context free model checking approach to product lines of [14] and its
underlying M3C model checker [18] for Modal Meta Model Checking. Their deep
roots are in works like the original seminal paper on context-free model checking [39]
and the Fixpoint Analysis Machine [26] that addressed even the model checking of the
full mu-calculus implicitly as a two-dimensional product line for the efficient com-
putation of homogeneous, hierarchical, and alternating fixpoints over regular, context-
free/push-down and macromodels.

By resorting to DSLs for the data integration and the KDD process implementation
and by adopting the meta-level data modelling approach using product lines we also
hope to leverage the language-driven engineering approach of [18], which proposes
language and tools specialization down to the single-use level, as well as the
Archimedean-point related insights of [20] about what to consider stable or variable,
for which purposes and in what contexts.

The DTD checkers resulting from the MTS and CFMTS model checking of a much
larger set of properties on a widely expanded and refined product line of (data) models
will allow the inheritance of properties established at the meta-level across individual
data sources and across a growing selection of complementary data sources that need to
be linked and overlaid. For example, the choice of 1901 as sample year is due to the
fact that Irish Census Data are available meanwhile for 1901 and 1911. How to relate
locations, individuals and other information for Irish historical data as well as for other
countries in approximately the same period could well lead to a standardized and
highly declarative knowledge base of product lines expressed as CFMTS together with
various sets of properties expressing equivalence, identity, complementarity, and other
research domain and research question specific characteristics, including data precision,
and trust level, e.g. based on the reputation of who input and checked the data.

The connection with the lifetime work and many outstanding achievements of
Stefania lies in our joint quest of over a quarter century towards a systematic
methodology for coping with complexity, variability and change. Our joint initiative
within the FMICS Working Group of ERCIM brought us to co-edit an ambitious book
on Formal Methods for Industrial Critical Systems [28] that appeared in 2012 and was
later translated in Chinese, that surveyed both the techniques and tools (on the research
side) as well as the applications and case studies (on the translational research side).
Her significant cluster of works on product lines spans requirements [35], modelling
[36, 37], analysis and verification [37, 38] and testing [34] in over a decade of activity,
and it arose in various national and international collaborations.

Our own work in the DBDIrl project connects most closely to Stefania’s long line
of work concerning feature based descriptions [44] up to the most recent Featured
Modal Contract Automata [43] and relative FMCAT tool. We too used features for a
long time to model variability [17], introduced various categories of constraints to
define structural and behavioural aspects of variability [15], provided constraint-driven
safe service customization adapting features to various contexts [], ultimately aiming to
rich descriptions of product lines in a fashion as much as possible declarative. We hope
to reap the benefits of this investment in the ontological and technical infrastructure in

Towards Model Checking Product Lines in the Digital Humanities 361

www.manaraa.com

the later phases of the project, when the Data mining and Interpretation/Evaluation
phases of the KDD process of Fig. 8 will translate in an entire community of
researchers answering rich, custom and meaningful questions on the basis of our
integrated system.

Acknowledgments. This research is funded by the Irish Research Council Laureate Award
2017/2018 and by Science Foundation Ireland grant 13/RC/2094 to Lero - the Irish Software
Research Centre (www.lero.ie). We are grateful for the full cooperation of the Registrar General
of Ireland for permission to use these data for research purposes.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data — the story so far. In: Hepp, M., Bizer,
C.: (eds.) Special Issue on Linked Data, International Journal on Semantic Web and
Information Systems, pp. 1–26 (2009). http://tomheath.com/papers/bizer-heath-berners-lee-
ijswis-linked-data.pdf

2. Rose, N.: The politics of life itself: biomedicine, power, and subjectivity in the twenty-first
century. Princeton University Press, Princeton (2007)

3. Graham, S., Milligan, I., Weingart, S.: Big Digital History: Exploring Big Data through a
Historian’s Macroscope. Imperial College Press, London (2015)

4. Kitchin, R.: Big data, new epistemologies and paradigm shifts’, Big Data & Society, pp. 1–
12, April–June 2014. https://doi.org/10.1177/2053951714528481

5. Ginzburg, C., Tedeschi, J., Tedeschi, A.C.: Microhistory: two or three things that i know
about it. Crit. Inq. 20, 10–35 (1993)

6. National Institute of Standards and Technology (NIST): U.S. Department of Commerce, Big
Data Interoperability Framework, vol. 1, Definitions (2015)

7. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in
databases. AI Mag. 17(3), 37–54 (1996)

8. Singh, R.K.: Taxonomy of big data analytics: methodology, algorithms and tools. Int.
J. Future Revolution Comput. Sci. Commun. Eng. 4(12), 101–104 (2018)

9. Gyamfi, N.K., Appiah, P., Sarpong, K.A., Gah, S.K., Katsriku, F., Abdulai, J.: Big data
analytics: survey paper. In: Conference Proceeding: Dialogue on Sustainability and
Environmental Management, Accra, pp. 101–112, 15–16 February 2017

10. Boßelmann, S., et al.: DIME: a programming-less modeling environment for web
applications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 809–
832. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_60

11. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: a simplicity-driven approach
to full generation of domain-specific graphical modeling tools. Int. J. Softw. Tools Technol.
Transfer 20, 327–354 (2018)

12. Lamprecht, A.-L., Steffen, B., Margaria, T.: Scientific workflows with the jABC framework -
a review after a decade in the field. STTT 18(6), 629–651 (2016)

13. Margaria, T.: Knowledge management for inclusive system evolution. Trans. Found.
Mastering Chang. 1, 7–21 (2016)

14. Tegeler, T., Murtovi, A., Frohme, M., Steffen, B.: Product line verification via modal meta
model checking. In: ter Beek, M.H., et al. (eds.) Gnesi Festschrift. LNCS, vol. 11865,
pp. 313–337. Springer, Cham (2019)

362 C. Breathnach et al.

http://www.lero.ie
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://dx.doi.org/10.1177/2053951714528481
http://dx.doi.org/10.1007/978-3-319-47169-3_60

www.manaraa.com

15. Jörges, S., Lamprecht, A.L., Margaria, T., Schaefer, I., Steffen, B.: A constraint-based
variability modeling framework. Int. J. Softw. Tools Technol. Transfer 14(5), 511–530
(2012)

16. Lamprecht, A.-L., Margaria, T., Steffen, B.: Seven variations of an alignment workflow - an
illustration of agile process design and management in bio-jETI. In: Măndoiu, I.,
Sunderraman, R., Zelikovsky, A. (eds.) ISBRA 2008. LNCS, vol. 4983, pp. 445–456.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79450-9_42

17. Karusseit, M., Margaria, T.: Feature-based modelling of a complex, online-reconfigurable
decision support service. Electron. Notes Theor. Comput. Sci. 157(2), 101–118 (2006)

18. Steffen, B., Gossen, F., Naujokat, S., Margaria, T.: Language-driven engineering: from
general-purpose to purpose-specific languages. In: Steffen, B., Woeginger, G. (eds.)
Computing and Software Science: State of the Art and Perspectives. LNCS, vol. 10000.
Springer (2018, in print)

19. Steffen, B., Murtovi, A.: M3C: modal meta model checking. In: Howar, F., Barnat, J. (eds.)
FMICS 2018. LNCS, vol. 11119, pp. 223–241. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00244-2_15

20. Steffen, B., Naujokat, S.: Archimedean points: the essence for mastering change. Trans.
Found. Mastering Chang. 1, 22–46 (2016). https://doi.org/10.1007/978-3-319-46508-1_3

21. Margaria, T., Steffen, B.: Simplicity as a driver for agile innovation. IEEE Comput. 43(6),
90–92 (2010). https://doi.org/10.1109/MC.2010.177

22. Margaria, T., Lamprecht, A.L., Steffen, B.: Continuous Model-Driven Engineering.
Software Technology: 10 Years of Innovation in IEEE Computer, pp. 141–154. Wiley
(2018)

23. Lamprecht, A.L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-based
service composition. BMC Bioinformatics 10(10), S8 (2009). https://doi.org/10.1186/1471-
2105-10-S10-S8

24. Al-Areqi, S., Lamprecht, A.-L., Margaria, T.: Constraints-driven automatic geospatial
service composition: workflows for the analysis of sea-level rise impacts. In: Gervasi, O.,
et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 134–150. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42111-7_12

25. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings. Third Annual
Symposium on Logic in Computer Science, pp. 203–210. IEEE (1988). https://doi.org/10.
1109/LICS.1988.5119

26. Steffen, B., Claßen, A., Klein, M., Knoop, J., Margaria, T.: The fixpoint-analysis machine.
In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 72–87. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60218-6_6

27. Margaria, T., Kubczak, C., Steffen, B.: Bio-jETI: a service integration, design, and
provisioning platform for orchestrated bioinformatics processes. BMC Bioinformatics 9(4),
S12 (2008). https://doi.org/10.1186/1471-2105-9-S4-S12

28. S. Gnesi, T. Margaria. Formal methods for industrial critical systems: A survey of
applications. John Wiley & Sons, 2012. Book

29. Neubauer, J., Frohme, M., Steffen, B., Margaria, T.: Prototype-driven development of web
applications with DyWA. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802,
pp. 56–72. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45234-9_5

30. Margaria, T., Steffen, B.: Agile IT: thinking in user-centric models. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-88479-8_35

31. Margaria, T., Steffen, B.: Service-Orientation: Conquering Complexity with XMDD. In:
Hinchey, M., Coyle, L. (eds.) Conquering Complexity. Springer, London (2012). https://doi.
org/10.1007/978-1-4471-2297-5_10

Towards Model Checking Product Lines in the Digital Humanities 363

http://dx.doi.org/10.1007/978-3-540-79450-9_42
http://dx.doi.org/10.1007/978-3-030-00244-2_15
http://dx.doi.org/10.1007/978-3-030-00244-2_15
http://dx.doi.org/10.1007/978-3-319-46508-1_3
http://dx.doi.org/10.1109/MC.2010.177
http://dx.doi.org/10.1186/1471-2105-10-S10-S8
http://dx.doi.org/10.1186/1471-2105-10-S10-S8
http://dx.doi.org/10.1007/978-3-319-42111-7_12
http://dx.doi.org/10.1007/978-3-319-42111-7_12
http://dx.doi.org/10.1109/LICS.1988.5119
http://dx.doi.org/10.1109/LICS.1988.5119
http://dx.doi.org/10.1007/3-540-60218-6_6
http://dx.doi.org/10.1186/1471-2105-9-S4-S12
http://dx.doi.org/10.1007/978-3-662-45234-9_5
http://dx.doi.org/10.1007/978-3-540-88479-8_35
http://dx.doi.org/10.1007/978-3-540-88479-8_35
http://dx.doi.org/10.1007/978-1-4471-2297-5_10
http://dx.doi.org/10.1007/978-1-4471-2297-5_10

www.manaraa.com

32. Lamprecht, A.L., Margaria, T., Steffen, B., Sczyrba, A., Hartmeier, S., Giegerich, R.:
GeneFisher-P: variations of GeneFisher as processes in Bio-jETI. BMC bioinformatics 9(4),
1–17 (2008). S13

33. Al-areqi, S., Lamprecht, A.L., Margaria, T., Kriewald, S., Reusser, D., Wrobel, M.: Agile
workflows for climate impact risk assessment based on the ci: grasp platform and the jABC
modeling framework. In: 7th International Congress on Environmental Modelling and
Software, International Environmental Modelling and Software Society (iEMSs), pp. 470–
477 (2014)

34. Bertolino, A., Gnesi, S.: PLUTO: a test methodology for product families. In: van der
Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 181–197. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24667-1_14

35. Bertolino, A., Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Use case description of
requirements for product lines. In: Proceedings of the International Workshop on
Requirements Engineering for Product Lines - REPL 2002. Technical report: ALR2002-
033, AVAYA, pp. 12–18 (2002)

36. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A model-checking tool for families of
services. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE -2011. LNCS, vol. 6722, pp. 44–
58. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21461-5_3

37. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing variability in
product families: model checking of modal transition systems with variability constraints.
J. Log. Algebraic Methods Program. 85(2), 287–315 (2016)

38. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: Formal description of variability in
product families. In: 15th International Software Product Line Conference, pp. 130–139,
August 2011. https://doi.org/10.1109/SPLC.2011.34

39. Burkart, O., Steffen, B.: Model checking for context-free processes. In: Cleaveland, W.R.
(ed.) CONCUR 1992. LNCS, vol. 630, pp. 123–137. Springer, Heidelberg (1992). https://
doi.org/10.1007/BFb0084787

40. Blackburn, P., van Benthem, J.F.A.K., Wolter, F.: Handbook of Modal Logic. Studies in
Logic and Practical Reasoning, vol. 3. Elsevier Science Inc., New York (2006)

41. An Act for the Registration of Births and Deaths in Ireland. 26 & 27 - Vict. c.11
42. Breathnach, C., O’Halpin, E.: Registered “unknown” infant fatalities in Ireland, 1916-1932.

Ir. Hist. Stud. 38(149), 70–88 (2012). https://doi.org/10.1017/S0021121400000638
43. Basile, D., ter Beek, M.H., Gnesi, S.: Modelling and analysis with featured modal contract

automata. SPLC 2, 11–16 (2018)
44. ter Beek, M.H., Gnesi, S., Njima, M.N.: Product lines for service oriented applications - PL

for SOA. In: Kovács, L., Pugliese, R., Tiezzi, F. (eds.) Proceedings 7th International
Workshop on Automated Specification and Verification of Web Systems (WWV 2011)
(EPTCS), vol. 61, pp. 34–48. Open Publishing Association (2011). https://doi.org/10.4204/
eptcs.61.3

45. Braun, V., Margaria, T., Steffen, B., Yoo, H., Rychly, T.: safe service customization. In:
Proceedings of the IEEE Intelligent Network Workshop: ‘Meeting the Challenges of
Converging Networks and Global Demand’. IEEE, May 1997. https://doi.org/10.1109/inw.
1997.601576

364 C. Breathnach et al.

http://dx.doi.org/10.1007/978-3-540-24667-1_14
http://dx.doi.org/10.1007/978-3-642-21461-5_3
http://dx.doi.org/10.1109/SPLC.2011.34
http://dx.doi.org/10.1007/BFb0084787
http://dx.doi.org/10.1007/BFb0084787
http://dx.doi.org/10.1017/S0021121400000638
http://dx.doi.org/10.4204/eptcs.61.3
http://dx.doi.org/10.4204/eptcs.61.3
http://dx.doi.org/10.1109/inw.1997.601576
http://dx.doi.org/10.1109/inw.1997.601576

www.manaraa.com

Variability Modelling and Analysis
During 30 Years

David Benavides(B)

Department of Computer Languages and Systems, University of Seville, Seville, Spain
benavides@us.es

Abstract. Variability modelling and analysis are among the most
important activities in software engineering in general and in software
product line engineering in particular. In 1990, the FODA report sup-
posed a revolution in the importance of modelling and analysing of vari-
ability. In 2020, 30 years of variability modelling and analysis will be
celebrated. In this paper, a short overview of the history and the impor-
tance of variability modelling and analysis is given, in concordance to
that anniversary and on the occasion of Stefania Gnesi’s retirement. She
was part of this amazing history.

Keywords: Software product lines · Feature models ·
Variability modelling

1 Variability Modelling as a Key Activity

Software systems are one of the engineering creations where variability is most
important, to such an extent that variability is an intrinsic element of any soft-
ware system. Variability can be defined as the ability of a software system to be
adapted to different situations such as different users, operational environments
or quality requirements. For example, a piece of code that calculates the shortest
path for graphs can be prepared to calculate it for different types of graphs such
as directed or undirected. We can even envision a graph library that can include
this and other graph operations that could be assembled to support different
kinds of graphs [12].

Variability management becomes very important to any kind of software
system and more important when managing what is called a software product
line [15]. A software product line can be defined as a set of software systems
that share more commonalities than variabilities and that are able to operate
in a given domain. Examples of software product lines can be found in many
different domains such as operating systems (e.g. Android operating systems
in different platforms such an mobile phones, TV sets or smart watches); car
control systems (e.g. adaptations of a system for different car models); or web
commerce solutions (e.g. different adapted solutions for different specific online
stores). Variability management is defined as the set of activities that have to

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 365–373, 2019.
https://doi.org/10.1007/978-3-030-30985-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_21&domain=pdf
http://orcid.org/0000-0002-8449-3273
https://doi.org/10.1007/978-3-030-30985-5_21

www.manaraa.com

366 D. Benavides

be performed to correctly deal with variability in this kind of scenarios to better
profit from the commonalities of the systems while reducing cost and increasing
quality in software production.

One of the crucial activities when managing variability is its modelling. Vari-
ability modelling can be done at different levels of abstraction. From top level
activities such as requirements engineering to more concrete activities such as
coding, delivery or deployment. For example, a requirements engineer may want
to express the different elements that can be of interest to a given user (such as
the supported graph types in the example above) and how these elements could
depend on each other (for instance, that an algorithm of cycle detection is only
available if a directed graph is selected). Likewise, during deployment, developers
may want to express the different configurations available for deployment with
different storage capabilities, different memory consumption or different number
of processors.

Variability modelling has been present in the general software engineering
literature since its infancy. As an example, in 1968 McIlroy’s text in the NATO
conference [13] one can already divine that variability modelling had to be one
of the key activities when mass producing software products. Nevertheless, it is
in 1990 that Kang et al. presented the FODA report and explicitly gave a way
of modelling variability in the form of feature models.

2 The FODA Report in 1990

The FODA report can be considered as the kickoff for variability modelling and
analysis [10]. It had and still has an immense impact in the software engineering
literature in general and in the software product line engineering research and
practice in particular. However, as shown in Fig. 1 it is remarkable that the
recognition of the importance of the FODA report started only around 2005,
that is, 15 years after its publication. There was still another peak in 2010 that
was basically due to the consolidation of a new line of research, as we will explain
further in Sect. 3.

Fig. 1. Citations evolution of the FODA report (taken from Google scholar)

In 2020, 30 years of the FODA report will be celebrated, making this a good
moment to remember some of the novelties that were presented at that time. It is
not easy to find scientific contributions in software engineering that pass the test
of time, but the FODA report is one such contribution. It is remarkable that a

www.manaraa.com

Variability Modelling and Analysis During 30 Years 367

scientific text with more than 4.500 citations in Google scholar was produced as
a technical report instead of being a journal paper or a conference proceedings
contribution. The report was produced in the Software Engineering Institute
(SEI) where leading projects on software product line engineering were run. Not
in vain, in 2000 one of the most well-known books on software product line
engineering was produced [5].

One of the main outputs of the FODA report was what they called “feature
models” as part of the domain modelling activity. A feature model is a compact
representation of all possible products of a software product line and it is rep-
resented in a feature diagram as a tree-like structure composed of features and
relationships among them [3]. A feature is defined as an increment in product
functionality [1] and is a widely used concept in software product line engineer-
ing. Since the appearance of the FODA report there have been a lot of different
notations for feature modelling, most of them well surveyed by Schobbens et
al. [17]. There are different concepts and elements in the different notations,
but most of them have the basic elements of what we often call “basic feature
models”.

e-Shop

Payment SecuritySearchCatalogue

High StandardPayPalCredit CardBank Transfer

Legend:

Mandatory

Optional

Or
Alternative
Abstract
Concrete
Requires
Excludes

Fig. 2. Feature model of an e-shop software product line (from [16])

In basic feature models, features are depicted as boxes and relationships
among features are depicted as arrows. Figure 2 shows a feature model of an e-
shop software product line where the root is an abstract feature (i.e. it’s used to
model the concept, but it has no concrete implementation) and the other features
are so-called concrete features (i.e. features that have concrete implementations).
Relationships among features are divided in hierarchical relationships and cross-
tree constraints. The hierarchical relationships are:

– Mandatory: A parent feature X has a mandatory relationship with a child
feature Y when Y has to be present whenever X is present in a given product.
For instance, any product of the e-shop product line of Fig. 2 has to have a
catalogue of products.

– Optional: A parent feature X has an optional relationship with a child feature
Y when Y can be present or not whenever X is present in a given product.

www.manaraa.com

368 D. Benavides

For instance, a product of the e-shop product line can optionally have a search
feature.

– Or: A parent feature X has an or relationship with a set of child features
Y1, . . . , Yn when any of the children can be present or not whenever X is
present in a given product. For instance, a product of the e-shop product line
can optionally have different payment methods such as bank transfer, credit
card, paypal or any combination of the three.

– Alternative: A parent feature X has an alternative relationship with a set
of child features Y1, . . . , Yn when one and only one of the children can be
present whenever X is present in a given product. For instance, a product
of the e-shop product line can only have high or standard security, but not
both.

Furthermore, cross-tree constraints can be used to model restrictions among
features. These constraints can be complex constraints on the form of proposi-
tional formulas [1]. However, very often we see two kinds of cross-tree constraints:

– Requires: A feature X has a requires relationship with a feature Y when
Y has to be present whenever X is present in a given product. For instance,
any product of the e-shop product line of Fig. 2 has to have high security
whenever a credit card is used for payment purposes.

– Excludes: A feature X has an excludes relationship with a feature Y when
X and Y cannot be present together in a given product.

There is an important aspect that has to be underlined in the history of fea-
ture models and it is about one of the areas in which Stefania Gnesi has done a
lot of research: formal methods. Feature models were first introduced in a rather
informal form. Only around 10 years after their introduction, formal definitions
of feature models were introduced. Operational semantics using constraint satis-
faction problems [2] or propositional formulas were introduced in 2005 [1]. Later,
formal syntax and semantics of feature models were conscientiously developed
[6,17]. Feature models were then extended to work with more complex models,
analysis and domains. It is remarkable that Stefania Gnesi’s team worked in
depth to use feature models together with modal transition systems with clean
and formal semantics to perform complex analysis in highly (re)configurable
systems [7,18,19].

With the formalisation achievement, a new line of research –that was already
marginally mentioned in the original FODA report– took the scene: the auto-
mated analysis of variability models.

3 Automated Analysis of Variability Models

The automated analysis of variability models is about the computer-aided extrac-
tion of information from variability models [3]. Figure 3 shows a simplification
of the analysis process. First, a variability model is taken as input. Second, the
variability model is translated to a given logical representation following several

www.manaraa.com

Variability Modelling and Analysis During 30 Years 369

rules. Third, an off-the-shelf solver is used to perform different analysis opera-
tions over the logical representation. And finally, an analysis result is constructed
as a final output of the process.

Fig. 3. Process of the automated analysis of variability models

An example of an analysis operation can be to count the number of products
represented by the feature models. In the model of Fig. 2, the total number of
potential products is 20. This operation could be done manually for small feature
model examples as the one in Fig. 2 but when dealing with large-scale feature
models, this operation become complex and even infeasible in some cases due
to the computational complexity required. For instance, it is known that the
feature model representing the Linux kernel can have more configurations than
there are atoms in the universe!

Another often used operation is “valid configuration” that takes a set of fea-
tures representing a configuration after which the analysis process determines
whether the configuration is valid or not. For instance, the configuration A below
is a valid configuration for the feature model of Fig. 2, but the configuration B is
not valid because it has a credit card payment but a standard security system.

A = {eShop,Catalogue, Payment,BankTransfer, Security,High}
B = {eShop,Catalogue, Search, Payment, CreditCard, Security, Standard}

Imagine that we include a new cross—tree constraint that states that a cat-
alogue feature excludes any payment method. In such a case, the feature model
becomes “void” in the sense that the feature model would represent no product.

Also, imagine that we add a new cross-tree constraint that states that the
Security feature excludes Bank Transfer. In such a case, we can still derive prod-
ucts from the feature model. For instance, the product B in the example above.
However, the feature Bank Transfer becomes what is known as a “dead feature”.
A dead feature is a feature that is present in the feature model, but can never
be present in any product derived from the feature model.

www.manaraa.com

370 D. Benavides

In 2005, there were two papers [1,2] that emphasised the importance of the
automated analysis of feature models and gave a new impetus to the study
of modelling and analysis of variability. Independently but complementary, the
teams of Batory (University of Texas at Austin) and Benavides (University
of Sevilla) worked in proposing automated mechanisms to support analysis
operations1.

Batory proposed the usage of SAT solvers [1], Benavides proposed the usage
of CSP solvers [2]. The idea was quite similar, but the solution was a bit different.
Batory proposed to translate feature models into propositional formulas and
then use SAT solvers to operate over the formulas. SAT solvers are well known
to perform fast in most of the cases and have been proved to also work fast in
many cases of feature model analysis [14].

Benavides et al. proposed to translate feature models into Constraint Sat-
isfaction Problems (CSP) and then use CSP solvers to perform the analysis
operations. The novelty with respect to SAT-based analysis was that in CSPs
you can also have numerical values and not only Boolean features. Feature mod-
els could then be extended with attributes. For example, imagine that we add
an integer attribute to the payment feature stating the maximum amount for a
given transaction.

When adding attributes to feature models the kind of analysis that can be
performed becomes even more complex [11]. For instance, you can try to optimise
some attributes so that a line of research was born dealing with optimisation in
feature model analysis.

In 2010, an extensive review of the analysis proposed up-to-date was pre-
sented [3]. A total of 30 different analysis operations were reported. As well
as SAT and CSP solvers, also description logic solvers, BDD solvers and ad-hoc
algorithms were reported. In 2010, the conceptual underpinnings of the discipline
were settled and the automated analysis of feature models was added to soft-
ware product line tools in commercial and open-source formats. For instance,
Pure::Variants and FeatureIDE are examples of commercial and open-source
tools that incorporate feature model analysis among their capabilities.

After that, the decade of the applications was started and is at the point of
finishing with this anniversary. More and more applications were found specially
in the following areas, as reported in [9]:

– product configuration and derivation: the automated analysis of feature
models is used to configure and derive products, for instance, using con-
sistency checking capabilities to avoid compiling or linking incompatible
configurations.

– testing and evolution: there is a still active part of the research in software
product lines that deals with the problem of testing these kind of systems,
which is another area where Stefania Gnesi contributed early on [4,8]. Testing
software product lines adds an extra level of difficulty and complexity from

1 These two works were recently recognised with the Test-of-Time Award and the Most
Influential Paper Award by the software product line community.

www.manaraa.com

Variability Modelling and Analysis During 30 Years 371

the traditional testing of a single product. The automated analysis of feature
models has been used, for instance, to select representative combinations of
features when the testing of all the configurations becomes infeasible.

– reverse engineering: another still active area of research is how to build vari-
ability models from existing artefacts. It is quite common that software prod-
uct lines are built from existing products and artefacts rather than building
them from the beginning. One of the ideas is to extract variability models
from these assets. The automated analysis of feature models can be used in
these scenarios to check the consistency among the assets and the produced
models.

– multi-model variability-analysis: it is common that variability is not expressed
in a single model or by a single stakeholder and in the same variability mod-
elling language. In this cases, we have to deal with heterogeneous scenarios
where the automated analysis has to be adapted

– variability modelling: variability modelling is still being studied because for
different scenarios, different variability constructs might be used. In different
domains, different adaptations of the variability language constructs have to
be defined. The automated analysis has to be adapted as well to these different
scenarios.

– variability-intensive systems: the automated analysis of variability models is
going beyond software product lines to a wider scope that can be named as
“variability-intensive systems”. These are systems that are not built follow-
ing a software product line philosophy specially from a process engineering
perspective, but that have to deal with variability. The Linux kernel, the
Android ecosystem, and the Eclipse IDE framework are examples of these
systems. The automated analysis of variability models is also being used and
extended in this kind of new environments.

4 Conclusions

Variability modelling and analysis has progressed in the last three decades. One
of the points were the discipline progressed faster and better was when formal
approaches were considered by the researchers. One of those researchers was
Stefania Gnesi and she was an important part of the health of the community.
As well as technically, she contributed with community service chairing the Sys-
tems and Software Product Line Conference (SPLC) in 2014 in Florence and
being active part of the Steering Committee of SPLC in the recent past. The
community will lose a very important active researcher with her retirement, but
we will be lucky to have both her already established contributions and their
fellows that are still active in the field. This book is only a small piece of the
immense gratitude that the community owes Stefania. Thank you very much for
sharing your time and talent with us and all the best for the future.

Acknowledgements. This work has been partially funded by the EU FEDER
program, the MINECO project OPHELIA (RTI2018-101204-B-C22); the TASOVA

www.manaraa.com

372 D. Benavides

network (MCIU-AEI TIN2017-90644-REDT); and the Junta de Andalucia META-
MORFOSIS project. I would like to give special thanks to Maurice ter Beek for taking
care of the book, the ceremony and the gratitude to Stefania. This acknowledgement
is extended to all her team.

References

1. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005). https://doi.org/10.1007/11554844_3

2. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-
els. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
491–503. Springer, Heidelberg (2005). https://doi.org/10.1007/11431855_34

3. Benavidges, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

4. Bertolino, A., Gnesi, S.: PLUTO: a test methodology for product families. In:
van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 181–197. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24667-1_14

5. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. The
SEI Series in Software Engineering. Addison-Wesley, Boston and London (2001)

6. Durán, A., Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortés, A.: FLAME: a
formal framework for the automated analysis of software product lines validated
by automated specification testing. Softw. Syst. Model. 16(4), 1049–1082 (2017)

7. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In: Pro-
ceedings of the 12th International Software Product Line Conference (SPLC 2008),
pp. 193–202. IEEE (2008)

8. Fantechi, A., Gnesi, S., Lami, G., Nesti, E.: A methodology for the derivation and
verification of use cases for product lines. In: Nord, R.L. (ed.) SPLC 2004. LNCS,
vol. 3154, pp. 255–265. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-28630-1_16

9. Galindo, J.A., Benavides, D., Trinidad, P., Gutiérrez-Fernández, A.-M., Ruiz-
Cortés, A.: Automated analysis of feature models: quo vadis? Computing (2018)

10. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Spencer Peterson, A.: Feature-
oriented domain analysis (FODA) feasibility study. Technical report, DTIC Docu-
ment (1990)

11. Lettner, M., Rodas, J., Galindo, J.A., Benavides, D.: Automated analysis of two-
layered feature models with feature attributes. J. Comput. Lang. 51, 154–172
(2019)

12. Lopez-Herrejon, R.E., Batory, D.: A standard problem for evaluating product-
line methodologies. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10–24.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44800-4_2

13. Douglas McIlroy, M., Buxton, J., Naur, P., Randell, B.: Mass-produced software
components. In: Proceedings of the 1st International Conference on Software Engi-
neering, Garmisch Partenkirchen, Germany, pp. 88–98 (1968)

14. Mendonca, M., Wąsowski, A., Czarnecki, K.: SAT-based analysis of feature models
is easy. In: Proceedings of the 13th International Software Product Line Conference,
pp. 231–240. Carnegie Mellon University (2009)

https://doi.org/10.1007/11554844_3
https://doi.org/10.1007/11431855_34
https://doi.org/10.1007/978-3-540-24667-1_14
https://doi.org/10.1007/978-3-540-28630-1_16
https://doi.org/10.1007/978-3-540-28630-1_16
https://doi.org/10.1007/3-540-44800-4_2

www.manaraa.com

Variability Modelling and Analysis During 30 Years 373

15. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

16. Rodas-Silva, J., Galindo, J.A., García-Gutiérrez, J., Benavides, D.: Selection of
software product line implementation components using recommender systems: an
application to wordpress. IEEE Access 7, 69226–69245 (2019)

17. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic semantics
of feature diagrams. Comput. Netw. 51(2), 456–479 (2007)

18. ter Beek, M.H., Damiani, F., Gnesi, S., Mazzanti, F., Paolini, L.: On the expres-
siveness of modal transition systems with variability constraints. Sci. Comput.
Program. 169, 1–17 (2019)

19. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing
variability in product families: model checking of modal transition systems with
variability constraints. J. Log. Algebraic Methods Program. 85(2), 287–315 (2016)

https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1

www.manaraa.com

Formal Verification

www.manaraa.com

A Systematic Approach to Programming
and Verifying Attribute-Based

Communication Systems

Rocco De Nicola1(B), Tan Duong2(B), Omar Inverso2(B),
and Franco Mazzanti3(B)

1 IMT School for Advanced Studies Lucca, Lucca, Italy
rocco.denicola@imtlucca.it

2 Gran Sasso Science Institute, L’Aquila, Italy
{tan.duong,omar.inverso}@gssi.it

3 ISTI–CNR, Pisa, Italy
franco.mazzanti@isti.cnr.it

Abstract. A methodology is presented for the systematic development
of systems of many components, that interact by relying on predicates
over attributes that they themselves mutually expose. The starting point
is a novel process calculus AbC (for Attribute-based Communication)
introduced for modelling collective-adaptive systems. It is shown how to
refine the model by introducing a translator from AbC into UML-like
state machines that can be analyzed by UMC. In order to execute the
specification, another translator is introduced that maps AbC terms into
ABEL, a domain-specific framework that offers faithful AbC -style pro-
gramming constructs built on top of Erlang . It is also shown how the pro-
posedmethodology can be used to assess relevant properties of systems and
to automatically obtain an executable program for a non-trivial case study.

1 Introduction

Collaboration between Stefania Gnesi (to whom this work is dedicated) and the
first author of this paper dates back to the late eighties, when they were both
working at CNR and interested in devising formal methods to provide models
and techniques to guarantee correctness of concurrent systems. Together with
other colleagues, they developed a model checker [1] for proving logical properties
of concurrent systems using ACTL [2], an action-based version of the branching
time logic CTL. Stefania has since continued to work on developing variants
of ACTL and tailored model checkers for new classes of systems she has been
confronted with. Stefania and the last author of this paper, together with other
colleagues, developed the FMC model checker [3] adopting as models and logic,
respectively, transition systems and a version of ACTL extended with fixed-point
operators; they then developed the UMC [4] model checker, where the model was
instead directly inspired by UML statecharts and the logic, UCTL, could express
properties of both actions and states.

In this paper we build on Stefania’s work and show how UMC can be used
to prove properties of so-called collective-adaptive systems (CAS). These are
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 377–396, 2019.
https://doi.org/10.1007/978-3-030-30985-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_22&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_22

www.manaraa.com

378 R. De Nicola et al.

systems formed by anonymous components that can dynamically join and leave,
and adapt their behaviour to the environment in pursuit of an individual or
collective goal.

To describe CAS, we rely on a specifically conceived process calculus, AbC
[5,6] whose distinguishing features are the interaction primitives, based on the
concept of attribute-based communication, which permits groups of partners to
communicate according to predicates over attributes that they expose. Com-
munication takes place anonymously in an implicit multicast fashion without
a prior agreement among the involved peers. Groups are dynamically formed
by considering, among the potential receivers, those that satisfy the predicates
of the sender; run-time changes of attribute values allow opportunistic interac-
tions between components. By parameterising the interaction predicates with
local attributes, groups can be implicitly changed and adaptation is naturally
captured. Sending operations are non-blocking while receiving operations are;
this breaks synchronisation dependencies between interacting partners, and per-
mits modelling systems where agents can enter or leave at any time without
perturbing the overall behaviour.

When devising new languages for a new class of systems, following [7], we
think that it is important to consider three main ingredients:

1. a specification language equipped with a formal semantics, which associates
mathematical models to each term of the language to precisely capture the
expected behaviour of systems;

2. a set of techniques and tools, built on top of the models, to express and verify
the properties of interest;

3. a programming framework together with an associated run-time environment,
to actually execute the specified systems.

In this paper, we rely on AbC as our specification language, on UMC as
the tool for property verification and on Erlang [8] to set up the programming
framework that we call ABEL [9]. The execution and verification flows of our
approach are summarised by the following diagram.

AbC
specs

Erlang
program

UML-like
state machine

ABEL UMC
UCTL

property

abc2abel abc2umc

fail

pass

execution

www.manaraa.com

A Systematic Approach to Programming and Verifying AbC Systems 379

Starting from AbC specifications we obtain a UMC model whose properties we
can express with UCTL and then model check with the tool. We see this as
an iterative process that calls for a progressive revision of the specification in
case any property of interest is not satisfied. Once satisfactory specifications are
obtained, they are translated into ABEL and can finally be executed.

The main contributions of this paper, are thus the two translators (i) from
AbC to the language of UMC and (ii) from AbC to the language of ABEL. The
former is a refinement of a translation already presented in [10] while the latter is
presented here for the first time to take advantage of the ABEL implementation
presented in [9].

The feasibility of the approach is vindicated by considering a case study
dealing with distributed graph colouring. We first show how errors in an initial
specification can be detected by exploiting the counterexample facility of UMC,
then we show how properties of interest of a new version can be formally veri-
fied, finally we provide an executable Erlang program obtained from the correct
specification.

2 Background

In this section we briefly review the main ingredients of our approach, i.e., the
AbC process calculus, the UMC verification framework, and the ABEL frame-
work. We also illustrate AbC programming via a non-trivial example.

2.1 AbC Process Calculus

AbC (Attribute-based Communication calculus) is a process calculus specifically
conceived for collective adaptive systems. In AbC [6], a system is a collection
of interacting components; each component C is either a process P associated
with an attribute environment Γ and an interface I, or the parallel composition
of two components. The environment Γ is a partial mapping from attribute
names to values, representing the component state. The interface I is a set of
exposed attribute names which other components may use when specifying their
predicates.

(Components) C ::= Γ :I P | C1 ‖ C2

(Processes) P ::= 0 | (Ẽ)@Π.U | Π(x̃).U | 〈Π〉P | P1 + P2 | P1|P2 | K

(Update) U ::= [a := E]U | P

(Expressions) E ::= v | x | a | this.a | f(Ẽ)

(Predicates) Π ::= tt | p(Ẽ) | Π1 ∧ Π2 | ¬Π

Process P can be either an inactive process 0, a prefixing process α.P , an update
process U , an awareness process 〈Π〉P , a choice process P1+P2, a parallel process
P1|P2, or a process call K (with a unique definition K � P). The derived syntax
allows no sequential composition between AbC processes, similar to TAPAs [11].

AbC prefixing actions exploit run-time attributes and predicates over them
to determine the internal behaviour of components and the communication part-
ners. Specifically:

www.manaraa.com

380 R. De Nicola et al.

(Ẽ)@Π is an output action that evaluates expressions Ẽ under the local envi-
ronment and sends the result to those components whose attributes satisfy
predicate Π;

Π(x̃) is an input action that binds to the variables x̃ the message received from
any component whose attributes and the communicated values satisfy the
receiving predicate Π;

[a := E] is an attribute update that assigns the evaluation of expression E under
the local environment to attribute a;

〈Π〉 blocks the following process until Π is satisfied under the local environment.

Attribute updates and awareness predicates are local to components and their
execution includes the associated communication action, atomically.

An expression E may be a constant value v, a variable x, an attribute name a,
or a reference this.a to attribute a in the local environment. Predicate Π can be
either tt, or can be built using comparison operators �� between two expressions
and logical connectives ∧, ¬, Both expressions and predicates can take more
complex forms, of which we deliberately omit the precise syntax; we just refer
to them as n-ary operators on subexpressions, i.e., f(Ẽ) and p(Ẽ).

In AbC , the output action is non-blocking while the input action waits for
synchronization on available messages. Parallel processes inside a single compo-
nent do not communicate; they simply interleave their actions and have access
to the shared environment. According to the system semantics, message passing
is performed in a broadcast fashion. An outbound message is attached with the
portion of environment limited by the senders’ interface and the sending pred-
icate. Every component which can execute an input action, upon receiving a
message checks both the sending and receiving predicates to decide whether to
use the message or discard it.

We now illustrate AbC constructs by considering a distributed variant of
graph colouring (borrowed from [12]). The problem amounts to labelling the
vertices of a graph with a colour (in our case, positive integers) such that adjacent
vertices have a different colour. We model the vertices as separate components
of the form Γi :{id,nbr} V , with public attributes a unique identifier, id, and a
set, nbr, of neighbours. Additionally, the environment Γi maintains the following
private attributes for local computations:

– colour, assigned: the proposed colour and the colouring status
– round: the current round of computation
– counter: the number of un-assigned neighbours operating in the same round
– constraints: the set of colours proposed by greater neighbours in the same

round
– done: the number of neighbours who have finished colour selection
– used: the set of colours already used by neighbours
– send: a flag controlling when to send colour proposals

The vertices operate in rounds and use predicates of the form this.id ∈ nbr to
communicate with neighbours. Each vertex has the same behaviour, and consists
of four parallel processes V � (F | T | D | A). Initially, assigned = false, round

www.manaraa.com

A Systematic Approach to Programming and Verifying AbC Systems 381

= counter = done = colour = 0, constraints = used = ∅ and send = true.
Any unassigned vertex repeatedly performs two consecutive actions:

F � 〈send ∧ ¬assigned〉()@(ff).[colour := min{i /∈ used}]

(‘try’, this.colour, this.round)@(this.id ∈ nbr).[send := ff]F

to update the current colour (after an empty output action), and to send a
‘try’ message of the form (‘try’, c, r) to inform neighbours that it wants to take
colour c at round r. Note that min{i /∈ used} denotes the smallest element not
in used.

Each vertex counts the number of ‘try’ messages from its neighbours as
described by the following expression:

T � (x = ‘try’ ∧ this.id > id ∧ this.round = z)(x, y, z).

[counter := counter + 1]T

+ (x = ‘try’ ∧ this.id < id ∧ this.round = z)(x, y, z).

[counter := counter + 1, constraints := constraints ∪ {y}]T

+ (x = ‘try’ ∧ this.id > id ∧ this.round < z)(x, y, z).

[send := tt, round := z, counter := 1, constraints := ∅]T

+ (x = ‘try’ ∧ this.id < id ∧ this.round < z)(x, y, z).

[send := tt, round := z, counter := 1, constraints := {y}]T

where the first two branches deal with messages from neighbours in the same
round (i.e., this.round = z); to avoid conflicts, the proposed colours from neigh-
bours with greater ids are stored in constraints: only the vertex with the
greatest id among un-assigned neighbours can take a conflict colour. Messages
associated with a greater round are instead handled by the two branches. Any
message of this kind will denote the beginning of a new round at the receiving
end, by updating round, counter, constraints, and enabling send in order
to activate process F .

Upon succeeding in deciding a colour, a vertex sends a message of the form
(‘done’, c, r + 1) to notify the others that the colour c has been taken at round
r, setting assigned to true and terminating:

A � 〈(counter + done = |nbr|) ∧ colour > 0 ∧ colour /∈ constraints ∪ used)〉
(‘done’, this.colour, this.round + 1)@(this.id ∈ nbr).[assigned := tt]0

this process is activated if the vertex has collected all neighbours informa-
tion (i.e., counter + done = |nbr|) and there are no conflicts (i.e., colour /∈
constraints ∪ used). At the other endpoint, a vertex receiving notification
messages from neighbours updates done and the set of used colours, and, in
case the message is associated with a greater round, triggers the execution of a
new round:

D � (x = ‘done’ ∧ this.round ≥ z)(x, y, z).

[done := done + 1, used := used ∪ {y}]D

+ (x = ‘done’ ∧ this.round < z)(x, y, z).

[done := done + 1, used := used ∪ {y},

send := tt, round := z, counter := 0, constraints := ∅]D

www.manaraa.com

382 R. De Nicola et al.

2.2 UMC Model Checker

UMC [4] is one of the model checkers belonging to the KandISTI [13] formal
verification framework used for analyzing functional properties of concurrent
systems. In UMC, a system is represented as a set of UML-like communicat-
ing state machines, each associated with an active object in the system. UMC
adopts doubly-labelled transition systems (L2TS) [14] as semantic model of sys-
tems behaviours. A L2TS is essentially a directed graph in which nodes and
edges are labelled with sets of predicates and of events, respectively. The model
checker allows to interactively explore graphs and to verify behavioural proper-
ties specified in the state-event logic UCTL [15]. UCTL allows to express state
predicates and event predicates and to combine them with temporal and boolean
operators in the style of CTL [16] and ACTL [2].

The main building block of a concurrent system in UMC is a class definition,
that defines the structure a UML-like state machine. The active components of
a system are represented by class instances, i.e. objects. A class definition has
the following structure:

class Name is
Signals
-- asynchronous events accepted by the class
Operations
-- synchronous events accepted by the class
Vars
-- local variables of this object
--
-- state properties
Behavior
-- transitions that determine the behaviour of the class

end Name

The Signals and Operations sections contain the set of events to which an
active object may react by triggering some transition of the state machine. The
Vars section contains the private (non statically-typed) local variables of the
class and optionally their initial value. Values can denote object names, boolean
values, integer values or, recursively, (dynamically sized) sequences of values.
The Vars section can be followed by a list of state definitions that allow to
specify special properties of some of the states, like the list of events deferred
inside those states. The Behaviour section contains a set of transition rules that
describe the behaviour of the class and have the following general form:

source -> target {trigger [guard] / actions}

Source and target denote internal states of the state machine and may be defined
by composite names in presence of composite (sequential or parallel) states. A
single evolution step of a state machine has the semantics of a run-to-completion
step as defined in [17]. At each step one event is extracted from the events queue
of the object and dispatched to the set of active states for which it may trigger
a transition. A transition is enabled not only if the requested trigger is being
currently dispatched, but also when its guard expression (if any) is satisfied by
the current object state and trigger arguments. If different conflicting transitions
are concurrently enabled, one of them is nondeterministically selected for firing,
taking into account possible priorities. Concurrent non conflicting transitions are

www.manaraa.com

A Systematic Approach to Programming and Verifying AbC Systems 383

instead executed in the same run-to-completion step. Transitions not requiring
a triggering event (completion transitions) have a higher priority than normally
triggered transitions. When a transition is fired the execution of its actions may
change the state of the object and send further events to the same or other
objects. UMC supports a fairly rich language to specify actions and guards.
Actions, in particular, can be composite actions like finite loops or conditionals,
and can use local temporary transition variables. The reader is referred to the
UMC website [18] and to the documentation therein for additional details.

While the operational semantics in terms of state machine of a UMC spec-
ification is directly defined by the system behaviour, the evaluation of logical
formulas on the system is carried out by reasoning on an abstract L2TS derived
from systems behaviour by a set of Abstraction rules. These rules allow to dec-
orate the states and the edges of the L2TS with relevant state predicates and
abstract relevant events. They are defined inside the Abstractions section:

Abstractions {
Action: <internal event> -> <edge label>
...
State: <internal system state> -> <node label>
...

}

The labels exposed can be visualized, to provide a compact summary of the
computation trees, and can be referred when specifying UCTL formulae.

2.3 ABEL

ABEL [9] is a faithful implementation of AbC in Erlang with the support of
APIs closely corresponding to AbC primitives. ABEL relies on provable-correct
coordination strategy [19] for preserving AbC execution semantics. This is an
advantage over previous proposals; using ABEL in our framework makes auto-
matic translation immediate.

An ABEL program is essentially an Erlang program which uses ABEL APIs.
It consists of the process definitions of the components, and of top-level state-
ments for initialization. The syntax of components and processes is given in
Fig. 1, where [elem] is used to denote a list of elems. A component is created by
invoking new component which takes as parameters an attribute environment
Env (a map) and an interaction interface I (a list). The command returns a com-
ponent address C which can be used by start component to start the execution
of C from an initial behaviour referenced by BRef . The main building block of
a process definition is function definition BDef . A definition takes two param-
eters: a component address C and the current list V of bound variables of the
process. V is initially empty and may be gradually updated with the messages
received by input actions. The body of a definition contains a single command
Com determining the process behaviour.

A reference BRef to a definition is a function of one parameter that may
alter the list of bound variables of the wrapped function. A reference can be
passed as parameter to commands so that they can continue with the referred
behaviour. This way of programming is reminiscent of continuation passing style.

www.manaraa.com

384 R. De Nicola et al.

C ::= new component(Env, I) Create

start component(C,BRef) Start

BDef ::= beh name(C, V) → Com. Definition

BRef ::= fun(V) → beh name(C, V) end Reference

| nil
Com ::= prefix(C, V, {Act,BRef}) Prefix

| choice(C, V, [{Act,BRef}]) Choice

| parallel(C, V, [BRef]) Parallel

| call(C, V,BRef) Call

Act ::= {‘!’, g, m̃, s, [u]} Output

| {‘?’, g, r, x̃, [u]} Input

Fig. 1. ABEL API for process definitions.

A command Com has parameters C, V bounded by those of an outer function,
and a third parameter specifying basic actions possibly paired with references,
depending on the command type. It is worth mentioning that C and V are names
that simply act as place holders in commands and processes definitions. ABEL
supports the following commands.

prefix - takes as parameter an action Act and a continuation BRef . Act can
be either input (‘?’) or output (‘!’) action and its description is a tuple where
g, s, and r denote awareness, sending and receiving predicates, respectively,
while m̃ denotes the message, x̃ denotes input-binding variables and u denotes
an attribute update. If g or u are omitted, ABEL treats them as true and
empty list [], respectively. This command executes Act and then the behaviour
encapsulated in BRef . The execution of an input action (if successful) returns
a message; ABEL then continues by calling BRef on an updated list of bound
variables, calculated by appending the message to the current list V . If Act
is an output action, the continuation is determined by applying BRef to V .

choice - takes as parameter a list of pairs, each providing a description of the
prefixing action Act and a continuation BRef . This command executes one
of the actions and continues with the associated behaviour. Currently, ABEL
does not support mixed choices between input and output actions.

parallel - takes as parameter a list of BRef functions and creates new processes,
executing a behaviour resulting from the application of BRef functions to V .

call - executes the behaviour referenced by BRef by applying BRef to V .

The representation of AbC basic terms is based on Erlang . Function g is
parameterized with the local environment, (fun(L) → . . . end). The tuple m̃ is
composed of functions parameterized with the local environment, (fun(L) →
. . . end). x̃ is a tuple of atoms. Function s is parameterized with the local

www.manaraa.com

A Systematic Approach to Programming and Verifying AbC Systems 385

environment and the environment of other components (fun(L,R) → . . . end),
while r is parameterized also with the incoming message (fun(L,M,R) →
. . . end). Finally, u is a pair whose first element is an attribute name and the
second is a function parameterized with the local environment, and a message, in
case the update is associated with an input operation (fun(L, 〈M〉) → . . . end).

In order to properly model the semantics of these elements, several helper
functions are available: att(a,E) refers to the value of attribute a in an envi-
ronment E; msg(i,M) refers to the ith element of a message M , and var(x, V)
refers to the value of x in a list V of bound variables.

3 From AbC to UMC

We now show how to model an AbC system as a unique UML state machine
whose state is the union of the states of the components in the system. The
behaviour of each component is modelled by a concurrent region of a global par-
allel system state. This yields several advantages. First, the receivers of a sending
predicate can be easily determined, because components can read the attribute
environments of the others. Second, message broadcasting can be effectively mod-
elled via signals to the state machine itself, to allow all targeted components to
receive in parallel.

Our translation takes as input a collection of AbC components of the form
Γk : 〈Dk, Pinitk〉, where Γk, Dk, and Pinitk denote the environment, the process
definitions, and the initial behaviour, respectively. The output of our translation
is a UMC class whose structure is depicted in Fig. 2.

Fig. 2. Structure of the UMC encoding for AbC

www.manaraa.com

386 R. De Nicola et al.

The System class includes fixed code snippets such as the necessary signals
and data structures to model AbC input and output actions. Attributes (line 8)
are represented as vectors whose values are accessible via component indexes.
Transitions model the components’ behaviour (lines 17 - 20). The Transitions
section contains the sets of transitions, for each component. Specifically, for
component k, our translation visits all actions (of all processes) starting from
Pinitk and uses Dk for looking up new definitions when needed.

In the following we first explain the structural part of the translation, where
we combine AbC actions according to the process structure, and then the
behavioural part, where AbC input and output actions are modelled.

To model process interleaving we introduce program counters: pc[k][p] is
the program counter for process p of component k. Furthermore, for each action
in p we calculate two values: an entry point Cin and an exit point Cout based
on the process structure. These values can be worked out by recursively visiting
the process structure, following the approach of [10]. Figure 3 gives an idea of
how different transitions can be combined by using program counters and entry
and exit points: (a) is the graphical representation of a single transition; (b) an
action-prefixing process α.P has the entry point of α as Cin, and the entry point
of P as the exit point of α (Cout); (c) a choice process P1+P2 has the same entry
point on both sub-processes P1 and P2; (d) the entry points of sub-processes P1

and P2 in a parallel process P1|P2 contain their entry points, possibly combined
with the exit point of a previous action. An action is then encoded as a transition
of the following form:

SYS.Ck.s0 -> Ck.s0 {Trigger[... & pc[k][p]=Cin]/
-- transition body
pc[k][p]:=Cout;

}

A guard pc[k][p] = Cin makes sure that the program counter points to the correct
transition to be executed next. Right after a transition, pc[k][p] is assigned a new
value to correctly enable the next set of feasible transitions.

α

[Cin] Cout

entry exit

(a)

α P

[Cin] Cout [Cout]

.

(b)

P2

P1

+

[Cin]

[Cin]

(c)

P2

P1

|

[Cout ∧ C1in]

[Cout ∧ C2in]

(d)

Fig. 3. Structural composition of UMC transitions with program counters

In order to model communication, we introduce two unique events to model
attribute-based input and output actions. The event bcast(tgt, msg, j) carries
out the set tgt of component indexes allowed to receive the message msg, and

www.manaraa.com

A Systematic Approach to Programming and Verifying AbC Systems 387

the index j of the sending component and triggers all the input actions in all
components. The event allowsend(i), where i is a component index, schedules
the components through interleaving when sending messages. The event queue of
the state machine stores a set of allowsend(i) signals for each AbC component.
These signals are declared in the top state of the system as Defers, to prevent
them from being removed from the event queue when they do not trigger any
transition. The queue is defined as RANDOM so that the relative ordering of signals
is not considered relevant. In this way, whenever an AbC output action is allowed,
a single allowsend(i) signal is nondeterministically selected from the queue to
enable a single component, with index i, to proceed.

Output and Input Actions. We encode an output action as two separate
transitions that do occur strictly sequentially: a sending operation to self (i.e.,
the state machine) of the bcast event (that will be dispatched to all the parallel
components), and a discarding of this very message.

�〈Πa〉(Ẽ)@Πs.[ã := Ẽ]�k,p,cin,cout =
SYS.Ck.s0 -> Ck.s0 {

allowsend(i)[i=k & receiving=false & �Πa� & pc[k][p] = cin]/
tgt: int[];
for j in 0..pc.length-1 {

if (�Πs�) then {tgt[j]:=1;} else {tgt[j]:=0;}
};
receiving:=true;

self.bcast(tgt,[�Ẽ�],k);

�[ã := Ẽ]�;
pc[k][p] = cin + 1;

}
SYS.Ck.s0 -> Ck.s0 {

bcast(tgt,msg,j)[pc[k][p] = cin + 1]/
receiving:=false;
self.allowsend(k);
pc[k][p] = cout;

}

Note that an action may be preceded by an awareness predicate Πa and fol-
lowed by an attribute update [ã := Ẽ]. The global variable receiving of the
state machine works as a lock, to guarantee the correct ordering of the two tran-
sitions. Here the (main) transition is enabled if the component k is selected by
UMC (i.e., i=k) and no other component is performing an output action, (i.e.,
receiving=false), and the awareness predicate Πa, if any, holds. The transition
body includes the computation of the set of potential receivers tgt, a sending
operation self.bcast(tgt, msg, k) where msg is the result of translating expres-
sions Ẽ and of any attribute updates. This transition also sets the global variable
receving to prevent other components from performing further transitions of
this kind, and to allow only transitions triggered by bcast(tgt, msg, k). The sec-
ond transition resets receiving, updates the program counter of the current
process to the correct exit point cout, and pushes the allowsend(k) signal on
the event queue of the state machine.

www.manaraa.com

388 R. De Nicola et al.

An input action is instead translated into a single UMC transition, as below.
�〈Πa〉Πr(x̃).[ã := Ẽ]�k,p,cin,cout =
SYS.Ck.s0 -> Ck.s0 {

bcast(tgt,msg,j)[tgt[k]=1 & �Πa� & �Πr� & pc[k][p]= cin]/
bound[k][p] = msg;

�[ã := Ẽ]�;
pc[k][p] = cout;

}

The transition is enabled, for a component k (if k is in the target set tgt of
receivers), when the receiving predicate Πr and (possibly) the preceding aware-
ness predicate Πa are satisfied. Variable binding is achieved by assigning the
received message msg to a global vector bound indexed by k and p. This allows
other transitions of the same process to use the message. Like for output actions,
the transition body may contain attribute updates.

For brevity, we have omitted the detailed treatment for other syntactic ele-
ments such as expressions and predicates. Their translations are quite straight-
forward since in each transition, we have full information of component and
process indexes for accessing components attributes and bound variables.

4 From AbC to ABEL

We now describe the translation from AbC into ABEL. We make the follow-
ing assumptions on the input: (i) any process involved in a choice is preceded
(guarded) by an action, although the choice branches can still initially appear
in the form of process calls; (ii) the guarded actions in a choice are not mixed,
i.e., all of them are either input actions or output actions; (iii) the names of
input-binding variables in the code of a sequential process definition are unique.

Our translation is structured in two phases. A normalization phase that con-
sists in refactoring process definitions (of all components) in the input AbC spec-
ification to match the structure of the forms provided by ABEL’s programming
interface, and a generation phase that produces the actual Erlang code.

Normalization. Let D be the set of process definitions; X be either a process
name K or process code P . We define a function N that rewrites the defini-
tions, and while doing so may produce auxiliary definitions. A fresh definition
is introduced if any of the following conditions holds: (i) the continuation of a
prefixing process is not a process name; (ii) any branch of a choice process is
not a prefixing process; and (iii) any branch of a parallel process is not a process
name.

Figure 4 presents the rewriting rules for normalization. We note that the rules
are applied exhaustively until all definitions in D, including the newly created
ones, are processed.

In a prefixing definition, the generic action denoted by α may be associated
with awareness and attributes updates. The procedure generates another def-
inition with the same structure, except that the continuation X needs to be
processed by a helper function R: if X is a name, R returns that name, other-
wise, if X is a process code P , R creates a fresh name K, adds a new definition
{K � P} and returns K.

www.manaraa.com

A Systematic Approach to Programming and Verifying AbC Systems 389

Fig. 4. Normalizing process definitions

In a choice definition, the procedure recursively processes all the branches
of the choice. For process names, N looks up the definition of that name and
continues the normalization for the corresponding code. For prefixing process,
N behaves similarly to the prefixing case. If one of the branches is again a choice
process, N normalizes its sub-processes.

In a parallel definition, the procedure recursively normalizes all the branches.
Finally, any call definition remains unchanged. The above procedure is guaran-
teed to terminate because the input specification contains a finite number of
definitions and N processes them only once.

Code Generation. This phase produces Erlang code from a set of normalized
definitions. The generated code consists of a module for each component type
wherein each normalized definition is translated into one function. The rules for
code generation (G) are reported in Fig. 5. The first four rules capture all possible
forms of a definition and generate the corresponding BDef definitions in ABEL
style (see Fig. 1). The next two rules do generate references BRef . The other next
two rules deal with AbC actions. The remaining nine rules are responsible for the
actual translation of the basic elements of such actions: Namely, they consider
awareness, sending and receiving predicates Πa,Πs,Πr, attribute updates [ã :=
Ẽ] and the message Ẽ to be sent. The translation is parameterized with input-
binding variables x̃ because the expressions contained in receiving predicates or
in attribute updates may need them.

Please, notice that the details of the translation of the last five rules are
omitted. The definition of �·� is quite standard and is based on the actual syntax
of AbC predicates and expressions. However, we would like to add some consid-
eration about some special cases. In an awareness predicate Πa, the two terms
a and this.a have the same meaning, therefore �a� = �this.a� = att(a,L).
The translation for interaction predicates (Πs, Πr) instead differs between a

www.manaraa.com

390 R. De Nicola et al.

Fig. 5. Code generation

and this.a being a interpreted as a remote attribute: �a� = att(a,R) while
�this.a� = att(a,L). Next, consider a variable x. The special case is when x
appears in input-binding variables x̃, to which the parameterized translation
output is msg(i,M) where i denotes the index of x in x̃, otherwise var(x,V).
Finally, for complex expressions f(Ẽ) (or predicates) which do not have a closed
form in AbC syntax, the translation generates a function call as a place holder,
i.e., f(G�Ẽ�), and users need to provide the Erlang definition for f afterward.

5 Experiments

In this section we report some experiments that we have conducted adopting as
a case study the graph colouring algorithm of Sect. 2.1 by taking advantage of
the two tools1 that permit translating AbC systems into UMC models and into
ABEL.

Experimenting with UMC. In order to model check the UMC model for
graph colouring, we instrumented it as follows.

Abstractions {
-- Auto generated
Action sending($1,$2) -> send($1,$2)
Action received($1,$2) -> received($1,$2)
State SYS.colour[0]=$2 -> has_colour(C1,$2)
State SYS.assigned[0]=$2 -> has_assigned(C1,$2)
...
-- Manual instruments
-- Soundness
State SYS.matrix[0][1]>0 and SYS.colour[0]=SYS.colour[1] -> not_sound
State SYS.matrix[0][2]>0 and SYS.colour[0]=SYS.colour[2] -> not_sound

1 https://doi.org/10.5281/zenodo.3234713.

https://doi.org/10.5281/zenodo.3234713

www.manaraa.com

A Systematic Approach to Programming and Verifying AbC Systems 391

...
-- \delta + 1 algorithm
State SYS.maxt<SYS.colour[0] -> bad_alg
State SYS.maxt<SYS.colour[1] -> bad_alg
...

}

First, we introduce abstraction rules for the colour and assigned attributes of
each vertex. Second, whenever the colour of any two adjacent vertices is the
same, we label the state as not sound. For this we rely on a global variable storing
the adjacency matrix of the graph under consideration. Finally, a label bad alg
is exposed if the maximum degree + 1 (stored in maxt) is smaller than the colour
value of any vertex. We can now specify a number of properties concerning the
termination and soundness of the graph colouring procedure:

G1 (termination) The system converges to final states:
AF FINAL

G2 (completeness of colouring) Every vertex has a valid colour:
AF (FINAL and not has colour (*,0)) and not has assigned (*,false))

G3 (soundness of colouring) Adjacent vertices do not share the same colour:
AF (FINAL and not not sound)

G4 (not bad algorithm) The algorithm is (Δ + 1) - colouring:
AF (FINAL and not bad alg)

We have verified the system under consideration for all possible graphs with
2 from 5 vertices. Property G1 holds, showing that our colouring algorithm
terminates, while property G2 does not hold, because some vertex eventually is
not assigned.

Figure 6 reports the UMC counterexample for a connected graph of 2 ver-
tices. After being assigned a colour, vertex C2 still sends a ‘try’ message (the
grey line), which affects the counting of the neighbours for vertex C1 (the line
after the grey one). This prevents the halting condition for colour selection, i.e.,
|nbr| = done + counter to ever happen to the vertex C1. This happens because
in the specifications (Sect. 2.1), process F performs colour selection and sends a
‘try’ message as two separate actions, therefore there is the possibility that these
two actions are interleaved with process A.

We can fix the specifications by modifying process F as follows:

F ′ � 〈send ∧ ¬assigned〉(‘try’, min{i /∈ used}, this.round)@(this.id ∈ nbr).

[colour := min{i /∈ used}, send := ff]F ′

where basically the two actions of F are combined into a single action wherein
the sending action sends the value of the expression min{i /∈ used}, and colour
is atomically set via an attribute update. After these changes, we can perform
the verification again. The results are summarised in Table 1. UMC successfully
verified that, for all possible graphs of the considered degrees, all the above
properties do hold for the fixed version of the specifications. The number of
states generated when verifying the property AF FINAL is also included, giving
an idea of the state space for each set of inputs.

www.manaraa.com

392 R. De Nicola et al.

AF (FINAL and not has_assigned(*,false)) is FOUND_FALSE in State C1
This happens because:

. . .
C13 --> C68 {} /* nbr:=[[2],[1]]; matrix:=[[-1,1],[1,-1]]; */
C68 --> C69 {} /* colour[0]:=1; */
C69 --> C70 {send(C1,[try,1,0])} /* send[0]:=false; */
C70 --> C71 {receive(C2,[try,1,0])} /* counter[1]:=1; */
C71 --> C228 {} /* colour[1]:=1; */
C228 --> C238 {send(C2,[donec,1,1])} /* assigned[1]:=true; */
C238 --> C239 {receive(C1,[donec,1,1])} /* round[0]:=1; done[0]:=1;

send[0]:=true; counter[0]:=0; used[0]:=[1];
constraints[0]:=[]; */

C239 --> C240 {} /* colour[0]:=2; */
C240 --> C241 {send(C1,[try,2,1])} /* send[0]:=false; */
C241 --> C242 {receive(C2,[try,2,1])} /* send[1]:=true; counter[1]:=1;

constraints[1]:=[]; */

C242 --> C245 send(C2,[try,1,1]) /* send[1]:=false; */

C245 --> C246 receive(C1,[try,1,1]) /* counter[0]:=1; constraints[0]:=[1]; */

(C246 is final)

Fig. 6. Counterexample for property G2

Table 1. Verification results for the initial and the refined specifications

Property G1 G2 G3 G4

original spec � × n/a n/a

fixed spec � � � �
n. of vertices 2 3 4 5

state space 85 1,469 52,068 2,859,341

Vertex Colour Round
14 1 0
1 2 1
9 2 1
13 2 1
8 1 2
12 1 2
2 1 3
7 2 3
11 2 4
3 2 4
6 1 4
5 2 5
4 1 6
10 1 6

1

2

34

5

6

7

8

9

10 11

12

13

14

Fig. 7. Execution trace of the automatically generated ABEL program

www.manaraa.com

A Systematic Approach to Programming and Verifying AbC Systems 393

Experimenting with ABEL. Using the second translator, we generated an
Erlang program for the considered case study from the correct version of the
specifications. We ran this program on some random graphs from [20], and
observed the outcome of the colouring procedure. Below we report the outcome
of the ABEL program that received as input the Heawood graph shown on the
right in Fig. 7; the corresponding run of the ABEL program is reported in the
left part of the figure.

It is worth observing that ABEL can deal with systems with a very large
number of components. For instance, we have also experimented with graphs
up to 1000 vertices (components), measuring critical parameters such as the
number of message exchanges, the total size of messages for each scenario. For
detailed performance evaluations, we refer the reader to [9].

6 Concluding Remarks and Future Work

We have presented an integrated framework for programming and verifying sys-
tems that are formally described by a theoretically well-founded process calculus,
namely AbC . Starting from AbC specifications, our framework can be used for
verifying and executing AbC systems by relying on external tools. Indeed, while
this work selects only two environments for executing AbC programs and ver-
ifying their properties, we think that the outlined methodology is sufficiently
general to be extended to analyze and execute AbC with other verification and
programming environments.

For automatic verification, we would like to experiment with adapting our
translation to other frameworks and model checkers such as SPIN, for which the
work in [21] can be the starting point. Recent surveys [22,23] have described
a possible approach to translating simple state machines into a formalism sup-
ported by different frameworks, but further analysis is needed to fully assess
the complexity of the effort. Moreover, it has still to be understood whether the
modeling language is sufficiently expressive to define the properties required for
an AbC specification.

For programming environments, other approaches have been considered to
provide implementations of AbC , see e.g., [24–26]. However, these works do not
fully capture the original AbC semantics or exhibit a significant gap between
their programming constructs and the AbC primitives, making the translation
not obvious. Among the above mentioned implementations, the most promis-
ing alternative to ABEL appears to be GoAt [25], although some revisions are
required also in this case.

Closely related to our work is the one presented in [27] which generates the
Java code from the verified spi-calculus specification. They assume correctness
of an underlying Java implementation, and focus on proving correctness of code
translation and generation. We have not yet considered the correctness of our
translators but plan to do it in the close future.

www.manaraa.com

394 R. De Nicola et al.

Static verification may be out of reach for large systems. Some lines of work
such as the P programming language [28] promote systematic testing within
a limit on formal models as an alternative to verification; runtime-monitoring
techniques [29] offload the verification to post deployment. The latter typically
employs a special entity called monitor to record the interesting events (i.e., send
and receive) of a running system and validate the runs against a desired correct-
ness property. It would be interesting to investigate whether these alternatives
would fit our model-driven approach to the development of AbC systems.

References

1. De Nicola, R., Fantechi, A., Gnesi, S., Ristori, G.: An action-based framework
for verifying logical and behavioural properties of concurrent systems. Comput.
Networks ISDN Syst. 25(7), 761–778 (1993)

2. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

3. Gnesi, S., Mazzanti, F.: On the fly verification of network of automata. In:
Arabnia, H.R. (Ed) Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, PDPTA, CSREA Press,
Georgia, pp. 1040–1046 (1999)

4. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011)

5. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based
communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 1

6. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A behavioural theory for interactions
in collective-adaptive systems. CoRR, vol. abs/1711.09762 (2017). http://arxiv.
org/abs/1711.09762

7. De Nicola, R., Ferrari, G.L., Pugliese, R., Tiezzi, F.: A formal approach to the
engineering of domain-specific distributed systems. In: Di Marzo Serugendo, G.,
Loreti, M. (eds.) COORDINATION 2018. LNCS, vol. 10852, pp. 110–141. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-92408-3 5

8. Armstrong, J.: Making reliable distributed systems in the presence of software
errors. Ph.D. dissertation, The Royal Institute of Technology, Stockholm (2003)

9. De Nicola, R., Duong, T., Loreti, M.: ABEL - a domain specific framework for
programming with attribute-based communication. In: Riis Nielson, H., Tuosto,
E. (eds.) COORDINATION 2019. LNCS, vol. 11533, pp. 111–128. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22397-7 7

10. De Nicola, R., Duong, T., Inverso, O., Mazzanti, F.: Verifying properties of sys-
tems relying on attribute-based communication. In: Katoen, J.-P., Langerak, R.,
Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 169–190.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 9

11. Calzolai, F., De Nicola, R., Loreti, M., Tiezzi, F.: TAPAs: a tool for the analysis
of process algebras. In: Jensen, K., van der Aalst, W.M.P., Billington, J. (eds.)
Transactions on Petri Nets and Other Models of Concurrency I. LNCS, vol. 5100,
pp. 54–70. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89287-
8 4

https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1007/978-3-319-39570-8_1
http://arxiv.org/abs/1711.09762
http://arxiv.org/abs/1711.09762
https://doi.org/10.1007/978-3-319-92408-3_5
https://doi.org/10.1007/978-3-030-22397-7_7
https://doi.org/10.1007/978-3-319-68270-9_9
https://doi.org/10.1007/978-3-540-89287-8_4
https://doi.org/10.1007/978-3-540-89287-8_4

www.manaraa.com

A Systematic Approach to Programming and Verifying AbC Systems 395

12. Abd Alrahman, Y., De Nicola, Loreti, R.: Programming the interactions of
collective-adaptive systems by relying on attribute-based communication. CoRR,
vol. abs/1711.06092 (2017). http://arxiv.org/abs/1711.06092

13. ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a family of model
checkers. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems.
LNCS, vol. 8950, pp. 312–328. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15545-6 20

14. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM,
42(2), 458–487 (1995). http://doi.acm.org/10.1145/201019.201032

15. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A logi-
cal verification methodology for service-oriented computing. ACM Trans. Software
Eng. Methodol. (TOSEM) 21(3), 16 (2012)

16. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)

17. OMG, “Unified modeling language version 2.5 - behavioral statemachines,” Object
Management Group, Technical Report (2015). https://www.omg.org/spec/UML/
2.5/PDF

18. The UMC verification framework. http://fmt.isti.cnr.it/umc
19. Alrahman, Y.A., De Nicola, R., Garbi, G., Loreti, M.: A distributed coordina-

tion infrastructure for attribute-based interaction. In: Baier, C., Caires, L. (eds.)
FORTE 2018. LNCS, vol. 10854, pp. 1–20. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-92612-4 1

20. Brinkmann, G., Coolsaet, K., Goedgebeur, J., Mélot, H.: House of graphs: a
database of interesting graphs. Discrete Appl. Math. 161(1–2), 311–314 (2013)

21. De Nicola, R., et al.: Programming and verifying component ensembles. In: Ben-
salem, S., Lakhneck, Y., Legay, A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp. 69–83.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54848-2 5

22. Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Towards formal methods diversity in rail-
ways: an experience report with seven frameworks. STTT 20(3), 263–288 (2018).
https://doi.org/10.1007/s10009-018-0488-3

23. Mazzanti, F., Ferrari, A.: Ten diverse formal models for a CBTC automatic train
supervision system. In: Proceedings Third Workshop on Models for Formal Analy-
sis of Real Systems MARS/VPT@ETAPS 2018, Thessaloniki, Greece, pp. 104–149,
20 April 2018. https://doi.org/10.4204/EPTCS.268.4

24. De Nicola, R., Duong, T., Inverso, O., Trubiani, C.: AErlang: empowering erlang
with attribute-based communication. In: Jacquet, J.-M., Massink, M. (eds.)
COORDINATION 2017. LNCS, vol. 10319, pp. 21–39. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59746-1 2

25. Abd Alrahman, Y., De Nicola, R., Garbi, G.: GoAt: Attribute-based interaction in
google go. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp.
288–303. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5 19

26. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming of CAS systems by
relying on attribute-based communication. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 539–553. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47166-2 38

27. Pironti, A., Sisto, R.: Provably correct java implementations of spi calculus security
protocols specifications. Comput. Secur. 29(3), 302–314 (2010)

http://arxiv.org/abs/1711.06092
https://doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.1007/978-3-319-15545-6_20
http://doi.acm.org/10.1145/201019.201032
https://www.omg.org/spec/UML/2.5/PDF
https://www.omg.org/spec/UML/2.5/PDF
http://fmt.isti.cnr.it/umc
https://doi.org/10.1007/978-3-319-92612-4_1
https://doi.org/10.1007/978-3-319-92612-4_1
https://doi.org/10.1007/978-3-642-54848-2_5
https://doi.org/10.1007/s10009-018-0488-3
https://doi.org/10.4204/EPTCS.268.4
https://doi.org/10.1007/978-3-319-59746-1_2
https://doi.org/10.1007/978-3-030-03424-5_19
https://doi.org/10.1007/978-3-319-47166-2_38
https://doi.org/10.1007/978-3-319-47166-2_38

www.manaraa.com

396 R. De Nicola et al.

28. Desai, A., Gupta, V., Jackson, E., Qadeer, S., Rajamani, S., Zufferey, D.: P: safe
asynchronous event-driven programming. ACM SIGPLAN Not. 48(6), 321–332
(2013)

29. Cassar, I., Francalanza, A., Aceto, L., Ingólfsdóttir, A.: A survey of runtime moni-
toring instrumentation techniques. In: Francalanza, A., Pace, G.J. (Eds.) Proceed-
ings Second International Workshop on Pre- and Post-Deployment Verification
Techniques, PrePost@iFM 2017, series EPTCS, vol. 254, pp. 15–28 (2017)

www.manaraa.com

On the Prediction of Smart Contracts’
Behaviours

Cosimo Laneve(B) , Claudio Sacerdoti Coen , and Adele Veschetti

Department of Computer Science and Engineering,
University of Bologna – INRIA Focus, Bologna, Italy

{cosimo.laneve,claudio.sacerdoticoen,adele.veschetti2}@unibo.it

Abstract. Smart contracts are pieces of software stored on the blockchain
that control the transfer of assets between parties under certain conditions.
In this paper we analyze the bahaviour of smart contracts and the inter-
action with external actors in order to maximize objective functions. We
define a core language of programs with a minimal set of smart contract
primitives and we describe the whole system as a parallel composition of
smart contracts and users. We therefore express the system behaviour as a
first logic formula inPresburger arithmetics and study themaximumprofit
for each actor by solving arithmetic constraints.

1 Introduction

Smart contracts are programs that run on distributed networks with nodes stor-
ing a common state in the form of a blockchain. These programs are gaining more
and more interest because they implement the so-called decentralized applica-
tions, which are applications that can handle and transfer assets of considerable
value (usually, in the form of cryptocurrency like Bitcoin). Several decentralized
applications have already been applied to asset management scenarios rang-
ing from food supply chain management to energy market management and to
identity notarization. The smart contracts of such applications are written in
programming languages that are targeted to different blockchains. Two such
languages are Solidity for Ethereum (which is imperative) [7] and Liquidity for
Tezos (which is functional) [14].

Decentralized applications consist of smart contracts and users, such as
humans performing either computer actions or physical ones. Since they run on
systems that have no coercing central authority, the uncertainty of the overall
emerging behaviour is very high and this is a critical issue when asset movements
are at the core of applications. Therefore it becomes important to understand the
protocols between interacting parties and, when possible, use smart contracts to
regulate behaviours of users that systematically try to maximize their revenues
or to minimize losses. For example, a client behaves in different ways in order
to minimize the cost κ of a good (e.g. he may choose one company or another).

Research partly supported by the H2020-MSCA-RISE project ID 778233 “Behavioural
Application Program Interfaces (BEHAPI)”.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 397–415, 2019.
https://doi.org/10.1007/978-3-030-30985-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_23&domain=pdf
http://orcid.org/0000-0002-0052-4061
http://orcid.org/0000-0002-4360-6016
http://orcid.org/0000-0002-0403-1889
https://doi.org/10.1007/978-3-030-30985-5_23

www.manaraa.com

398 C. Laneve et al.

On the other hand, the interacting company tries to maximize its revenue; there-
fore it strives for the greatest value κ such that the client has still a convenience
in acquiring its own good. Determining the least value κ is complex because
it may not only depend on the price, but also on the trademark, the delivery
type, etc.

In this paper, to suitably address the foregoing issues, (i) we adhere to a
formal modelling approach, (ii) define an analysis technique and (iii) prototype
the verification process. A precise account of the work follows.

As regards the formal modelling, since (human) users and smart contracts
act concurrently and independently, we adopt methods and techniques from the
domain of process algebras. As such, we depart from most of the literature on
application of formal methods to smart contracts that study their properties
as sequential programs. In Sect. 2 we introduce a unified calculus of actors –
both contracts and users, the scl calculus – that is expressive enough (it is
Turing complete) and features method invocations, field updates, conditional
behaviour, recursion and failures. According to the semantics of scl, systems,
which are parallel compositions of smart contracts and users, perform transac-
tions, e.g. sequences of smart contract operations that are triggered by users.
Transactions may return a value or may fail; in the first case the states of smart
contracts that have taken part in the transaction are committed; in the second
case the states backtrack to the last committed one. In parallel to transactions,
users may evolve internally in a nondeterministic way (on the contrary, smart
contracts’ behaviours are deterministic). The model of scl is a transition system
that enables symbolic analysis of properties – see Sect. 3. In particular, transi-
tions retain two informations: one is a standard label, say μ, highlighting the
action performed, the other one, say ψ, is a formula that records the choices and
the guards of conditionals. The two labels play different roles in our analysis
technique.

Given the model of a scl program, in Sect. 4 we define an objective function as
a map from labels μ to integer expressions. For example, such function may return
1 if the label has a given type, or it may return some expression on the symbolic
names occurring in the label. In general we are interested in determining computa-
tions that maximize or minimize the sum of the values of an objective function on
their labels and in selecting strategies that allow users to behave correspondingly.
Once this is done, we analyze whether tuning up and down the symbolic names
may generate more profit or reduce loss for one interacting party. To this aim, we
select a sensible state S and the corresponding transition system rooted at S (we
assume there is no cycle and that the transition system is finite). By means of the
labels μ and ψ of the transitions, we define a first order logic formula, called the
characteristic formula, that summarizes the transition system describing concisely
the values of the objective function for every possible run.

When the model is Presburger (a decidable fragment of arithmetics where
formulas contains only integer numbers, equality, strict inequality, addition and
multiplication by a constant), the characteristic formula belongs to an exten-
sion of Presburger arithmetics that can be decided via quantifier elimination.

www.manaraa.com

On the Prediction of Smart Contracts’ Behaviours 399

The formula without quantifiers allows us to reason about strategies that bring
to goals with higher values (e.g. maximize the profit) for each actor by solving
arithmetic constraints. The general cases of infinite, acyclic models are addressed
in our technique by analyzing finite unfoldings.

We are currently terminating the implementation in OCaml of a tool that,
given a set of contracts, an initial state and an objective function, automatically
extracts the open model, computes the characteristic formula and applies quan-
tifier elimination over it. This elimination step also checks whether the formula
is satisfiable, i.e. it detects the reachable final states and computes the set of
values of the objective function that can be observed in runs that lead to them.
These sets are represented as linear mappings over domains that are union of
polytopes, i.e. solutions of a systems of linear inequations in normal form. The
inequations constrain the choices that users can take according to those of other
users or to external inputs to the system. Maximizing linear functions over linear
inequations is mathematically trivial.

We conclude in Sect. 5 by discussing future research directions.

Related Works. In the past few years formal methods have been largely used
to analyze smart contracts with the aim of verifying the security of potentially
dangerous compositions with untrusted codes. One of the most cited motivation
has been the famous TheDAO attack [15] that stole several million dollars during
a crowdfunding procedure and caused an hard fork in the Ethereum blockchain.

An initial contribution is [2], which proposes an analysis framework based
on a compilation of Solidity to F∗, a functional language aimed at program
verification with a powerful type and effect system. Using F∗ types, they are able
to trace Ethers (the Ethereum cryptocurrency) and discover critical patterns
in smart contracts. A different technique has been followed by [10] and [11],
sticking to symbolic execution. Similarly to our technique, they use symbolic
values for inputs and study symbolic computations by mean of the formula that
accumulates the constraints on the inputs. This formula is different from our
characteristic formula in Sect. 4. In particular, while our formula describes every
possible computation and we use constraints on symbols to determine values
that maximize some quantity, in [10] and [11], they are interested in discovering
critical patterns of a single computation.

In the same line of verifying and validating smart contracts, the contribu-
tion [3] combines formal methods and game theory to analyze protocols that
also involve players (human users) with different/competing gaming strategies.
The technique is the following: game theory is used to analyze the behaviour of
the players in the protocol, then the resulting strategies are modelled in a proba-
bilistic system for automated validation. Our approach is somehow the opposite:
we define the overall system (or part of it) in a formal model and derive the
strategies by analyzing the model. In this paper, we stick to a discrete model
(the choice operator in users’ behaviours is not probabilistic), leaving to future
research the extension to stochastic models.

www.manaraa.com

400 C. Laneve et al.

Another contribution that is close to our one is [4]. In this case, the authors
define a simplified language for smart contracts that is loop-free. Then they pro-
vide an automatic translation into stateful concurrent games and analyze these
games by means of interval abstraction that is demonstrated to be sound. The
technique is very powerful and of practical relevance, considering that models of
concurrent games are very large. Unlike to this work, our modelling technique is
based on process algebra and our analysis relies on Presburger arithmetics for-
mulae. The evaluation of the practical relevance of our technique is postponed
to future research.

2 The Calculus of Smart Contracts

In this section we define a core language of programs featuring a minimal set of
smart contract primitives, such as method invocations, field updates, conditional
behaviour, recursion and failures.

We use a countable set of variables, ranged over by x, y, z, a countable set
of smart contract names, ranged over by a, b, c, and a countable set of user
names, ranged over by id , id ′, id ′′. Smart contract names and user names are
generically addressed by α, α′, . . . and we assume they are partitioned into
disjoint sets such that names of a same set belong to a same class and those in
different sets belong to different classes. The property that a name α belongs to
a class C is expressed by α ∈ C.

Classes C have the form C : (F ,M) where F is a sequence of field definitions
T f, M is a sequence of method definitions T m(T x){ sm } with T x and sm

respectively being the formal parameters and the body of m. In the whole paper,
we assume that sequences of declarations T x and method declarations M do not
contain duplicate names. Types T are either naturals Nat or names α. Hereafter
we write k for possibly empty, finite sequences k1, . . . , kn of various entities.

The syntax of statements, rhs-expressions and expressions is given in Fig. 1.
A statement s may be either a return of an expression, or a field update (plus a
continuation), or a conditional or the nondeterministic choice s + s′. We assume
that bodies of smart contract methods (i) do not have nondeterministic choice
(they are deterministic) and (ii) do not have expressions with fail, except for
return fail.

A rhs-expression z may be either an expression e or a synchronous method
invocation. An expression e may be either a standard expression or fail. In e op e′,
op is a standard operation on naturals. We assume that method bodies of users
also have the expression isfailed(e) that returns 1 if the value of e is fail, 0
otherwise.

The semantics of scl statements is defined by a transition relation

α : s, �
μ�−→
ψ

s′, �′

where s and s′, with an abuse of notation, are runtime statements, � and �′ are
memories, e.g. maps from field names to values v, μ is either empty or v.m(v′),

www.manaraa.com

On the Prediction of Smart Contracts’ Behaviours 401

Fig. 1. Syntax and runtime statement semantics of scl.

and ψ is a formula. The transition means that executing s in an actor α with a
memory � amounts to produce an action μ and a formula ψ and executing s′ in
�′. Actions μ are commitments to the context, formulas ψ are essential for our
analysis in the next sections.

Runtime statements, as reported in Fig. 1, extend statements with 0 repre-
senting termination, id recording the user that initiated the transaction, id [v]
returning a value to the user id , α.f = •;s representing a continuation waiting
for a value that will replace the symbol •, with s;s′ denoting the sequential
composition, and s +x s′, an alternative form of s + s′ that retains the fresh
variable to be used for recording the choice (this information is necessary in the
analysis of Sect. 4). Sequential composition is considered associative.

The following auxiliary functions are used in the semantic rules:

– �[f �→ v] is the memory update, namely (�[f �→ v])(f) = v and (�[f �→ v])(g) =
�(g), when g �= f.

www.manaraa.com

402 C. Laneve et al.

– s[v] is the delivery of a value v to a runtime statement s, namely

s[v] def=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α.f = v;s′ if s = α.f = •;s′ and v �= fail

id .f = fail;s′ if s = id .f = •;s′ and v = fail

id [fail] if s = a.f = •;s′;id and v = fail

id [v] if s = id

It is worth to observe that (α.f = •;s′)[fail] behaves in different ways accord-
ing to α being a user or a smart contract. In the first case the field of the
user is updated with fail – which is possible for users, in the second case the
whole statement fails and the failure is reported to the user that triggered
the whole transaction.

– �e�α,� is a partial function that returns the value of e. The value of fields of α
is retrieved in the memory � of α: �α.f�α,� = �(f). The function is undefined
if e tries to use fields of an actor �= α. We omit the definition of �e�α,� when e
is an operation, but we require that it must be fail when one of the arguments
is fail. �e�α,� returns the tuple of values of e.

Let us comment some semantic rules in Fig. 1. Rule [upd] defines the seman-
tics of a field update: the expression e is evaluated in an actor α with a memory �;
the resulting memory binds the value to the field f. Rule [meth] defines method
invocations α.f = e.m(e′);s when the evaluation of e and e′ does not return a
failure. In this case, the method dispatch is performed by using the value v of the
carrier (because every name belongs to a class) and the statement to evaluate
becomes the instance of the body of m, followed by the update α.f = •, where
• represents a place-holder, and the continuation s. The transition is labelled
v.m(v′)�−→
true

meaning that we are invoking the method m of actor v with actual param-

eters v′. Rule [meth-fail] addresses failures in the evaluation of expressions of
a method invocation; in this case the invocation is not performed and the field
is updated with fail. Rule [return] defines the semantics of return e. There are
two types of return continuations s: one is α.f = •;s′ – see rule [meth], the other
one is id (this will be clear in the semantics of scl programs). Additionally, the
semantics depends on whether α is a smart contract or a user, and on whether
the value v is a failure or not. To manage all these cases we use the auxiliary
function s[v]. The semantics of conditionals is standard. On the contrary, the
semantics of nondeterminism is not standard and deserves few comments. First
of all, nondeterminism may only occur in user codes, therefore the actor here is
id . Then, we need to keep track of the nondeterministic choices in order to study
the behaviour of smart contract programs. To this aim we use a fresh variable
x each time a choice is about to be performed and (s1 + s2);s transits into an
intermediate statement (s1 +x s2);s. In turn this statement becomes either s1;s
or s2;s and the choice is recorded by letting x = 1 or x = 2 in the formula
labelling the transition, respectively.

www.manaraa.com

On the Prediction of Smart Contracts’ Behaviours 403

Fig. 2. Semantics of scl.

2.1 Semantics of scl programs

A smart contract program is a pair
(
D,S

)
, where D is a finite set of class def-

initions and S is state. States, as defined in Fig. 2, are parallel composition of
actors a(� ·�′), called smart contracts, or actors id(�, s), called users, and exactly
one runtime statement, called blockchain-statement. Smart contracts have pairs
of memories � · �′ where � is the current memory and �′ is the last committed
memory. In case of commits, the current memory � becomes the last committed
memory; in case of failures, the system will backtrack by restoring �′. In a state,
names a and id are unique. As usual, parallel composition in states is associative
and commutative.

The semantics of a smart contract program is defined by means of transition
relation S

μ−→
ψ

S′, where μ may be either empty or � or fail, and ψ is a formula.

The class declarations are kept implicit in the transition relation. The reader
may find the formal definition of

μ−→
ψ

in Fig. 2.

www.manaraa.com

404 C. Laneve et al.

States may evolve in two ways: either by a transition of the blockchain-
statement or by a transition of a user.

The blockchain-statement may evolve because of an empty-labelled statement
transition – rule [sc-move] – or because of a method invocations of a smart
contract – see rules [invk] and [invk-self]. In this last case, the state must
contain the smart contract whose method is invoked in the label of the transition.
Users have a behaviour, which is modelled by a runtime statement, and evolve
concurrently either with empty-labelled transitions – rule [id-move] – or with self-
invocations – rule [invk-id] (therefore a user cannot invoke another user, e.g. user
interactions are always mediated by a smart contract). When the blockchain-
statement is 0, a user may invoke a smart contract’s method – rule [invk-sc].
This is the only way to start a blockchain transaction and, in this case, in order
to return the result to the caller, method’s body is suffixed with user’s name. The
transaction terminates either successfully returning a not-fail value to the user
that triggered it – rule [end-ok] – or with a failure – rule [end-fail]. In the first
case, the smart contracts that were involved in the transaction are committed –
rule [cmt], e.g. their current local memory is saved; in the second case the smart
contracts backtrack – rule [bkt] – e.g. their current memory is deleted and the
current one becomes the last memory that has been committed. Backtrack and
commit are defined by the auxiliary functions backtk(·) and commit(·) in Fig. 2.

We conclude by noticing that blockchain-statements are executed sequen-
tially and in a deterministic way (because they originated in smart contracts’
methods). On the contrary, users’ method are performed concurrently and are
nondeterministic (because the operator + may occur in their code).

Example 1. We use a simple example to illustrate the technicalities we have
introduced. The example is about garbage collection and defines the interac-
tions between a citizen and a smart bin. In particular, a citizen gets rid of the
garbage in two ways: either throwing the garbage bags into a smart bin or dump-
ing it (littering the street, for instance). The throwing in the bin is performed
by invoking a method “throw”; this invocation returns a natural value that cor-
responds to a cash prize for having behaved well. If the garbage bag is dumped,
the prize is 0. Every two garbage bags, the cash owned by the citizen is deposited
in his bank account (in order to reduce his overall garbage taxes). The classes of
the citizen and of the smart bin are displayed in Fig. 3 (notice that the citizen
is a user, while the bin is a smart contract). For simplicity, the management
of failures has been removed by the codes of Fig. 3. The smart bin class has a
method throw whose behaviour depends on the value of the field h. When h is
0, two bags can be taken: the field h is set to 1 and a prize k is returned to the
citizen, subtracting it from the field a that represents the money hold by the
bin. When the second bag arrives, a value k′ is returned to the citizen (notice
that k may be different from k′), after having re-charged the field a and asked
to the truck to empty the bin, re-setting h to 0.

Let us discuss a possible state and its transitions. Let man ∈ Citizen,
bin ∈ Garbage bin, bank ∈ Bank and truck ∈ Truck. We assume that Bank

www.manaraa.com

On the Prediction of Smart Contracts’ Behaviours 405

Citizen = (
Nat v1, v2, tmp ;
Nat behaviour(Id bin , Id bank) =

this.v1 = bin.throw () ; (this.v2 = bin.throw () ; CONT
+ this.v2 = 0 ; CONT)

+ this.v1 = 0 ; (this.v2 = bin.throw() ; CONT
+ this.v2 = 0 ; CONT)

where CONT = this.tmp = bank.deposit(v1+v2); this.v1 = 0; this.v2 = 0;
this.tmp = this.behaviour(bin ,bank); return this.tmp

)

Garbage_bin = (
Nat h, a, tmp ;
Nat throw() =

if (this.h == 0) then this.h = 1 ; this.a = this.a - k ; return k
else this.a = this.a + bank.withdraw(k + k’); this.h = 0 ;

this.tmp = truck.empty (); this.a = this.a - k’; return k’
)

Fig. 3. The citizen and garbage bin classes

has methods deposit and withdraw (with the obvious meanings); Truck has a
method empty that empties the bin and returns 0. Let also

�m = [v1 �→ 0, v2 �→ 0, tmp �→ 0]
�b = [h �→ 0, a �→ k′ + k, tmp �→ 0]
s = man.tmp = man.behaviour(bin, bank);return 0
S = man(�m, s) | bin(�b · �b) | bank(� · �) | truck(�′ · �′) | 0

We have

S −→
true

man(�m, s′) | bin(�b · �b) | bank(� · �) | truck(�′ · �′) | 0

where s′ = sbh;man.tmp = •;return 0 and sbh is the body of behaviour with
the instantiation {bin,bank ,man/bin,bank,this}. In this state, sbh may evolve either
by invoking bin.throw() (throwing the garbage into the bin) or by updating v1
to 0 (illegal dumping of garbage). Let us discuss the first alternative, which is
more interesting. Therefore, let s′′ = s′

bh;man.tmp = •;return 0, where

s′
bh = man.v1 = •;(man.v2 = bin.throw();CONT + man.v2 = 0;CONT)

Then we have the following transitions (x1 and x2 are two fresh variables for
tracing the choices that has been done):

man(�m, s′) | bin(�b · �b) | bank(� · �) | truck(�′ · �′) | 0
−→
true

−→
x1=1

man(�m, s′
bh) | bin(�b · �b) | bank(� · �) | truck(�′ · �′) | sthw;man

−→
true

4 man(�m, s′
bh) | bin(�′

b · �b) | bank(� · �) | truck(�′ · �′) | man[k]
�−→

true
man(�′

m, s
′
bh{k/•}) | bin(�′

b · �′
b) | bank(� · �) | truck(�′ · �′) | 0

−→
true

−→
x2=1

man(�′
m, s

′′
bh) | bin(�′

b · �′
b) | bank(� · �) | truck(�′ · �′) | sthw;man

where sthw is the instance of the body of throw with the name bin for this;
�′
m = �m[v1 �→ k], �′

b = �b[h �→ 1, a �→ k′] and s′′
bh = man.v2 = •;CONT. The

continuation is omitted.

www.manaraa.com

406 C. Laneve et al.

3 The Open Semantics and the Analysis Model

A decentralized application is never a closed system: smart contract’s methods
can always be invoked not only by users and the smart contracts designed to
interact with them, but also by unknown actors. Therefore, to study properties
of our systems, we need to analyse open configurations. In particular, we need
to reason on invocations without any knowledge of the actual parameters of
the caller. A standard solution of this problem is to use symbolic variables –
see Fig. 4, i.e. extending values with (unbound) variables and admitting that
operators return terms, such as x + 1, in addition to integers and actor names.
Therefore the evaluation function �e�α,� may now return terms with symbolic
variables and it follows that actor’s fields may also record terms with symbolic
variables.

The extensions of runtime statements transitions in Fig. 1 and of state tran-
sitions in Fig. 2 are given in Fig. 4. As regards runtime statements, the rules
[if-true] and [if-false] are replaced by [if-open-true] and [if-open-false] where
the formulas of transitions report whether the guard is true (�= 0) or false (= 0).
These formulas and those of the rule [choice] will enable the analysis of smart
contract systems in Sect. 4.

As regards the open state transition, we extend the rules of Fig. 2 with those
for invoking a method of a unspecified smart contract – rules [invk-open] and
[invk-open-id]. We discuss the former, the latter one is similar. The function
• /∈ s′′ returns true if • does not occur in the runtime statement s′′ (which is
always the case when a method body is instantiated). This expedient is used to
select in s′′;a.f = •;s′, a, � the prefix representing the instance of method’s body
and to drop it because we don’t want to analyze behaviours of unspecified actors.
Henceforth, the rule delivers to the continuation either a symbolic variable or
fail, therefore covering every possible output of the invocation.

Rule [input-open-sc] defines the invocation of a smart contract method by a
hypothetical user. In this case, actual parameters are all fresh symbolic variables
and the instance of method body is suffixed by the name of the hypothetical user.
According to the returned value is fail or not, we will have a backtrack – rule
[end-fail-open] – or a commit – rule [end-open], respectively.

The open transition system in Fig. 4 defines a model that is a tuple (S,S0, T),
where S is a non-empty set of states, S0 ∈ S is the initial state, and T ⊆
S × S × Θ × Ψ is the set of labelled transitions. The set Θ is the collection of
labels {ε, fail,�, v = a′.m(v), id : z} (ε represents the empty label) while Ψ is a
set of formulae. As usual 〈S1,S2, μ, ψ〉 ∈ T is abbreviated into S1

μ−→
ψ

S2.

Actually, in Sect. 4 we use a slightly different model than the foregoing one,
that we call analysis model. In the forthcoming analysis we need to deal with
the constant fail. To this aim, in order to remain in Presburger arithmetics, we
decided to encode fail by extending the Nat type to Integers. Henceforth fail is
encoded by −1 and we use a function |ψ| replacing every occurrence of fail with
−1 and turning every actor name into a (global) integer variable. We also extend

www.manaraa.com

On the Prediction of Smart Contracts’ Behaviours 407

Fig. 4. The open semantics of scl.

labels Θ with a new label, written (x), which is meant to expose in the label
the fixing of the variable x by rule [fix] of Fig. 1. In particular, in the analysis
model

– if S
μ−→
ψ

S′ follows from the open semantics without using the rule [fix] then

the analysis model has S
μ−→

|ψ|
S′;

– if S −→
ψ

S′ follows from the open semantics using the rule [fix] and x is the

fresh variable that has been introduced then the analysis model has S (x)−→
|ψ|

S′.

An (analysis) model is finite if the set of states S is finite; it is a Pres-
burger model if the set of conditions Ψ and the actual parameters used in Θ
range respectively over Presburger formulas and Presburger expressions. We
recall that Presburger arithmetics is the decidable subset of classical first order
logic over integer numbers where the only predicates allowed are equality and
(strict) inequality and the only function symbols are addition between integer
expressions and multiplication of an integer expression by a constant.

Example 2. In Fig. 5 we illustrate the analysis model of a citizen and a garbage
bin discussed in Example 1. In order to have a more compact picture, we have
collapsed empty-labelled transitions. We have also used a simple hack to have

www.manaraa.com

408 C. Laneve et al.

x=1 x=22

3

7

4

v1=bin.throw()

8

v2=bin.throw()

9 10 11 12

y=1 y=2 z=1 z=2

13 14 15 16

v2=bin.throw()

17

_=bank.deposit
(v1+0)

1

65

_=bank.deposit
(0+v2)

=bank.deposit(0+0)=bank.deposit(v1+v2)

(x)

(y) (z)

1

2

4

3

8

6

5

7

id:()

id[k]

_=truck.empty()

Fig. 5. The models of the citizen and the bin

finite models: we have added an empty labelled transition from state 17 to state
1, even if they are not exactly equal as systems states. This is because the stack
of the citizen grows at every call since we do not optimize tail recursion in
the transition systems of Fig. 2. However, our analyzer always performs these
optimizations. We also remark that the two models are also Presburger models.

Due to lack of space, Fig. 5 does not report the interactions between the
citizen, the garbage bin and other actors. The complete model has a large number
of states because of all possible interactions. In particular, every time the citizen
wants to throw out her garbage, she can either succeed immediately—and in
that case an empty labelled move is performed by the system via the [invk-sc]

rule—or she can be pre-empted by an unknown id via the [input-open-sc] rule.

4 Observables and Strategies

A user can behave in different ways and obtain different results because of the
choice operator + that may occur in its code. In this section we study users’
behaviours and how choices influence results in a sensible way.

Definition 1. Let (S,S0, T) be a scl analysis model. An objective function ω

maps labels μ of transitions S
μ−→
ψ

S′ in T to some integer expression. Given a

computation S1
μ1−→
ψ1

· · · μn−→
ψn

Sn+1, its ω-observation is
∑

1≤i≤n ω(μi).

In Example 1, a citizen is interested into maximizing the amount of cash-
back that is saved in the bank, i.e. its objective function called ωC , is defined as
follows

ωC(μ) =
{

v1 + v2 if μ = = bank.deposit(v1 + v2)
0 otherwise

www.manaraa.com

On the Prediction of Smart Contracts’ Behaviours 409

We notice that the result of an objective function may be a term containing sym-
bolic names. (As a consequence our analysis will enable programmers to design
smart contracts with instances of symbolic names that support “optimal strate-
gies” – see below.) Contrary to citizens, the city hall is interested on minimizing
the amount of garbage dumped or, equivalently, to maximize the amount of
garbage thrown in the bins. Thus its objective function ωH is defined as follows

ωH(μ) =
{

1 if μ = = bin.throw()
0 otherwise

A strategy is a function that determines the transition to perform in states
where the next statement to execute is a choice. Since these decisions are taken
by users, which only have a partial understanding of the state (every user has full
visibility of its own state and of smart contracts’ states, they cannot access the
internal state of other users), in general, a user can only devise “sub-optimal”
strategies. A strategy is optimal with respect to an objective function ω, if,
for any other strategy, all the possible future computations (which follow by
the behaviour of the other users involved) cannot yield a higher ω-observation.
Users that, at any choice point, try to maximize some objective function are
called rational. In the rest of the section we are interested into rational users.

In general we cannot expect the existence of optimal strategies, nor we can
expect that a strategy that is optimal for a given objective function is also
optimal for another objective function. For example, if we just analyze the model
of our citizen in isolation (see Fig. 5), we can only deduce the following facts
about the pair of objective functions 〈ωC , ωH〉, i.e. the first element observes the
cash-back (according to the citizen objective function) and the second one the
number of calls to throw() (according to the city hall objective function):

1. the strategy that dumps the garbage twice at each execution 1–17 yields the
pair 〈0, 0〉;

2. the two strategies that dump the garbage once yield the pairs 〈v1, 1〉 and
〈v2, 1〉 respectively, for some v1, v2;

3. the strategy that never dumps the garbage yield the pair 〈v1+v2, 2〉, for some
v1, v2.

Note that v1 and v2 are not fixed: a garbage bin may return different values
at every invocation of throw(), depending on its own internal logic and on
the interaction with other actors. From the point of view of the city hall, the
optimal strategy for the citizen is clearly the last one. From the point of view of
the citizen, instead, there is no optimal strategy: it depends on the behaviour of
the garbage bin that is unknown since we are analyzing the citizen in isolation.

Here is where smart contracts enter into the picture. A smart contract is used
to regulate interaction between (human) users. In many real world examples, the
smart contract is designed so that the system obtained composing humans with
contracts has two relevant properties: (i) every user has an optimal strategy and
(ii) the optimal users’ strategies also maximizes the objective function of the
smart contract programmer. In Example 1, this second function is exactly ωH ,

www.manaraa.com

410 C. Laneve et al.

that is the programmer aims at minimizing the garbage dumped by citizens.
If we combine the citizen and the smart contract and we analyze again the
model obtained, we realize that the garbage bin sometimes pays back k coins
and sometimes k′ coins. In particular, the strategy of point 1 always yield 〈0, 0〉,
both strategies of point 2 sometimes yield 〈k, 1〉 and sometimes 〈k′, 1〉, while the
strategy of point 3 can yield any pair of observations among 〈k+k, 2〉, 〈k+k′, 2〉,
〈k′+k, 2〉, 〈k′+k′, 2〉. It follows that the strategy of point 1 is clearly not optimal
for the citizen, but the remaining three are incomparable because, for example,
getting a k′ from one strategy frequently can be better than getting a k+k from
another strategy.

Our analysis, however, suggests a simple solution to the programmer: if the
programmer chooses k = k′ > 0, then the four strategies now yield the pairs
〈0, 0〉, 〈k, 1〉, 〈k, 1〉, 〈2k, 2〉. In this case, the last strategy is optimal both for the
citizen and for the city hall. The same result can be obtained picking any value
for k and k′ such that 0 < k < 2k′ < 4k, so that getting two cashbacks is always
better than getting just one of them.

In the rest of the section, the analysis models will be acyclic and finite, namely
models such that the transition relation has always finite maximal computations.
These models can be obtained by unfolding cyclic models up to a certain depth.
This makes sense in the context of smart contracts where the executions are
always bound in the number of steps by some quantity called gas that is bought
by the caller (a user) with the virtual currency of the blockchain [6]. It also makes
sense in examples like Example 1 where the model is one big cycle; therefore it is
sufficient to maximize the objective function over just one iteration of the loop.

4.1 Automatic Analysis

We use an automatic technique to verify whether an analysis model retains opti-
mal strategies for some objective function or whether maximizing some objective
function – e.g. the cash-back to the citizen – implies the maximization of other
objective functions – e.g. the amount of garbage thrown into smart bins. Given
an objective function, our technique derives a first order logic formula specifying
every possible observation with respect to unknown symbolic inputs and to the
internal choices of every agent.

Let Q be the following map from labels to a possibly empty sequence of
quantifiers:

Q((x)) = ∃x Q(x = a.m(v)) = ∀x
Q(id : z) = ∀id∀z Q(μ) = ε (otherwise)

Let also M = (S,S0, T) be finite and acyclic and ω be an objective function.
The characteristic formula � S0 �M

ω is the first-order logic formula defined as
follows

www.manaraa.com

On the Prediction of Smart Contracts’ Behaviours 411

– when there is at least one transition S
μ−→
ψ

S ′ ∈ T :

� S �M
ω =

∨

S
μ−→
ψ

S′∈T

Q(μ)
(
ψ ∧ O(S, {ω(μ)}) ∧ � S′ �M

ω

)
;

– when there is no μ, ψ, S′ such that S
μ−→
ψ

S ′ ∈ T (S is final):

� S �M
ω = �

where � is the proposition “true”.

The binary predicate O(S,A) in the characteristic formula is to be read as
follows: there exists a computation originating from S that eventually leaves the
state S observing one element of the set A. For example, O(13, {v1 + v2}) means
that there will be a transition from state 13 where the user observes v1 + v2;
O(15, {2}) ∨ (O(12, {v1, v2}) means that either state 15 will be reached and left
observing 2, or the state 12 will be reached and left observing either v1 or v2.

In order to ease the reading, we simplify the characteristic formula as follows:

– G∧O(S, {0}) is simplified to G because observing 0 is useless for maximizing
an objective function;

– G ∧ � is simplified to G;
– ∀x.G is simplified to G when x does not occur in G (similarly for ∃).

After these simplifications, the characteristic formula for the objective function
ωC of the citizen (we remove the empty-labelled transition from state 17 to state
1 in Fig. 5) is:

� 1 �
M
ωC

= ∃x
[

x = 1 ∧ ∀v1∃y
(
(y = 1 ∧ ∀v2 O(13, {v1 + v2})) ∨ (y = 2 ∧ O(14, {v1 + 0}))

)

∨ x = 2 ∧ ∃z
(

z = 1 ∧ ∀v2 O(15, {0 + v2})
)

∨
(
z = 2 ∧ O(16, {0 + 0})

)]
(1)

The characteristic formula for the objective function ωH of the city hall instead is:

� 1 �
M
ωH

= ∃x
[

x = 1 ∧
(

O(3, {1}) ∧ ∃y((y = 1 ∧ O(9, {1})) ∨ y = 2)
)

∨ x = 2 ∧ ∃z
(
(z = 1 ∧ O(11, {1})) ∨ z = 2

)]
(2)

4.2 Quantifier Elimination

When the analysis model is Presburger, the characteristic formula belongs to
the extension of Presburger arithmetics with the observation predicate O(S,A).
It turns out that this fragment of first order logic can be decided via quantifier
elimination [13]: at every step the formula is rewritten so that each innermost
quantifier is existential, and then that quantified formula is replaced with a
logically equivalent one where the existentially bound variable no longer occurs.

www.manaraa.com

412 C. Laneve et al.

As a special bonus, the sets A of observation predicates can be rewritten in the
elimination step in such a way that at the end we can recover from the quantifier
free formula a set of polytopes that describe the value of all possible variables
in every observable state that can be reached, together with the observation
performed in that state. It is then easy to compare different strategies observing
the value taken by the objective function when its input ranges over the polytope.

The quantifier elimination algorithm starts rewriting an innermost quantified
subformula into the normal form

∃x.l ≤ kx ∧ kx ≤ u ∧
∧

i

iO(Si,Ai)

where x /∈ l, u and
F stands for either F or ¬F . Then it replaces the formula
with its logically equivalent one

(
∧

li∈l

∧

uj∈u

li ≤ uj) ∧
∧

i

iO(Si, {a ∈ Ai | l ≤ kx ∧ kx ≤ u})

Afterwards the algorithm loops on another innermost quantifier until no quan-
tifiers are left. Special care is required to avoid simplifying � ∨ F into � and
⊥ ∧ F into ⊥ to avoid loosing the polytopes recoverable from F .

Example 3. We illustrate the quantifier elimination technique on the character-
istic formula (1). In the following, the underlined formulas are the next ones to
be simplified. For the sake of readability, we shorten expressions as 0 + 0 into 0
and v + 0 into v.

� 1 �M
ωC

= ∃x
[
x = 1 ∧ ∀v1∃y

(
(y = 1 ∧ ∀v2 O(13, {v1 + v2})) ∨ (y = 2 ∧ O(14, {v1}))

)

∨ x = 2 ∧ ∃z
(
z = 1 ∧ ∀v2 O(15, {v2})

)
∨

(
z = 2 ∧ O(16, {0})

)]

⇐⇒ ∃x
[
x = 1 ∧ ∀v1∃y

(
(y = 1 ∧ ¬∃v2 ¬O(13, {v1 + v2})) ∨ (y = 2 ∧ O(14, {v1}))

)

∨ x = 2 ∧ ∃z
(
z = 1 ∧ ¬∃v2 ¬O(15, {v2})

)
∨

(
z = 2 ∧ O(16, {0})

)]

⇐⇒ ∃x
[
x = 1 ∧ ∀v1∃y

(
(y = 1 ∧ ¬¬O(13, {v1 + v2})) ∨ (y = 2 ∧ O(14, {v1}))

)

∨ x = 2 ∧ ∃z
(
z = 1 ∧ ¬¬O(15, {v2})

)
∨

(
z = 2 ∧ O(16, {0})

)]

⇐⇒ ∃x
[
x = 1 ∧ ∀v1

(
∃y(y = 1 ∧ O(13, {v1 + v2})) ∨ ∃y(y = 2 ∧ O(14, {v1}))

))

∨ x = 2 ∧
(
∃z

(
z = 1 ∧ O(15, {v2})

)
∨ ∃z

(
z = 2 ∧ O(16, {0})

))]

⇐⇒ ∃x
[
x = 1 ∧ ∀v1

(
O(13, {v1 + v2 | y = 1}) ∨ O(14, {v1 | y = 2})

))

∨ x = 2 ∧
(
O(15, {v2 | z = 1}) ∨ O(16, {0 | z = 2})

)]

⇐⇒ ∃x
[
x = 1 ∧ ¬∃v1

(
¬O(13, {v1 + v2 | y = 1}) ∧ ¬O(14, {v1 | y = 2})

))

∨ x = 2 ∧
(
O(15, {v2 | z = 1}) ∨ O(16, {0 | z = 2})

)]

⇐⇒ ∃x
[
x = 1 ∧

(
O(13, {v1 + v2 | y = 1}) ∨ O(14, {v1 | y = 2})

)

∨ x = 2 ∧
(
O(15, {v2 | z = 1}) ∨ O(16, {0 | z = 2})

)]

⇐⇒ ∃x
[
x = 1 ∧ O(13, {v1 + v2 | y = 1}) ∨ x = 1 ∧ O(14, {v1 | y = 2})

∨ x = 2 ∧ O(15, {v2 | z = 1}) ∨ x = 2 ∧ O(16, {0 | z = 2})
]

⇐⇒ ∃x
[
x = 1 ∧ O(13, {v1 + v2 | y = 1})

]
∨ ∃x

[
x = 1 ∧ O(14, {v1 | y = 2})

]

∨ ∃x
[
x = 2 ∧ O(15, {v2 | z = 1})

]
∨ ∃x

[
x = 2 ∧ O(16, {0 | z = 2})

]

⇐⇒ O(13, {v1 + v2 | x = 1 ∧ y = 1}) ∨ O(14, {v1 | x = 1 ∧ y = 2})
∨ O(15, {v2 | x = 2 ∧ z = 1}) ∨ O(16, {0 | x = 2 ∧ z = 2})

www.manaraa.com

On the Prediction of Smart Contracts’ Behaviours 413

Applying the above technique to the Eq. (2), we derive
(
O(3, {1 | x = 1}) ∧ O(9, {1 | x = 1 ∧ y = 1})

)
∨ O(11, {1 | x = 2 ∧ z = 1})

We notice that, in the case of this last formula, the best strategy to maximize
ωH is to choose x = 1 ∧ y = 1 that yields the observation 1 + 1 = 2. More
precisely, the strategy consists in picking the branch 1 of the rule [choice] in
the state . . . +x . . . and the branch 1 in the state . . . +y With an abuse of
notation, we will indicate strategies as conjunctions

∧
i∈1..n xi = ki.

Let us discuss strategies for ωC . According to the formula

O(13, {v1 + v2 | x = 1 ∧ y = 1}) ∨ O(14, {v1 + 0 | x = 1 ∧ y = 2})
∨ O(15, {0 + v2 | x = 2 ∧ z = 1}) ∨ O(16, {0 + 0 | x = 2 ∧ z = 2})

there is no best strategy to maximize ωC because, for example, by choosing
x = 1 ∧ y = 1, one can observe any value in the set {v1 + v2}. In fact, putting
the citizen in parallel with the garbage bin, the formal parameters v1 and v2
can only be instantiated with either k or k′, according to the interleaving of the
moves of the citizen with the other actors. In particular, running the analysis
again on the larger model – due to the interleaving, we obtain the characteristic
formula:

O({k + k | x = 1 ∧ y = 1}) ∨ O({k + k′ | x = 1 ∧ y = 1})
∨ O({k′ + k | x = 1 ∧ y = 1}) ∨ O({k′ + k′ | x = 1 ∧ y = 1})
∨ O({k | x = 1 ∧ y = 2}) ∨ O({k′ | x = 1 ∧ y = 2})
∨ O({k | x = 2 ∧ z = 1}) ∨ O({k′ | x = 2 ∧ z = 1})
∨ O({0 | x = 2 ∧ z = 2})

In this case, there is still no optimal choice because, for example, by taking
x = 1 ∧ y = 1 one may observe k + k, which may be smaller than k′ that
is observed for x = 1 ∧ y = 2. As already discussed, it is sufficient for the
implementor to pick 0 < k < 2k′ < 4k to force the existence of a best strategy
which is x = 1 ∧ y = 1 and that coincides with the best strategy from the city
hall point of view, as expected.

Remark 1. The standard formal specification languages to verify and specify
properties of transition systems are temporal logics [12]. Actually one may use
tools that are based on these logics, such as [1], to automatically analyze sys-
tems based on smart contracts. In fact, our characteristic formula is actually a
compilation of linear-time temporal logics with Presburger constraints, which is
decidable [5]. We have preferred the current presentation because it is the one
we use in our prototype implementation.

4.3 Implementation

We are terminating the implementation in OCaml of a tool that, given a set
of actors, an initial state and an objective function, automatically extracts the
analysis model, computes the characteristic formula and applies quantifier elim-
ination over it.

www.manaraa.com

414 C. Laneve et al.

Initially we hoped to be able to reuse off-the-shelf implementations of Pres-
burger quantifier elimination by dropping the O predicate and recovering the
polytopes from the tools. But the tools we analyzed are unable to spit out
the polytopes. In fact, because of the double-exponential complexity of quanti-
fier elimination over the number of alternations of quantifiers, the tools avoid
quantifier elimination and rather use model checking or reduction to finite state
automata. However, these two techniques can only enumerate the points in the
polytope, without providing a closed description of it [8,9]. Therefore we decided
to implement quantifier elimination straight away. We need to evaluate whether
our quantifier elimination is is doable in practice on characteristic formulae gen-
erated from realistic examples of smart contracts. This is left as future work,
once the whole implementation is completed. We will also study the application
of other techniques, like temporal logic, to analyse the formal calculus and the
models introduced in the paper. To ease these analyses, we will write transpilers
from our smart calculus language to existing languages, initially targeting both
Solidity and Liquidity.

5 Conclusions

In this paper we have introduced a unified calculus for modelling smart con-
tracts and users, which are the primary actors of decentralized applications.
These applications run on blockchain systems and handle and transfer assets
of considerable value. We have therefore studied how to regulate by means of
smart contracts the interaction between (rational) users that systematically try
to maximize their revenue or to minimize losses. This is achieved by expressing
the system behaviour as a formula in Presburger arithmetics and solving arith-
metic constraints. Our technique is amenable to automated verification and we
are currently completing an OCaml implementation.

The analysis of smart contracts for deriving strategies and distilling the most
meaningful ones opens unexpected connections between (micro) economy and
computer science that deserves further investigations. While this direction of
research has been already pointed out in other contributions (see e.g. [3]), we
believe that there is much work still to be done.

As regards our calculus, several extensions must be considered. First of all,
the types must be extended with simple dynamic data types, such as arrays and
maps. Then, if we want to model faithfully the (human) users, we need to take
into account probabilities because users are not always 100% rational; they may
be irrational with some percentage.

Dedication. Cosimo is proud to dedicate this paper to Stefania Gnesi and to
the unforgettable Friday afternoons spent together with Alessandro Fantechi.
Stefania and Alessandro have been Cosimo’s Master Thesis advisors and they
first led him to concurrent systems, formal methods and temporal logics. Thank
you Stefania!

www.manaraa.com

On the Prediction of Smart Contracts’ Behaviours 415

References

1. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A model-checking tool for
families of services. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE -2011. LNCS,
vol. 6722, pp. 44–58. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21461-5 3

2. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of Programming Languages and Analysis for Security, pp. 91–96. ACM
(2016)

3. Bigi, G., Bracciali, A., Meacci, G., Tuosto, E.: Validation of decentralised smart
contracts through game theory and formal methods. In: Bodei, C., Ferrari, G.-
L., Priami, C. (eds.) Programming Languages with Applications to Biology and
Security. LNCS, vol. 9465, pp. 142–161. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-25527-9 11

4. Chatterjee, K., Goharshady, A.K., Velner, Y.: Quantitative analysis of smart con-
tracts. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 739–767. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89884-1 26

5. Demri, S.: Linear-time temporal logics with presburger constraints: an overview.
J. Appl. Non-Class. Logics 16(3–4), 311–348 (2006)

6. Ethereum Foundation. Ethereum’s white paper (2014). https://github.com/
ethereum/wiki/wiki/White-Paper

7. Ethereum Foundation. Solidity 0.4.24 documentation (2019). https://solidity.
readthedocs.io/en/develop/

8. Ganesh, V., Berezin, S., Dill, D.L.: Deciding presburger arithmetic by model check-
ing and comparisons with other methods. In: Aagaard, M.D., O’Leary, J.W. (eds.)
FMCAD 2002. LNCS, vol. 2517, pp. 171–186. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36126-X 11

9. Haase, C.: A survival guide to presburger arithmetic. ACM SIGLOG News 5(3),
67–82 (2018)

10. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the Conference on Computer and Communications
Security, pp. 254–269. ACM (2016)

11. Mueller, B.: Smashing Ethereum smart contracts for fun and real profit. HITB
SECCONF Amsterdam (2018)

12. Pnueli, A.: The temporal logic of programs. In: Proceedings of Symposium on
Foundations of Computer Science. IEEE Computer Society, pp. 46–57 (1977)

13. Pope, J.: Formalizing constructive quantifier elimination in Agda. In: Proceedings
of MSFP@FSCD 2018 of EPTCS, vol. 275, pp. 2–17 (2018)

14. OCamlPro SAS. Welcome to Liquidity’s documentation! (2019). http://www.
liquidity-lang.org/doc/

15. Siegel, D.: Understanding the DAO attack (2016). Accessed 13 Jun 2018

https://doi.org/10.1007/978-3-642-21461-5_3
https://doi.org/10.1007/978-3-642-21461-5_3
https://doi.org/10.1007/978-3-319-25527-9_11
https://doi.org/10.1007/978-3-319-25527-9_11
https://doi.org/10.1007/978-3-319-89884-1_26
https://github.com/ ethereum/wiki/wiki/White-Paper
https://github.com/ ethereum/wiki/wiki/White-Paper
https://solidity.readthedocs.io/en/develop/
https://solidity.readthedocs.io/en/develop/
https://doi.org/10.1007/3-540-36126-X_11
https://doi.org/10.1007/3-540-36126-X_11
http://www.liquidity-lang.org/doc/
http://www.liquidity-lang.org/doc/

www.manaraa.com

Hunting Superfluous Locks
with Model Checking

Viet-Anh Nguyen1, Wendelin Serwe2, Radu Mateescu2(B), and Eric Jenn1

1 IRT Saint Exupéry, Toulouse, France
2 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

radu.mateescu@inria.fr

Abstract. Parallelization of existing sequential programs to increase
their performance and exploit recent multi and many-core architectures
is a challenging but inevitable effort. One increasingly popular paral-
lelization approach is based on OpenMP, which enables the designer to
annotate a sequential program with constructs specifying the parallel
execution of code blocks. These constructs are then interpreted by the
OpenMP compiler and runtime, which assigns blocks to threads running
on a parallel architecture. Although this scheme is very flexible and not
(very) intrusive, it does not prevent the occurrence of synchronization
errors (e.g., deadlocks) or data races on shared variables. In this paper,
we propose an iterative method to assist the OpenMP parallelization by
using formal methods and verification. In each iteration, potential data
races are identified by applying to the OpenMP program a lockset anal-
ysis, which computes the set of shared variables that potentially need
to be protected by locks. To avoid the insertion of superfluous locks, an
abstract, action-based formal model of the OpenMP program is extracted
and analyzed using the ACTL on-the-fly model checker of the CADP
formal verification toolbox. We describe the method, compare it with
existing work, and illustrate its practical use.

1 Introduction

Nowadays, to take full advantage of modern hardware architectures (multi-core
and many-core processors, Systems-on-Chip, etc.), it is necessary to parallelize
applications, even in constrained environments, such as avionics. Designing cor-
rect parallel programs on shared-memory architectures is a difficult task facing
classical synchronization issues, such as the presence of data races (concurrent
accesses to shared variables that make the program nondeterministic [20]) or
deadlocks, both of which are unacceptable for critical systems. These difficulties
occur not only in the design of new parallel programs, but also in the paralleliza-
tion of existing sequential programs, which have been optimized during years and
for which it is too costly to redevelop parallel versions from scratch.

An increasingly popular approach to parallelize sequential code is based on
OpenMP [33], which does not require to modify the code but simply annotate it

Grenoble INP—Institute of Engineering Univ. Grenoble Alpes.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 416–432, 2019.
https://doi.org/10.1007/978-3-030-30985-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_24&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_24

www.manaraa.com

Hunting Superfluous Locks with Model Checking 417

with parallelization constructs expressing a variety of mechanisms (creating par-
allel regions executed by teams of threads, inserting locks on variables and array
elements, introducing synchronizations, etc.). The underlying compiler and exe-
cution framework are in charge of implementing these constructs, building and
executing the parallel program on a given architecture. Unfortunately, OpenMP
is not equipped with a formal semantics suitable for reasoning about OpenMP
programs and ensuring the correctness of annotation-based parallelization: [33,
Section 1.1] explicitly states that “OpenMP-compliant implementations are not
required to check for data dependencies, data conflicts, race conditions, or dead-
locks, any of which may occur in conforming programs.”

A naive way to eliminate data races in a parallel program is to protect all shared
variables by locks that serialize the accesses of parallel threads to these variables.
Although safe, this approach may introduce deadlocks, and also increase the over-
head, negatively impacting the performance of the program. Even more impor-
tantly, the approach may induce a too sequential execution of the program and
thus not (fully) exploit the benefits of parallelization. In this paper, we refine this
naive lock-based approach and propose an iterative method to prevent data races
in safety-critical parallel applications. The method combines a simple lockset anal-
ysis [36] to detect all the shared variables potentially unprotected by locks (which
may produce false positives about variables that actually do not need to be pro-
tected) and a model checking analysis to reduce the number of false positives and
consequently avoid introducing superfluous locks.

Lockset analysis is based on the application of a “locking discipline”, by
considering that a race condition may occur if a shared variable is not protected
by an appropriate lock. Lockset based race detectors are easy to implement and
never produce false negatives, i.e., they detect all potential data races, which is
essential for safety-critical applications. However, these detectors are pessimistic,
since data races can be prevented not only by using locks, but also by performing
accesses to shared variables sequentially.

We exhibit such sequentiality usingmodel checking, by extracting from the par-
allel program a formal model capturing (an abstraction of) the concurrency and
data dependencies, and detecting the presence of concurrent accesses to shared
variables using temporal properties in ACTL (Action Computation Tree Logic) [8,
9]. The precision of the model has no impact on the soundness of the method (since
the lockset analysis has alreadyproduced adata race free, albeit not optimal, paral-
lel program), but only on the efficiency of the parallel code (a bettermodel precision
will yield a more accurate analysis and hence a more drastic elimination of super-
fluous locks). We instantiated this method on top of the CADP (Construction and
Analysis of Distributed Processes)1 [14] verification toolbox and illustrated it for
the design of data race free OpenMP applications.

Stefania’s work on defining action-based temporal logics and various exten-
sions thereof, as well as on designing efficient on-the-fly verification algorithms,
was a source of inspiration in this field. The implementation of ACTL used in
this paper relies on the translation from ACTL to the modal µ-calculus (Lµ)

1 http://cadp.inria.fr.

http://cadp.inria.fr

www.manaraa.com

418 V.-A. Nguyen et al.

proposed by Stefania and colleagues [10]. For checking ACTL formulas, we used
the on-the-fly model checker EVALUATOR [29] of CADP, which handles for-
mulas of MCL, an extension of alternation-free Lµ with data and generalized
Büchi automata. Although it relies on different techniques based on the local
resolution of Boolean equation systems [27], EVALUATOR is similar in spirit
to the on-the-fly model checkers FMC [16] and UMC [5] developed by Stefania
and colleagues, which handle formulas of µACTL (ACTL extended with fixed
point operators) and UCTL (µACTL extended with state-based and data-aware
operators), respectively.

Also, Stefania’s contributions on ACTL characteristic formulas [12] and the
adequacy of action-based logics with bisimulations [11] paved the way towards
an Lµ fragment adequate with divergence-sensitive branching bisimulation [30].
Recently, this Lµ fragment, which subsumes µACTL\X (µACTL without the
next time operator) was extended with strong modalities and equipped with
an improved compositional verification technique [24] applicable to the ACTL
formulas we use for detecting concurrent accesses to shared variables.

The paper is organized as follows. Section 2 gives a brief overview of OpenMP
and data races. Section 3 presents our parallelization workflow and its practical
implementation using CADP. Section 4 reviews existing work on data race pre-
vention. Finally, Sect. 5 gives some concluding remarks and directions for future
work.

2 OpenMP

OpenMP [33]2 is an API (Application Programming Interface) for developing
portable parallel programs using a shared memory communication paradigm in
the C, C++, and Fortran programming languages. The OpenMP API consists
of directives to extend the base languages with portable parallel programming
constructs (to be implemented by an OpenMP-compliant compiler) and func-
tions and environment variables (to be implemented by a corresponding run-
time library). In the C/C++ languages, OpenMP directives are pragmas of the
form of #pragma omp Directives and calls to library routines are grouped
under the generic designation of constructs. OpenMP supports both parallel and
sequential execution, the latter being achieved by simply ignoring the OpenMP
constructs.3

The execution model of OpenMP follows a fork-join discipline. Initially,
an OpenMP program begins with a single thread of execution. Whenever a
thread encounters an OpenMP parallel construct, the thread creates a team of
threads (containing at least itself) and becomes the master thread of the team.
The code executed by each of these threads depends on the code inside the
parallel construct. These threads then execute independently and synchronize
2 http://www.openmp.org.
3 However, OpenMP does neither require nor guarantee that parallel and sequential

executions produce the same results; also, executing the same program with a dif-
ferent number of threads may yield different results [33, Section 1.3].

http://www.openmp.org

www.manaraa.com

Hunting Superfluous Locks with Model Checking 419

(using an implicit barrier) on termination; only the master thread continues
afterwards. OpenMP supports nested parallelism: each thread of a team can
itself create a new team, when it encounters a parallel construct. Hence, sev-
eral teams may exist simultaneously.

Initially designed for the parallelization of regular loops, OpenMP supports
since version 3.0 also the notion of task. In OpenMP, a task is a pair of a piece
of code together with a specific piece of data. Tasks can be generated explicitly
or implicitly, and are to be executed by the threads. As an example, the for

construct implicitly creates a task for each iteration of the associated for-loop.
The single construct implicitly creates a task for its associated code, so that
this code is executed exactly once; other threads encountering the construct wait
for its termination (using an implicit barrier). A task can be suspended (and
resumed later) only on so-called task scheduling points, e.g., when creating new
task(s) or when waiting on a barrier. OpenMP provides constructs to express
further constraints on task creation and execution, such as the fact that a task
can only be executed if another task has completed.

All OpenMP threads have access to the same shared memory. Each thread
may read or write any shared variables, and there is no constraint as to when
those operations are allowed to occur. The memory model of OpenMP is relaxed-
consistency: each thread has a temporary view of the shared memory; this tem-
porary view is not required to be consistent with the memory at all times. Each
thread has also access to a local, private memory, to which other threads have
no access.

OpenMP provides synchronization constructs (locks, barriers, etc.), variable
attributes defining data sharing (private, shared, etc.), a flush operation (enforc-
ing the consistency of the temporary views with the shared memory), and data-
dependencies between tasks (enforcing the execution of a task computing some
value before the execution of a task using this value).

In OpenMP, parallelization is user-directed, i.e., the programmer explicitly
uses the OpenMP constructs to specify how to parallelize the execution of the
program. Hence, OpenMP relies on the programmer to ensure the correctness
of the program [33, Section 1.1], e.g., to ensure the absence of memory man-
agement errors, such as data races. However, this is a heavy responsibility for
the programmer, given the inherent complexity of parallelization, the rich set
of constructs, and the fact the creation and ordering of tasks might depend
on information only available at runtime. Consequently, any assistance to the
programmer is more than welcome.

A first approach to assist programmers is to make a list of common pitfalls
and to derive a set of recommended best practices and coding guidelines [38].
These common mistakes can be classified into two categories: errors (leading
to an incorrect behavior) and performance issues (leading to inefficient pro-
grams). For instance, using the clause default (none) implies that data-sharing
attributes of all variables in all parallel regions of the OpenMP program must be
explicitly specified. Although following carefully chosen coding guidelines may

www.manaraa.com

420 V.-A. Nguyen et al.

ensure correctness, it might be difficult to apply these guidelines to an existing
sequential code and obtain a parallel version with acceptable performance.

A second approach is the development of analysis tools that detect errors.
However, due to the expressive power of the OpenMP constructs and in par-
ticular the fact that the parallel execution might depend on data values, devel-
oping such analysis tools is extremely challenging. As for the first approach,
limiting the scope of the tools to a subset of OpenMP constructs is not always
acceptable in an industrial context (the constructs have been included for good
reasons). Similarly, applying coarse data abstractions increases the rate of false
positives/negatives and reduces the practical usefulness of the analysis.

In the following section, we present a method to assist the programmer to
ensure the absence of data races. To illustrate this method, we use the following
simple example, which computes the sum of the squares of the elements of an
array a, counting the last element (a[4]) twice. Figure 1 shows the OpenMP
code.4 The construct #pragma omp parallel (line 5) creates a team of threads
to execute the block from lines 6–15 in parallel; the number of threads in the team
is determined at runtime, depending on the available hardware. The construct
#pragma omp for schedule (static, 1) (line 7) indicates that the body of the
for-loop should be statically splitted in as many tasks as there are iterations
(i.e., 5). Obviously, there is a data race on the update of variable sum in the
for-loop (line 11). However, there is no data race for the accesses to the array
a and variable sum between the body of the for-loop and assignment at line 14,
because the assignment is executed after the termination of all iterations of the
for-loop (i.e., there is an implicit barrier at the end of the #pragma omp for

construct), and the assignment is executed by a single thread (this is ensured by
the single construct at line 13).

3 Parallelization Workflow

Figure 2 depicts the suggested workflow for the parallelization of a sequential
application, guaranteeing the absence of data races by enforcing a locking disci-
pline and avoiding superfluous locks by means of model checking. This iterative
flow comprises several activities in each iteration:

1. Lockset analysis is used to build the variable-set SUV (Set of Unprotected
Variables), which might present the risk of a data race. It is sufficient to
use the simplest version of lockset analysis presented in [36], which raises an
alarm if any access to a shared variable is not protected by a lock.

2. A formal model expressed in the LNT language [15] is built to capture all the
possible control flows of OpenMP threads and their synchronizations. The
process of building the LNT model is presented in the next section.

3. The verification tools provided by CADP are used to identify the “sequen-
tiality constraints” that prevent some data race conditions to occur. The set
of unprotected variables is updated accordingly.

4 The meaning of “work unit” (in the comments) can be found in Sect. 3.2.

www.manaraa.com

Hunting Superfluous Locks with Model Checking 421

1 int a[5] = {2, 3, 4, 5, 6};
2 int main()
3 {
4 int i, sum = 0; // work un i t WU0
5 #pragma omp parallel
6 {
7 #pragma omp for schedule (static , 1)
8 for (i = 0; i < 5; i++)
9 { // work un i t s WU1 to WU5

10 a[i] = a[i] * a[i];
11 sum += a[i];
12 }
13 #pragma omp single
14 sum += a[4]; // work un i t WU6
15 }
16 return 0;
17 }

Fig. 1. Minimalist OpenMP example

4. The refined list of unprotected variables is given to the programmer, who can
add new locks in the program to protect them.

formal
modeling

model
checking

adding
locks

lockset
analysis

SUV
refine

SUV?
empty

program
sequence

constraints

SUV

no

yes

Fig. 2. Parallelization workflow

Considering that the programmers may make a mistake when adding locks to
the program, the verification process is repeated until the list of unprotected
variables is empty. At the end, we ensure that the program is free from data
races. These steps are detailed in the following.

3.1 Lockset Algorithm

Lockset analysis [36] is a technique for dynamic detection of possible data races.
The technique has been successfully implemented in the Eraser tool. Rather
than checking the absence of data races, lockset analysis checks whether a pro-
gram adheres to a locking discipline, which requires that each access to a shared

www.manaraa.com

422 V.-A. Nguyen et al.

variable is protected by at least one lock. Notice that the respect of this lock-
ing discipline guarantees absence of data races, because all accesses to a shared
variable are mutually exclusive.

The original definition of the simplest possible version of the lockset algo-
rithm [36, Section 2] is the following. “For each shared variable v, the algorithm
maintains the set C(v) of candidate locks for v. This set contains those locks
that have protected v for the computation so far. That is, a lock l is in C(v)
if, in the computation up to that point, every thread that has accessed v was
holding l at the moment of the access. When a new variable v is initialized, its
candidate set C(v) is considered to hold all possible locks. When the variable
is accessed, the algorithm updates C(v) with the intersection of C(v) and the
set of locks held by the current thread. This process, called lockset refinement,
ensures that any lock that consistently protects v is contained in C(v). If some
lock l consistently protects v, it will remain in C(v) as C(v) is refined. If C(v)
becomes empty this indicates that there is no lock that consistently protects v.”

Under the hypothesis that the set of locks held by a thread for each point of
the program is deterministic, a single run of the lockset algorithm is sufficient.
Otherwise, for instance if the operations on locks are data-dependent or vary in
different branches of conditional statements, several runs might be necessary.

The basic lockset algorithm can be refined [36] to reduce the number of
false alarms, for instance to take into account that read accesses need not to be
protected if there is no concurrent write access. For the purpose of this paper,
the basic algorithm is sufficient.

3.2 OpenMP to LNT

In order to build an LNT model that captures the control flows of threads
and their synchronizations, the OpenMP program is broken into work units (or
blocks). A work unit is defined as a part of a task, containing neither conditional
branches synchronizations, nor task scheduling points. Thus, the execution of a
work unit is never interrupted by the runtime scheduler. A work unit graph
may contain two types of nodes: basic nodes represent work units of the pro-
gram, and synchronization nodes represent synchronizations between threads
enforced by OpenMP constructs (i.e., #pragma omp critical, omp_set_lock(),
omp_unset_lock(), ...).

An edge between a pair of nodes represents the execution order. For a pair of
basic nodes, this edge reflects the order of the corresponding work units, which
is imposed by the control flow. For a pair of a basic node and a synchroniza-
tion node, the edge reflects that the work unit denoted by the basic node starts
(respectively, ends) with a synchronization construct corresponding to the syn-
chronization node. The work unit graph can be obtained by static analysis of the
code, akin to the construction of a control flow graph in an optimizing compiler.

Figure 3 represents a work unit graph of the program given in Fig. 1. This
work unit graph contains no synchronization nodes, but the one shown later in

www.manaraa.com

Hunting Superfluous Locks with Model Checking 423

Fig. 5 contains basic nodes (depicted as circles) and synchronization nodes (lock
and unlock nodes, depicted as rectangles with rounded corners). Inspection of
the OpenMP source code (Fig. 1) yields the following information about vari-
ables accessed by the various work units. All work units access (read/write) the
variable sum. All work units but WU0 access (read/write) the array a; however,
they access separate elements—the only exception being a[4], which is read
and written by WU5 and read by WU6. Thus, there might be a data race for
variables a[4] and sum.

WU1 WU2 WU3 WU4 WU5

WU0

WU6

Fig. 3. Work unit graph for the program of Fig. 1

To analyze the work unit graph using model checking, we first transform it
into an LNT model by applying the following rules:

– Basic nodes are modeled as LNT processes
– Lock/unlock nodes are modeled as synchronizations on gates ACQUIRE/RELEASE

representing acquire/release actions on the lock; two further actions INIT and
DESTROY denote the creation and deletion of the lock

– Barrier nodes are modeled as multiway rendezvous on dedicated LNT syn-
chronization gates

– Edges are modeled as LNT sequential composition
– Branch conditions are modeled as nondeterministic choice using the select

operator

For example, Table 1 shows the LNT code for the work unit graph of Fig. 3.

3.3 Sequentiality Detection

A data race may occur on a shared variable x if at least two work units WUi
and WUj accessing x can execute concurrently at some moment. If the two work
units always execute in a deterministic order, they cannot cause a data race on
x, meaning that it is not necessary to protect x by a lock.

www.manaraa.com

424 V.-A. Nguyen et al.

Table 1. LNT code for work unit graph of Fig. 3

module OMP is
process MAIN [WU0 , WU1 , WU2 , WU3 , WU4 , WU5 , WU6: none] is

WU0;
par

WU1
|| WU2
|| WU3
|| WU4
|| WU5
end par;
WU6

end process
end module

To detect the sequential execution of two work units, we exploit the work
unit graph of the OpenMP program. The LNT model of this graph represents
all the possible interleavings of work units (encoded as basic nodes in the graph,
and simply as gate names in the LNT model) permitted by the OpenMP paral-
lelization constructs (encoded as synchronization nodes in the graph and as gate
names or implicit synchronizations in the LNT model). The behavior of the LNT
model is represented by an LTS, in which every state corresponds to a global
state of the work unit graph (i.e., an abstract state of the OpenMP program),
each action denotes the execution of a basic node or a synchronization node, and
each transition indicates that the program can move from one state to another
by performing a certain action.

In terms of this LTS, the sequential execution of two basic nodes correspond-
ing to work units WUi and WUj can be ensured by checking that, in every state,
it is not possible to execute both basic nodes immediately. This property can be
expressed in ACTL [8] as follows:

¬EFtrue(EXWUitrue ∧ EXWUjtrue)

The formula expresses the absence of a transition sequence leading (from the
initial state of the LTS) to a state having an outgoing transition labeled by WUi
and an outgoing transition labeled by WUj.

For the LNT model of work unit graph shown on Table 1, the above formula
holds for all pairs of work units (WU0, WUi) and (WUi, WU6) with 1 ≤ i ≤ 5,
and fails for all pairs of work units (WUi, WUj) with 1 ≤ i, j ≤ 5 and i �= j. This
reflects the structure of the work unit graph (WU0 is executed before WU1, ...,
WU5, which are executed before WU6) and indicates the possibility of data races
on the shared variables accessed by work units WU1, ..., WU5, which therefore
must be protected by locks.

www.manaraa.com

Hunting Superfluous Locks with Model Checking 425

3.4 Inserting Locks

To protect the access to sum in the for-loop, the programmer declares its body
as critical. The resulting code is shown on Fig. 4, the corresponding work unit
graph on Fig. 5 (the principal difference with Fig. 3 being the addition of Lock-
/Unlock nodes), and the corresponding LNT code in Table 2. The principal differ-
ence between Tables 1 and 2 is that the execution of the work units WU1, WU2,
WU3, WU4, and WU5 is protected by a lock (represented by process LOCK),
which has to be acquired before the execution of the work unit, and released
afterwards: these steps are grouped into to process PROTECTED_WU (used similarly
to a procedure). Process LOCK executes as an additional process. It has a local
variable FREE indicating the status of the lock, and ensures that the lock can only
acquired when it is free and that only the process holding the lock can release
it. Gates INIT (respectively, DESTROY) are used to start (respectively, terminate)
the execution of the lock.

Rerunning lockset analysis on the modified program, the accesses to a and
sum in work unit 6 are still not protected by a lock, but model checking shows
sequentiality of work units 1 to 5 with work unit 6, and thus the absence of a
data race without the need of adding any further lock.

4 Related Work

Much effort has been spent on detecting data races in parallel programs. These
efforts can be classified into dynamic and static approaches [4].

Dynamic techniques rely on observations of the running program. Such tech-
niques have been implemented in several tools for race detection in OpenMP
programs. Happens-before analysis monitors accesses to shared variables. If an
access to a shared variable is logically concurrent with any previous conflicting
access, the tool will raise an alarm; a pair of concurrent accesses to the same
variable is conflicting if and only if at least one of them is a write. This tech-
nique leads to no false positives (i.e., each detected issue is indeed a data race),
but might produce false negatives, because its precision depends on the defini-
tion of logically concurrent accesses, which is often expensive to compute. The
happens-before technique has been implemented for instance in RaceStand [23].

Closer related to our suggested method are techniques based on lockset anal-
ysis, which we also use in our flow. The lockset analysis [36] (see also Sect. 3.1)
aims at enforcing a locking discipline, rather than checking for absence of data
races in general. Tools based on lockset analysis raise an alarm when some
access to a shared variable is not protected by an appropriate lock. Lockset
based race detectors are safe (i.e., they do not produce false negatives), but
too pessimistic because locking is not the only way to provide safe synchroniza-
tion. Thus, the Eraser tool [36] implements various improvements of the simple
lockset algorithm to reduce the number of false positives, taking into account fre-
quent programming patterns. Our workflow has a similar goal, but rather than
trying to improve the algorithm, we use model checking to filter the results.

www.manaraa.com

426 V.-A. Nguyen et al.

int a[5] = {2, 3, 4, 5, 6};
int main()
{

int i, sum = 0; // work un i t WU0
#pragma omp parallel
{

#pragma omp for schedule (static , 1)
for (i = 0; i < 5; i++)
{ // work un i t s WU1 to WU5

#pragma omp critical
{

a[i] = a[i] * a[i];
sum += a[i];

}
}
#pragma omp single
sum += a[4]; // work un i t WU6

}
return 0;

}

Fig. 4. Corrected OpenMP code for Fig. 1 (added #pragma omp critical inside the
for-loop)

WU1 WU2 WU3 WU4 WU5

WU0

WU6

Lock L

Unlock L Unlock L

Lock L Lock L Lock L Lock L

Unlock LUnlock LUnlock L

Fig. 5. Work unit graph for the program of Fig. 4

www.manaraa.com

Hunting Superfluous Locks with Model Checking 427

Table 2. LNT code for work unit graph of Fig. 5

module OMP2 is
channel LOCK_CHANNEL is (Nat) end channel
process LOCK [INIT , DESTROY: none ,

ACQUIRE , RELEASE: LOCK_CHANNEL] is
var FREE: Bool , TID: Nat in

INIT;
FREE := true; −− i n i t i a l l y t he l o c k i s f r e e
TID := 1; −− t o make LNT2LOTOS happy
loop L in

select
only if FREE then ACQUIRE (?TID) end if

[]
only if not (FREE) then RELEASE (TID) end if

[]
DESTROY; break L

end select;
FREE := not (FREE)

end loop
end var

end process
process PROTECTED_WU [WU: none ,

ACQUIRE , RELEASE: LOCK_CHANNEL]
(id: Nat) is

ACQUIRE (id); −− ac qu i r e t he l o c k
WU; −− work
RELEASE (id) −− r e l e a s e the l o c k

end process
process MAIN [WU0 , WU1 , WU2 , WU3 , WU4 , WU5 , WU6 ,

INIT , DESTROY: none ,
ACQUIRE , RELEASE: LOCK_CHANNEL] is

par INIT , ACQUIRE , RELEASE , DESTROY in
WU0;
INIT;
par

PROTECTED_WU [WU1 , ACQUIRE , RELEASE] (1)
|| PROTECTED_WU [WU2 , ACQUIRE , RELEASE] (2)
|| PROTECTED_WU [WU3 , ACQUIRE , RELEASE] (3)
|| PROTECTED_WU [WU4 , ACQUIRE , RELEASE] (4)
|| PROTECTED_WU [WU5 , ACQUIRE , RELEASE] (5)
end par;
DESTROY;
WU6

||
LOCK [INIT , DESTROY , ACQUIRE , RELEASE]

end par
end process

end module

www.manaraa.com

428 V.-A. Nguyen et al.

This has the advantage of taking into account dependencies, without any prior
knowledge about the kind of dependency.

To improve precision, some tools combine several approaches. Adaptive
Dynamic Analysis Tool (ADAT) [22] selects, for a given program, suitable race
detection techniques, based on their scalability and their efficiency in term of
thread labeling, access filtering and access detecting. Intel R© Thread Checker [35]
emulates the sequential version of the application and uses it to derive the happens-
before relation. The tool checks the data dependency of accesses to shared vari-
ables (whenever an OpenMP directive is detected) by using sequentially traced
information, and reports the accesses as races if their dependency satisfies an anti
(write-after-read), flow (read-after-write), and output data dependency (write-
after-write). Oracle R© Developer Studio Thread Analyzer [34] is based on similar
techniques and yields comparable results as Thread Checker [18].

Static analysis tools do not require to run the program. To reduce the com-
plexity of the analysis, some approaches limit their scope to subsets of OpenMP.
For instance, the race avoidance tool [37] is limited to OpenMP programs using
only the #pragma omp parallel for construct. ompVerify [3] detects data races
using a polyhedral model (used to describe execution order of statement instance,
and the relation of statement instances to the memory cells where they are read
or write). The tool covers a class of program fragments called Affine Control
Loops.

OpenMP Analysis ToolKit (OAT) [26] uses an SMT (Satisfiability Modulo
Theories) solver based symbolic analysis to detect data races. In the tool, every
parallel code region of an OpenMP program is encoded into a first-order logic
formula, which is then solved by the SMT solver. The solution reported by the
SMT solver is interpreted to point out errors and generate a feasible execution
trace that reveals the errors. Nonconcurrency analysis [25] statically detects
whether two statements in an OpenMP program will not be executed concur-
rently by different threads in a team. The RacerD tool [6,17] of the Infer static
analyser5 for concurrent Java code aims at easily usable and understandable bug
reports. Thus RacerD favors the absence of false positives over the guarantee of
the absence of data races.

Model checking is another static analysis technique, based on the analysis of
the reachable state space derived from a model of the program. In the context
of parallel programs, this state space is in general huge, because it has to take
into account every possible execution scenario. Thus, usually it is necessary to
apply property-preserving abstractions to reduce the state space to a tractable
size, but still preserve the control-flow and operations on shared variables. The
more concrete the model, the more precise the results reported by the model
checker, but the more resources are required. Hence, the principal challenge of
model checking based approaches is to find the right abstraction level, with just
the right balance between precision and analysis complexity. This challenge can
be somehow circumvented by not using the model-checker for the verification
of the core property, but to supplement another analysis technique, for instance

5 https://fbinfer.com/.

https://fbinfer.com/

www.manaraa.com

Hunting Superfluous Locks with Model Checking 429

to construct a more precise happens-before relation [32] or to refine the set of
variables that need a lock as in our approach.

In order to further enhance the accuracy and the scalability of data race
analysis, some approaches employ static analysis to provide guided information
for the dynamic race detectors. For example, ARCHER [2] first identifies data
race-free code regions (i.e., which do not contain data dependencies) with a static
analysis, and then instruments only the remaining, potentially unsafe regions,
for data race detection. Another approach is the combination of a thread label-
ing scheme (to maintain the logical concurrency of thread segments) with the
happens-before technique (to analyze the happens-before relations to detect con-
flicting accesses to every shared memory location) [19,21]. The ThreadSafe [1]
tool (for Java code) applies the principles of the lockset algorithm in the setting
of a static analysis: locksets are computed for abstract summaries of methods. A
generic and formal OpenMP epoch model, which describes memory events of all
OpenMP threads that occur between two synchronization events, has been used
as basis for determining the happens-before relations, which are then applied for
detecting data races [7].

5 Conclusion

We proposed an iterative method to ensure the absence of data races in parallel
programs using a combination of lockset analysis (to identify unprotected shared
variables) and ACTL model checking (to detect superfluous locks). Although
simple, our method is modular, separating the concerns of parallelization and
verification on a formal model of the program. This enables to balance the pre-
cision of the model with the quality of the resulting data race free parallel pro-
gram: a more detailed model will increase accuracy in detecting superfluous
locks, but also require more computing resources to analyze it by model check-
ing. We illustrated the method on the parallelization of programs using OpenMP,
by proposing an intermediate representation of the concurrent blocks and their
synchronizations as a work unit graph, which is transformed into an LNT model.

The proposed method could be applied for parallel programs in other lan-
guages as well, provided that a suitable translation to LNT is available (e.g.,
AADL2LNT [31]). Once an abstract LNT model of the parallel program is avail-
able, it can be used not only for checking sequentiality constraints and deadlocks
as in our analysis flow, but also other properties, both qualitative (safety, live-
ness, fairness) and quantitative ones [28]. The method can be further refined
by tackling an industrial case-study involving parallelization using OpenMP.
For model checking large work unit graphs, the compositional verification tech-
niques for ACTL provided by CADP [13,30] (and notably the recent combined
bisimulation technique [24], suitable for the ACTL sequentiality detection for-
mulas given in Sect. 3.3), can be experimented to find appropriate composition
strategies. Also, alternative ways of translating an OpenMP application into an
LNT program can be investigated, with various degrees of abstraction.

www.manaraa.com

430 V.-A. Nguyen et al.

Acknowledgements. This work has been supported by the CAPHCA (Critical Appli-
cations on Predictable High-Performance Computing Architectures) project funded by
the PIA programme of the French government.

References

1. Atkey, R., Sannella, D.: ThreadSafe: static analysis for Java concurrency. In: Elec-
tronic Communications of the EASST 72 (2015). https://doi.org/10.14279/tuj.
eceasst.72.1025

2. Atzeni, S., et al.: ARCHER: effectively spotting data races in large OpenMP appli-
cations. In: 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pp. 53–62, May 2016. https://doi.org/10.1109/IPDPS.2016.68

3. Basupalli, V., et al.: ompVerify: polyhedral analysis for the OpenMP programmer.
In: Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP
2011. LNCS, vol. 6665, pp. 37–53. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-21487-5 4. https://hal.inria.fr/hal-00752626

4. Beckman, N.E.: A survey of methods for preventing race conditions (2006)
5. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-

checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011). https://doi.org/10.1016/j.scico.2010.07.002

6. Blackshear, S., Gorogiannis, N., O’Hearn, P.W., Sergey, I.: RacerD: compositional
static race detection. Proc. ACM Program. Lang. 2(OOPSLA), 1441–14428 (2018).
https://doi.org/10.1145/3276514. http://doi.acm.org/10.1145/3276514

7. Cramer, T., Schwitanski, S., Münchhalfen, F., Terboven, C., Müller, M.S.: An
OpenMP epoch model for correctness checking. In: 2016 45th International Con-
ference on Parallel Processing Workshops (ICPPW), pp. 299–308, August 2016.
https://doi.org/10.1109/ICPPW.2016.51

8. De Nicola, R., Fantechi, A., Gnesi, S., Ristori, G.: An action-based framework for
verifying logical and behavioural properties of concurrent systems. Comput. Netw.
ISDN Syst. 25(7), 761–778 (1993). https://doi.org/10.1016/0169-7552(93)90047-8

9. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

10. Fantechi, A., Gnesi, S., Ristori, G.: From ACTL to mu-calculus. In: Proceedings
of the ERCIM Workshop on Theory and Practice in Verification, Pisa, Italy, pp.
3–10, January 1992

11. Fantechi, A., Gnesi, S., Ristori, G.: Model checking for action-based logics. Formal
Methods Syst. Des. 4(2), 187–203 (1994). https://doi.org/10.1007/BF01384084

12. Fantechi, A., Gnesi, S., Ristori, G.: Modelling transition systems within an action
based logic. Technical report, IEI-CNR, Pisa (1996)

13. Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous
concurrent systems using CADP. Acta Informatica 52(4), 337–392 (2015)

14. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Springer Int. J. Softw. Tools
Technol. Transf. (STTT) 15(2), 89–107 (2013)

15. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.-P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500,
pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 1

https://doi.org/10.14279/tuj.eceasst.72.1025
https://doi.org/10.14279/tuj.eceasst.72.1025
https://doi.org/10.1109/IPDPS.2016.68
https://doi.org/10.1007/978-3-642-21487-5_4
https://doi.org/10.1007/978-3-642-21487-5_4
https://hal.inria.fr/hal-00752626
https://doi.org/10.1016/j.scico.2010.07.002
https://doi.org/10.1145/3276514
http://doi.acm.org/10.1145/3276514
https://doi.org/10.1109/ICPPW.2016.51
https://doi.org/10.1016/0169-7552(93)90047-8
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1007/BF01384084
https://doi.org/10.1007/978-3-319-68270-9_1

www.manaraa.com

Hunting Superfluous Locks with Model Checking 431

16. Gnesi, S., Mazzanti, F.: On the fly verification of network of automata. In: Arabnia,
H.R. (ed.) Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, PDPTA 1999, Las Vegas, Nevada, USA,
pp. 1040–1046. CSREA Press, June–July 1999

17. Gorogiannis, N., O’Hearn, P.W., Sergey, I.: A true positives theorem for a static
race detector. Proc. ACM Program. Lang. 3(POPL), 57:1–57:29 (2019). https://
doi.org/10.1145/3290370

18. Ha, O.-K., Kim, Y.-J., Kang, M.-H., Jun, Y.-K.: Empirical comparison of race
detection tools for OpenMP programs. In: Śl ↪ezak, D., Kim, T., Yau, S.S., Gervasi,
O., Kang, B.-H. (eds.) GDC 2009. CCIS, vol. 63, pp. 108–116. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10549-4 13

19. Ha, O.K., Kuh, I.B., Tchamgoue, G.M., Jun, Y.K.: On-the-fly detection of data
races in OpenMP programs. In: Proceedings of the 2012 Workshop on Parallel and
Distributed Systems: Testing, Analysis, and Debugging, PADTAD 2012, pp. 1–10.
ACM (2012). https://doi.org/10.1145/2338967.2336808

20. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference. In:
Pugh, W., Chambers, C. (eds.) Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2004, Washington,
D.C., USA, pp. 1–13. ACM, June 2004. https://doi.org/10.1145/996841.996844

21. Kang, M.-H., Ha, O.-K., Jun, S.-W., Jun, Y.-K.: A tool for detecting first races
in OpenMP programs. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp.
299–303. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03275-
2 29

22. Kim, Y., Song, S., Jun, Y.: ADAT: an adaptable dynamic analysis tool for race
detection in OpenMP programs. In: 2011 IEEE Ninth International Symposium
on Parallel and Distributed Processing with Applications, pp. 304–310, May 2011.
https://doi.org/10.1109/ISPA.2011.49

23. Kim, Y.-J., Park, M.-Y., Park, S.-H., Jun, Y.-K.: A practical tool for detecting
races in OpenMP programs. In: Malyshkin, V. (ed.) PaCT 2005. LNCS, vol. 3606,
pp. 321–330. Springer, Heidelberg (2005). https://doi.org/10.1007/11535294 28

24. Lang, F., Mateescu, R., Mazzanti, F.: Compositional verification of concurrent
systems by combining bisimulations. In: ter Beek, M.H. et al. (eds.) FM 2019.
LNCS, vol. 11800, pp. 196–213. Springer, Cham (2019)

25. Lin, Y.: Static nonconcurrency analysis of OpenMP programs. In: Mueller, M.S.,
Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005.
LNCS, vol. 4315, pp. 36–50. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-68555-5 4. http://dl.acm.org/citation.cfm?id=1892830.1892835

26. Ma, H., Diersen, S.R., Wang, L., Liao, C., Quinlan, D., Yang, Z.: Symbolic analysis
of concurrency errors in OpenMP programs. In: 2013 42nd International Confer-
ence on Parallel Processing, pp. 510–516, October 2013. https://doi.org/10.1109/
ICPP.2013.63

27. Mateescu, R.: CAESAR SOLVE: a generic library for on-the-fly resolution of
alternation-free boolean equation systems. Springer Int. J. Softw. Tools Technol.
Transf. (STTT) 8(1), 37–56 (2006). Full Version Available as INRIA Research
Report RR-5948, July 2006

28. Mateescu, R., Serwe, W.: Model checking and performance evaluation with CADP
illustrated on shared-memory mutual exclusion protocols. Sci. Comput. Program.
78(7), 843–861 (2013)

29. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-
passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS,

https://doi.org/10.1145/3290370
https://doi.org/10.1145/3290370
https://doi.org/10.1007/978-3-642-10549-4_13
https://doi.org/10.1145/2338967.2336808
https://doi.org/10.1145/996841.996844
https://doi.org/10.1007/978-3-642-03275-2_29
https://doi.org/10.1007/978-3-642-03275-2_29
https://doi.org/10.1109/ISPA.2011.49
https://doi.org/10.1007/11535294_28
https://doi.org/10.1007/978-3-540-68555-5_4
https://doi.org/10.1007/978-3-540-68555-5_4
http://dl.acm.org/citation.cfm?id=1892830.1892835
https://doi.org/10.1109/ICPP.2013.63
https://doi.org/10.1109/ICPP.2013.63

www.manaraa.com

432 V.-A. Nguyen et al.

vol. 5014, pp. 148–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68237-0 12

30. Mateescu, R., Wijs, A.: Property-dependent reductions adequate with divergence-
sensitive branching bisimilarity. Sci. Comput. Program. 96(3), 354–376 (2014)

31. Mkaouar, H., Zalila, B., Hugues, J., Jmaiel, M.: From AADL model to LNT spec-
ification. In: de la Puente, J.A., Vardanega, T. (eds.) Ada-Europe 2015. LNCS,
vol. 9111, pp. 146–161. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19584-1 10

32. Nakade, R., Mercer, E., Aldous, P., McCarthy, J.: Model-checking task parallel
programs for data-race. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018.
LNCS, vol. 10811, pp. 367–382. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-77935-5 25

33. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face, November 2018. https://www.openmp.org/wp-content/uploads/OpenMP-
API-Specification-5.0.pdf

34. Oracle Studio 12.6: Thread Analyzer User’s Guide, June 2017. https://docs.oracle.
com/cd/E77782 01/html/E77800/index.html

35. Petersen, P., Shah, S.: OpenMP support in the Intel R© Thread Checker. In: Voss,
M.J. (ed.) WOMPAT 2003. LNCS, vol. 2716, pp. 1–12. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45009-2 1

36. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997). https://doi.org/10.1145/265924.265927

37. Shah, D.: Analysis of an OpenMP program for race detection. Master’s thesis, San
Jose State University (2009)

38. Süß, M., Leopold, C.: Common mistakes in OpenMP and how to avoid them:
a collection of best practices. In: Mueller, M.S., Chapman, B.M., de Supinski,
B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005. LNCS, vol. 4315, pp. 312–
323. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68555-5 26.
http://dl.acm.org/citation.cfm?id=1892830.1892863

https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-319-19584-1_10
https://doi.org/10.1007/978-3-319-19584-1_10
https://doi.org/10.1007/978-3-319-77935-5_25
https://doi.org/10.1007/978-3-319-77935-5_25
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://docs.oracle.com/cd/E77782_01/html/E77800/index.html
https://docs.oracle.com/cd/E77782_01/html/E77800/index.html
https://doi.org/10.1007/3-540-45009-2_1
https://doi.org/10.1145/265924.265927
https://doi.org/10.1007/978-3-540-68555-5_26
http://dl.acm.org/citation.cfm?id=1892830.1892863

www.manaraa.com

Formal Verification of Railway Timetables
- Using the UPPAAL Model Checker

Anne E. Haxthausen(B) and Kristian Hede

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
aeha@dtu.dk, krhede@gmail.com

Abstract. This paper considers the challenge of validating railway time-
tables and investigates how formal methods can be used for that. The
paper presents a re-configurable, formal model which can be config-
ured with a timetable for a railway network, properties of that network,
and various timetabling parameters (such as station and line capacities,
headways, and minimum running times) constraining the allowed train
behaviour. The formal model describes the system behaviour of trains
driving according to the given railway timetable. Model checking can
then be used to check that driving according to the timetable does not
lead to illegal system states. The method has successfully been applied
to a real world case study: a time table for 12 trains at Nærumbanen in
Denmark.

Keywords: Formal methods · Model checking · UPPAAL · Railways ·
Timetables

1 Introduction

This paper considers the challenge of validating time tables in the railway
domain.

Background. As timetables specify how the trains should run in the railway
network, they have a great influence on the railway operations. Therefore, for
any railway operator, it is of very high priority that the timetables are feasible
as well as robust against delays. However, the process of creating train timeta-
bles [6] is very complicated and goes through many steps taking various wishes,
requirements and scheduling constraints into account. Traditionally, time tables
are created in a stepwise manner, where schedules are manually adjusted until
all constraints are met.1 When a timetable has been created in this way, it
should be verified that it is feasible and satisfies all the many stated require-
ments and scheduling constraints. For instance, it should be checked that at
any time the number of trains waiting at a station does not exceed the station
1 Research in optimisation models and techniques for generating optimal timetables

have been done [6], but these are very rarely used by the railway operators.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 433–448, 2019.
https://doi.org/10.1007/978-3-030-30985-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_25&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_25

www.manaraa.com

434 A. E. Haxthausen and K. Hede

capacity and that the minimal headways between trains are satisfied. Tools for
automated checking of all such requirements are highly needed. Today there are
some timetabling tools [10] like RailSys and TPS on the market which can be
used for managing timetables and estimating the effect of train delays. The tools
typically have functionality for displaying time tables graphically (showing the
planned train positions as a function of time). In order to verify a timetable,
one can inspect such graphs and manually check whether the requirements are
fulfilled. Although this is very useful, it would be desirable to have a tool that
could automatically check all requirements.

Contribution. In this paper we propose a fully automated method for verifying
timetables. This method is formal and based on model checking. The idea is as
follows: To check a timetable for a given railway network, one should create a
real-time model simulating how trains move around in the network, from station
to station over time, according to the timetable. During the simulation, a number
of required properties of timetables should be checked. If any of these fail, the
system should go into an error state. Then one can model check that all trains
reach their final destination without ending in an error state. We have explored
this idea using UPPAAL [3], which is an integrated tool environment for mod-
elling, validation and verification of real-time systems modelled as networks of
timed automata. We choose to use UPPAAL as our system is a real-time system
and the UPPAAL symbolic model checker has shown to very be effective. The
UPPAAL model is re-configurable: It can be configured with a timetable and
a railway network description including various scheduling parameters (such as
station and line capacities, headways, and minimum running times) constrain-
ing the allowed train behaviour. The verification method has successfully been
applied to a real world case study: a time table for 12 trains at Nærumbanen
Local Railway in Denmark.

To our best knowledge it is a novelty to verify railway timetables by model
checking.

Related Work. Over the last decade formal methods have been widely used
for developing railway systems, cf., the surveys given in [2,5]. According to these
surveys, formal methods have mostly been applied to railway interlocking sys-
tems2 (as e.g. in [1,7,8,11,12]) and other control system components, but less for
railway operations, where formal methods have primarily been used for capacity
analyses (as e.g. in [4]).

Paper Overview. First, in Sects. 2 and 3, short, informal introductions to the
UPPAAL modelling language and to the domain of railway timetables are given,
respectively. Then Sect. 4 presents a formal UPPAAL model of trains driving
according to a given railway time table, whereupon, in Sect. 5, it is described
2 An interlocking system is a signalling system component responsible for the safe

routing of trains through a railway network.

www.manaraa.com

Formal Verification of Railway Timetables 435

how the verification of model instances is done. Finally, Sect. 6 gives a conclusion
and states ideas for future work.

2 The UPPAAL Modelling Language

This section gives an ultra short, informal introduction to the major UPPAAL
modelling language constructs used in this paper. The reader is assumed familiar
with the theory of timed automata. For more details, especially on semantics of
the concurrency construct, the reader should consult [3].

In UPPAAL a system is modelled as a network of parallel timed automata
(called processes) which are finite-state machines extended with time in the
form of real-valued clocks which progress synchronously and with data variables
of simple data types (bounded integers, arrays, etc.).

The specification of a system model consists of (1) templates for timed
automata, (2) declarations of clocks, data variables, constants, channels, and
functions which can be used in the templates, and (3) a system declaration
which is a parallel composition of processes which are instances of the tem-
plates. The processes can communicate asynchronously via shared variables or
synchronously via channels.

A timed automaton consists of locations and edges.
In the UPPAAL graphical representation of timed automata, locations are

shown as circles and may have a name shown in red colour. The initial location
is shown by double circles. A location may be committed (shown as a circle with
a C inside). If a process is in a committed location, the time must not pass and
the next system transition must involve an edge from a committed location. A
location may be labelled with an invariant (shown in purple colour) which is
a Boolean expression over variables and clocks. The process can stay in that
location and let the time pass as long as the invariant is satisfied, but when the
invariant becomes false, it must leave the location.

In the graphical representation, edges are shown as arrows. An edge may be
labelled with (1) a guard (shown in green colour) which is a Boolean expression
over variables and clocks determining when the edge is enabled and can be
fired, (2) updates of variables and clocks (shown in blue colour) that should be
executed when the edge is fired, and (3) synchronisations of the form c? or c! over
a channel c (shown in light blue colour). (An edge labelled with c! in one process
may synchronise with an edge labelled with c? in another process provided that
both edges are enabled.)

3 Domain Description

This section presents the definitions of basic terms of timetabling, as used in this
paper, and requirements to timetables.

www.manaraa.com

436 A. E. Haxthausen and K. Hede

3.1 Basic Concepts and Terms

Railway Networks. A railway network consists of stations and open lines
between stations. A station can be a passenger station where people embark and
disembark trains, or a technical station where e.g. trains can overtake each other.
An open line is a collection of tracks between two stations. In this paper it is
assumed that each open line is either a single track or is a double track (has two
tracks).3 For double track lines it is assumed that there is one track dedicated
to each driving direction.

Railway Timetables. A railway timetable for a given railway network is a
collection of individual train timetables/schedules for train journeys in the net-
work. Each train timetable has a unique (train) identifier and a list of stations
at which the train should stop, along with the arrival and departure times at
those stops.

A train is said to drive according to its timetable, if it arrives at and departs
from the stations in its timetable at the stated arrival and departure times.

Parameters in Timetabling. The requirements to timetables are expressed
in terms of a number of scheduling parameters described below. These depend
among others on the track layout, train properties, and signalling system proper-
ties. It is out of the scope to explain how these parameters are determined - for an
explanation of that, see e.g. [9]. Often some time supplements are added to/in-
cluded in the minimum times mentioned below to make the timetable robust
against small train delays.

The capacity of a station is the maximal number of trains that are allowed to
be at the station at the same time. (In this paper, for simplicity, we will assume
that if a station has capacity n, then it consists of n parallel tracks, each track
having capacity for one train. Furthermore, we will assume that each station
track is connected to each open line track.) The minimum dwell time of a train
at a station is the minimum time it must wait at the station, such that there is
time to open and close doors and let people enter and exit the train.

The capacity of an open line is the maximal number of trains that are allowed
to be on each of its tracks at the same time. An open line also has a minimum
running time, i.e. the time it must at least take for a train to drive between
the two stations connected by the open line. Furthermore, an open line has a
minimum headway, i.e. the minimum time that must pass between two following
trains both entering the same track or both leaving the same track. Stations
can also have different kinds of minimum headways between two trains enter-
ing/leaving the stations (depending on the signalling system). In this paper we
just illustrate how this can be done for a minimum headway between two trains
entering the station.

3 In Denmark this is the case for most railway networks, with only very few exceptions.

www.manaraa.com

Formal Verification of Railway Timetables 437

3.2 Requirements

For a timetable to be valid, a number of requirements must hold when the
trains drive according to the timetables. Below we state examples of typical
requirements, but these might differ for different railways.

no overtaking: Trains must not overtake another train on the same track of an
open line (as this is physically not possible and would prevent the plan from
being executable.)

no opposing trains: Single track open lines must not be utilised in both direc-
tions simultaneously (as that would lead to deadlocks preventing the plan
from being executable.)

open line running times: Trains must satisfy the minimum running times of
the open lines.

open line capacities: The capacity of open lines must never be exceeded.
open line headways: The headway times of open lines must be respected.
station dwell times: Trains must satisfy the dwell times at the stations.
station capacities: The capacity of stations must never be exceeded.
station headways: The headway times of stations must be respected.

It is seen how the two first requirements concern internal inconsistencies in a
given timetable (in this case conflicting train schedules)4, while the remaining
ones concern the timetabling parameters identified above.

4 UPPAAL Model

This section presents the UPPAAL model created for verifying timetables. The
model can be found here: http://www2.compute.dtu.dk/∼aeha/RobustRailS/
data/timetabling/uppaal-models/. The model has been designed to be re-
configurable, so that it can be re-used for a whole class of railway networks
and timetables, without having to change the templates of the model, but only
constant data representing the railway network and the timetables.

4.1 Overview

The model consists of the following three parts:

1. Global declarations of (1) the configuration data (constants) defining a rail-
way network layout and timetabling parameters and a timetable for that
network, (2) clocks, (3) variables, (4) types, and (5) functions.

2. Two templates: Train and Initialiser. A process instance of the Train
template represents a single train, running according to one of the timetables
in the global declarations. The Initialiser template is used to initialise the
system.

3. The system declaration, which creates a single Initialiser process and a
Train process for each of the trains in the timetable.

The following sections describe these parts, except the types and functions.
4 Note that the interlocking system has the responsibility to ensure that collisions

would not happen in such cases.

http://www2.compute.dtu.dk/~aeha/RobustRailS/data/timetabling/uppaal-models/
http://www2.compute.dtu.dk/~aeha/RobustRailS/data/timetabling/uppaal-models/

www.manaraa.com

438 A. E. Haxthausen and K. Hede

4.2 Railway Network Data

The railway network data (describing the network layout and the timetabling
parameters) are represented by a collection of constants as shown in Listing 1.1,
where the constants are configured for the network of Nærumbanen in Denmark
which has 9 stations connected one by one by single track open lines. The first
constants give the number of stations, the number of open lines, and the sta-
tion ids. The stationTable is an array with one entry for each station giving
the capacity (capacity) and minimum headway (HWT) for that station. The
openLineTable is an array with one entry for each open line (represented as a
pair of the two stations it is connecting) stating the kind of line (false means
single track and true means double track) and giving the minimum running
time (MRT), the capacity (capacity), and the minimum headway (HWT) for that
open line.

const int STATIONS = 9; // number of stations

const int OPENLINES = 8; // number of open lines

// station ids for station numbers 0 .. STATIONS -1:

const int remisen = 0;

...

const int narum = 8;

const StationTableEntry stationTable[STATIONS] =

{{remisen , 6, 1},

{jagersborg , 2, 1},

{norgaardsvej , 1, 1},

{lyngbylokal , 1, 1},

{fuglevad , 2, 1},

{brede , 1, 1},

{orholm , 2, 1},

{ravnholm , 1, 1},

{narum , 2, 1}};

const OpenLineTableEntry openLineTable[OPENLINES] =

{{{ remisen ,jagersborg},false ,2,1,1},

{{jagersborg ,norgaardsvej},false ,1,1,1},

{{ norgaardsvej ,lyngbylokal},false ,1,1,1},

{{ lyngbylokal ,fuglevad},false ,1,1,1},

{{fuglevad ,brede},false ,2,1,1},

{{brede ,orholm},false ,2,1,1},

{{orholm ,ravnholm},false ,1,1,1},

{{ravnholm ,narum},false ,2,1,1}};

Listing 1.1. Example of network data for Nærumbanen.

4.3 Timetable Data

The railway timetable is represented by a collection of constants as shown in
Listing 1.2, where the constants are configured for an extract of the timetable of

www.manaraa.com

Formal Verification of Railway Timetables 439

Nærumbanen in Denmark. stops is an array of timetables – one for each train,
and each timetable is an array of stop entries. Each stop entry gives the station
id (StationID), the arrival time (AT), the departure time (DT), and the minimum
dwell time5 (DWT) for a stop. For the shown train timetables the minimum dwell
time has been chosen to be zero for stations where the trains need not to stop.

const int TRAINS = 2; // number of trains in the timetable

const int TRAINSTOPS[TRAINS] = {8 ,9}; // number of stops for

each train time table

const int MAXLENGTH = 9; //max number of stops for any train

/* timetable for each train */

const StopEntry stops[TRAINS][MAXLENGTH] = {

// timetable for train 0

{{jagersborg ,26,30,1},

{norgaardsvej ,31,31,0},

{lyngbylokal ,33,33,0},

{fuglevad ,35,35,0},

{brede ,37,37,0},

{orholm ,39,40,1},

{ravnholm ,41,41,0},

{narum ,43,47,1},

{-1,-1,-1,-1}},

// timetable for train 1

{{remisen ,0,34,0},

{jagersborg ,36,40,1},

{norgaardsvej ,41,41,0},

{lyngbylokal ,43,43,0},

{fuglevad ,45,45,0},

{brede ,47,47,0},

{orholm ,49,50,1},

{ravnholm ,51,51,0},

{narum ,53 ,57 ,1}}};

Listing 1.2. Example of a timetable for Nærumbanen.

4.4 Clocks

To express time constraints in the model, a number of clocks are introduced in
addition to the system clock time:

clock TrainClock[TRAINS];

clock openLineLastEntered[OPENLINES][2];

clock openLineLastExit[OPENLINES][2];

clock stationLastEntered[STATIONS];

For each train id, TrainClock[id] is used to record how long time the train has
been in its current location. For each open line number o (which is an index in the
5 To allow for different minimum dwell times at the same station for different trains,

this scheduling parameter has been placed here and not in stationTable.

www.manaraa.com

440 A. E. Haxthausen and K. Hede

openLineTable) and driving direction d ∈ 0 .. 1, openLineLastEntered[o][d]
and openLineLastExit[o][d] records the time elapsed since a train last
time entered o and exited o in direction d, respectively. Direction 0 is used
for the direction towards the first station found in the open line entry
openLinetable[o], and direction 1 is used for the other direction. For each
station id s, stationLastEntered[s] records the time elapsed since a train last
time entered s.

4.5 Variables

A number of variables are introduced:

int currentStop[TRAINS];

int[0, TRAINS] trainsAtStation[STATIONS];

int[0, TRAINS] trainsAtOpenLine[OPENLINES][2];

queueEntry queue[OPENLINES][2][TRAINS];

For each train id t, currentStop[t] stores the station id of the station at
which the train is currently waiting or towards which it is currently moving (when
it is on an open line). For each station s, trainsAtStation[s] stores the number
of trains currently waiting at s. For each open line number o and direction d ∈ 0
.. 1, trainsAtOpenLine[o][d] stores the number of trains currently driving on
o in direction d. For each open line number o and direction d, queue[o][d] is a
queue (an array) of entries for trains currently present on o in direction d. Each
entry contains the id of a train and the time it is planned to leave the open line.
The trains appear in the order they entered o, with the head in queue[o][d][0].

4.6 The Initialiser Template

The Initialiser template is shown in Fig. 1. The initial location is committed
making the outgoing edge of that location, the first to be fired in the system - with-
out any delay. This edge invokes a function to initialise global variables and clocks.

initialise()

Fig. 1. The Initialiser template.

4.7 The Train Template

The Train template has a single parameter, id, which can be instantiated with
the identifier of a train from the timetable. The resulting train process sim-
ulates the behaviour of the train driving perfectly according to its timetable

www.manaraa.com

Formal Verification of Railway Timetables 441

ERROR_OpenLineHeadwayTimeExit

ERROR_OpenLineOccupiedBothDirections

ERROR_OpenLineHWTEnter

ERROR_OpenLineCapacity

ERROR_StationHWT

ERROR_StationCapacity

ERROR_OvertakeAttempt

evaluatingOpenLineToStation

ERROR_DwellTime

evaluatingStationToOpenLine

ERROR_MinimumRunningTime

Complete

Inactive

time <= stops[id][0].AT

EnRoute
time <= stops[id][currentStop[id]].AT

AtStation
time <= stops[id][currentStop[id]].DT

time == stops[id][0].AT

time >= stops[id][currentStop[id]].DT &&
TRAINSTOPS[id] != (currentStop[id]+1)

currentStop[id]++

time >= stops[id][currentStop[id]].AT

TRAINSTOPS[id] ==
 (currentStop[id]+1) &&
time ==
 stops[id][currentStop[id]].DT

Fig. 2. The Train Template only showing state invariants and edge labels expressing
conditions ensuring that the train drives according to its time table.

in stops[id] without any deviations. During the simulation, the timetable is
checked to satisfy the requirements stated in Sect. 3.2.

Figure 2 shows the template with all its locations and edges, but for read-
ability only with those state invariants and edge labels that enforce the train
to drive according to its time table. Later, the remaining edge labels will be
explained.

As it can be seen, a train has the following locations:

– Inactive which is the initial location.
– AtStation which reflects that at the current time the train is waiting at a

station according to the timetable.
– EnRoute which reflects that at the current time the train is driving on the

open line between two consecutive stations in its timetable.
– evaluatingStationToOpenLine which is a committed, intermediate location

between AtStation and EnRoute. It is an auxiliary location (not existing in
a real system) which is only used for checking that neither leaving the current
station nor entering the next open line would break a requirement.

– evaluatingOpenLineToStation which is a committed, intermediate location
between EnRoute and AtStation. It is an auxiliary location (not existing in
a real system) which is only used for checking that neither leaving the current
open line nor entering the next station would break a requirement.

www.manaraa.com

442 A. E. Haxthausen and K. Hede

– An error location for each possible error (breaking a requirement). For
instance, if the open line capacity is exceeded at time t, the error state
ERROR OpenLineCapacity will be reached at that time.

– Complete which is a location that is reached if and when the train has suc-
cessfully run through its whole timetable and reached its destination without
any errors have been detected. If all trains reach this location, the complete
railway timetable has successfully been validated.

Figure 2 shows those state invariants and edge labels that enforce the train to
drive according to its time table: A train starts in the Inactive location. At the
start time of its timetable (i.e. the arrival time stops[id][0].AT of its first stop)
it will enter the AtStation location modelling that it is at the first stop of its
timetable. Whenever the AtStation location is entered, if the train has reached
its final stop (TRAINSTOPS[id] == currentStop[id] + 1) and final time of the
timetable, it will immediately go to the Complete location. Otherwise, it must
leave the AtStation location and enter the evaluatingStationToOpenLine
location at its departure time stops[id][currentStop[id]].DT for its current
station. During that transition the currentStop[id] counter is incremented by
one.

In the evaluatingStationToOpenLine location it is checked whether some
requirements are broken. If that is the case, the system goes into an error loca-
tion, and otherwise it goes to the EnRoute location.

Similarly, whenever the train is in the EnRoute location (i.e. is driving on
the open line towards the next station in its route), it must leave the loca-
tion and enter the evaluatingOpenLineToStation location at the arrival time
stops[id][currentStop[id]].AT for the train’s next station.

In the evaluatingOpenLineToStation location it is checked whether some
requirements are broken. If that is the case, the system goes into an error loca-
tion, and otherwise it goes to the AtStation location.

Figure 3 shows the full model with all edge labels included. The
additional guards and variable/clock updates are used to express the
checks for the requirements stated in Sect. 3.2. On each edge from the
evaluatingStationToOpenLine and evaluatingOpenLineToStation loca-
tions to an error state for a certain kind of error, there is a guard
expressing that this error is found. The guard of the edge from the
evaluatingStationToOpenLine/evaluatingOpenLineToStation location to
the EnRoute/AtStation location is a conjunction of the negated error con-
ditions in the guards of each of the edges leading to an error location from
the evaluatingStationToOpenLine/evaluatingOpenLineToStation location.
The guards are expressed in terms of the clocks and variables declared in
Sects. 4.4 and 4.5. These clocks and variables are updated when a train is entering
a station or an open line.

Below we will give an overall idea of how the updates and checks for the
various requirements are done.6

6 There is no space to show and explain the many auxiliary functions used in the edge
labels to implement that.

www.manaraa.com

Formal Verification of Railway Timetables 443

E
R

R
O

R
_O

p
en

L
in

eH
ea

d
w

ay
T

im
eE

xi
t

E
R

R
O

R
_O

p
en

L
in

eO
cc

u
p

ie
d

B
o

th
D

ir
ec

ti
o

n
s

E
R

R
O

R
_O

p
en

L
in

eH
ea

d
w

ay
T

im
eE

n
te

r

E
R

R
O

R
_O

p
en

L
in

eC
ap

ac
it

y

E
R

R
O

R
_S

ta
ti

o
n

H
ea

d
w

ay
T

im
e

E
R

R
O

R
_S

ta
ti

o
n

C
ap

ac
it

y

E
R

R
O

R
_O

ve
rt

ak
eA

tt
em

p
t

ev
al

u
at

in
g

O
p

en
L

in
eT

o
S

ta
ti

o
n

E
R

R
O

R
_D

w
el

lT
im

e

ev
al

u
at

in
g

S
ta

ti
o

n
T

o
O

p
en

L
in

e

E
R

R
O

R
_M

in
im

u
m

R
u

n
n

in
g

T
im

e

C
o

m
p

le
te

In
ac

ti
ve ti

m
e

<=
 s

to
p

s[
id

][
0]

.A
T

E
n

R
o

u
te

ti
m

e
<=

 s
to

p
s[

id
][

cu
rr

en
tS

to
p

[i
d

]]
.A

T

A
tS

ta
ti

o
n

ti
m

e
<=

 s
to

p
s[

id
][

cu
rr

en
tS

to
p

[i
d

]]
.D

T

op
en

Li
ne

La
st

E
xi

t[G
et

C
ur

re
nt

O
pe

nL
in

e(
)]

[G
et

D
ire

ct
io

n(
)]

 <

 G
et

O
pe

nL
in

eH
W

T
(G

et
C

ur
re

nt
O

pe
nL

in
e(

))

S
ta

tio
nC

ap
ac

ity
E

rr
or

()

st
at

io
nL

as
tE

nt
er

ed
[G

et
N

ex
tS

ta
tio

n(
)]

 <

 G
et

S
ta

tio
nH

W
T

(G
et

N
ex

tS
ta

tio
n(

))

O
cc

up
ie

dO
pp

os
ite

E
rr

or
()

op
en

Li
ne

La
st

E
nt

er
ed

[G
et

C
ur

re
nt

O
pe

nL
in

e(
)]

[G
et

D
ire

ct
io

n(
)]

 <

 G
et

O
pe

nL
in

eH
W

T
(G

et
C

ur
re

nt
O

pe
nL

in
e(

))

O
pe

nL
in

eC
ap

ac
ity

E
rr

or
()

tim
e

=
=

 s
to

ps
[id

][0
].A

T
 &

&
st

at
io

nL
as

tE
nt

er
ed

[G
et

N
ex

tS
ta

tio
n(

)]
 <

 G
et

S
ta

tio
nH

W
T

(G
et

N
ex

tS
ta

tio
n(

))

tim
e

=
=

 s
to

ps
[id

][0
].A

T
 &

&
S

ta
tio

nC
ap

ac
ity

E
rr

or
()

A
tte

m
pt

ed
O

ve
rt

ak
e(

)

T
ra

in
C

lo
ck

[id
] >

=
 s

to
ps

[id
][c

ur
re

nt
S

to
p[

id
]-

1]
.D

W
T

 &
&

!O
pe

nL
in

eC
ap

ac
ity

E
rr

or
()

 &
&

op
en

Li
ne

La
st

E
nt

er
ed

[G
et

C
ur

re
nt

O
pe

nL
in

e(
)]

[G
et

D
ire

ct
io

n(
)]

 >
=

 G

et
O

pe
nL

in
eH

W
T

(G
et

C
ur

re
nt

O
pe

nL
in

e(
))

 &
&

!O
cc

up
ie

dO
pp

os
ite

E
rr

or
()

T
ra

in
C

lo
ck

[id
] =

 0
,

E
nt

er
O

pe
nL

in
e(

G
et

C
ur

re
nt

O
pe

nL
in

e(
),

 G
et

N
ex

tS
ta

tio
n(

))
,

Le
av

eS
ta

tio
n(

st
op

s[
id

][c
ur

re
nt

S
to

p[
id

]-
1]

.s
ta

tio
nI

d)

tim
e

=
=

 s
to

ps
[id

][0
].A

T
 &

&
!S

ta
tio

nC
ap

ac
ity

E
rr

or
()

 &
&

st
at

io
nL

as
tE

nt
er

ed
[s

to
ps

[id
][0

].s
ta

tio
nI

d]
 >

=

 G
et

S
ta

tio
nH

W
T

(s
to

ps
[id

][0
].s

ta
tio

nI
d)

E
nt

er
S

ta
tio

n(
st

op
s[

id
][0

].s
ta

tio
nI

d)
,

T
ra

in
C

lo
ck

[id
] =

 0

T
ra

in
C

lo
ck

[id
] <

 s
to

ps
[id

][c
ur

re
nt

S
to

p[
id

]-
1]

.D
W

T

tim
e

>
=

 s
to

ps
[id

][c
ur

re
nt

S
to

p[
id

]].
D

T
 &

&
T

R
A

IN
S

T
O

P
S

[id
] !

=
 (

cu
rr

en
tS

to
p[

id
]+

1)
 &

&
(Q

ue
ue

E
xp

ec
te

dE
xi

t(
)

>
 ti

m
e

||
 Q

ue
ue

E
xp

ec
te

dE
xi

t(
)

=
=

 -
1)

cu
rr

en
tS

to
p[

id
]+

+

T
ra

in
C

lo
ck

[id
] <

 G
et

M
R

T
(G

et
C

ur
re

nt
O

pe
nL

in
e(

))

T
ra

in
C

lo
ck

[id
] >

=
 G

et
M

R
T

(G
et

C
ur

re
nt

O
pe

nL
in

e(
))

 &
&

!A
tte

m
pt

ed
O

ve
rt

ak
e(

)
&

&
!S

ta
tio

nC
ap

ac
ity

E
rr

or
()

 &
&

st
at

io
nL

as
tE

nt
er

ed
[G

et
N

ex
tS

ta
tio

n(
)]

 >
=

 G

et
S

ta
tio

nH
W

T
(G

et
N

ex
tS

ta
tio

n(
))

 &
&

op
en

Li
ne

La
st

E
xi

t[G
et

C
ur

re
nt

O
pe

nL
in

e(
)]

[G
et

D
ire

ct
io

n(
)]

 >
=

 G

et
O

pe
nL

in
eH

W
T

(G
et

C
ur

re
nt

O
pe

nL
in

e(
))

Le
av

eO
pe

nL
in

e(
G

et
C

ur
re

nt
O

pe
nL

in
e(

),
 G

et
N

ex
tS

ta
tio

n(
))

,
E

nt
er

S
ta

tio
n(

G
et

N
ex

tS
ta

tio
n(

))
,

T
ra

in
C

lo
ck

[id
] =

 0
tim

e
>

=
 s

to
ps

[id
][c

ur
re

nt
S

to
p[

id
]].

A
T

T
R

A
IN

S
T

O
P

S
[id

] =
=

 (
cu

rr
en

tS
to

p[
id

]+
1)

 &
&

tim
e

=
=

 s
to

ps
[id

][c
ur

re
nt

S
to

p[
id

]].
D

T
Le

av
eS

ta
tio

n(
st

op
s[

id
][T

R
A

IN
S

T
O

P
S

[id
]-

1]
.s

ta
tio

nI
d)

Fig. 3. The complete Train template.

www.manaraa.com

444 A. E. Haxthausen and K. Hede

The openline running times requirement: In order to be able to measure
how long time a train has been driving on an open line, the TrainClock[id]
clock is reset to 0 each time the train enters the EnRoute location. Then, the
following condition, when evaluated in the evaluatingOpenLineToStation loca-
tion (i.e. when the train leaves the open line), expresses that the train has at
least spent the minimum running time of the current open line in the EnRoute
location:

TrainClock[id] >= GetMRT(GetCurrentOpenLine())

where GetCurrentOpenLine is an auxiliary function which returns the current
open line o and GetMRT(o) returns the minimum running time of o as stated in
the openLineTable: openLineTable[o].MRT.

The dwell times requirement is checked similarly using TrainClock[id].
The station headways requirement is checked in a similar way using the

stationLastEntered[s] clock which is reset (by an EnterStation(s) function
call) each time a train enters station s.

The open line headways requirements for entering and leaving an open line
o are checked in a similar way using the openLineLastEntered[o][d] and the
openLineLastExit[o][d] clocks, respectively. These clocks are reset to 0 (by
EnterOpenLine(o, s) and LeaveOpenLine(o, s) function calls, respectively,
where s is the next station/stop) each time some train enters o and leaves o in
direction d7 (towards s), respectively.

The station capacity requirement: In order to be able to count the number
of trains present on a station s, the trainsAtStation[s] variable is incremented
by 1 (by an EnterStation(s) function call) each time some train enters s and
is decremented by 1 (by a LeaveStation(s) function call) each time some train
leaves s. Before the train is entering a new station s, the following condition is
used to check that the capacity of that station will not be exceeded, if the train
enters the station:

trainsAtStation[s] < GetStationCapacity(s)

where GetStationCapacity(s) returns the station capacity of s as stated in
the stationTable: stationTable[s].capacity

The open line capacity requirement is checked in a similar way for an
open line o using the trainsAtOpenLine[o][d] variables which are increment-
ed/decremented (by an EnterOpenLine(o, s)/LeaveOpenLine(o, s) function
call) each time a train enters/leaves o in direction d (towards s).

The no opposing trains requirement is checked before a train is entering
a single track open line o in direction d by the condition

trainsAtOpenLine[o][d’] = 0
where d’ is the opposite direction of d.

The no overtaking requirement is checked using the queue[o][d] variables
(introduced in Sect. 4.5). Each time some train enters/leaves an open line o in
direction d towards the next station s, a train entry for that train (keeping

7 d can be found from s as explained in Sect. 4.4.

www.manaraa.com

Formal Verification of Railway Timetables 445

its name and planed arrival time at next station) is pushed/popped to/from
the queue in queue[o][d] (by an EnterOpenLine(o, s)/LeaveOpenLine(o,
s) function call). When a train is leaving its current open line o in direction d, the
following condition is used to check that the first train in the queue queue[o][d]
is the train it-self which means that it has not overtaken any train:

GetQueueFirstTrain(o, d) = id

where GetQueueFirstTrain(o, d) returns the train id in queue[o][d][0].

A Concurrency Issue: If one train t1 enters an open line o at the same time
t (according to the timetable) as another train t2 leaves the same open line
according to the timetable (both driving in the same direction d), the interleaving
semantics of UPPAAL would lead to two different traces sequencing the two
events: one in which t1 enters first and t2 leaves afterwards, and one in which
the order is opposite. If we assume that there are no other trains on the line,
the value of trainsAtOpenLine[o][d] will at time t in the first trace first be 2
and then 1, while in the other trace it will be 1 in both states. If the capacity
of the line is 1, then the first trace will give rise to a false line capacity error.
Therefore, we should ensure that only the second trace is considered. In order
to ensure this, the following time constraint was added to the guard of the edge
from the AtStation location to the evaluatingStationToOpenLine location:

QueueExpectedExit() > time

where QueueExpectedExit() returns the expected exit time of the train in the
head of the queue in queue[o][d]: queue[o][d][0].expectedExit. This would
mean, that a train can only enter the open line at time time, if the next train
that will leave the same open line in the same direction will do that later on.
Hence, for the example above, trace 1 would not anymore be possible.

Note that we do not have the same concurrency issue for stations, since if
one train enters the station at the same time as another leaves it, there should
be space for both of them at the same time, so both traces should be considered.

4.8 System Declaration

The system declaration

system Train, Initialiser;

creates a single Initialiser process and a Train process Train(id) for each
train identifier id, id = 0, .. ,TRAIN-1.

5 Verification

This section explains how a railway timetable can be verified by model checking a
system model instantiated with data for that timetable against some properties.

www.manaraa.com

446 A. E. Haxthausen and K. Hede

5.1 Properties

To verify that a railway timetable is valid, it should be checked that eventually
all the trains have reached their destination as expressed by the property

A<> forall(i: t id) Train(i).Complete

If this property is true, it in particular follows that no error states have been
reached and therefore all the requirements stated in Sect. 3.2 are fulfilled for
trains driving according to the timetable.

However, if the property fails, one can’t from the property itself conclude
what went wrong. In such a case, if one wishes to know which kind of errors were
encountered and which trains did not reach their destination, one can instead
check

A[] forall(i: t id) not Train(i).ERROR S
for each error location ERROR S, and

Train(i).Inactive --> Train(i).Complete
and for each train i.

5.2 Verification Results

For an extended version of the model created in Sect. 3.2 for Nærumbanen (now
with 12 trains), we used the symbolic model checker of UPPAAL to check the
properties above. All properties were successfully verified as shown by green
lamps in Fig. 4.

Fig. 4. Verification results for the timetable for Nærumbanen in Denmark. (Color figure
online)

Verification8 using the A<> forall(i: t id) Train(i).Complete property
took less than a second. The alternative (more informative) verification of all
the detailed properties (for individual errors and individual trains) took 5–6 s.
8 The experiments were done with an Intel(R) Core(TM) i5-5200U processor at

2.2 GHz with 12 GB RAM.

www.manaraa.com

Formal Verification of Railway Timetables 447

We also made examples with illegal timetables to test that the model checker
would be able to catch the different kinds of errors. For instance, we changed
the capacity of orholm station from 2 to 1, such that the station capacity would
be exceeded when two trains should pass each other at the station.

Once an error has been detected, it is possible to identify how, where and
when it occurred by choosing the ’Some’ option of the Diagnostic Trace. Then
the failing query should be chosen and verified by itself, resulting in a diagnostic
trace, which will provide the entire diagnostic trace up until the state of the
error.

6 Conclusion and Future Plans

This paper has shown how railway timetables can be formally verified to be fea-
sible (executable) and satisfy a number of scheduling constraints. The UPPAAL
model checker was used for that purpose. To our knowledge, it is the first time
that model checking has been used for that. The approach is quite promising
as it was applied successfully to a real-world case study for which the timetable
for 12 trains on a railway with 9 stations was successfully verified in less than
a second. In future work, it would be interesting to apply the method to larger
examples.

It should be straight forward to extend the model to allow more than two
tracks on open lines and take more details of station topologies into account (e.g.
the number of platforms and which open line tracks they are connected to) and
include scheduled track occupation information for trains in their timetables.
Furthermore, it could be interesting to investigate how model checking could be
used for investigating the effects of train delays.

We have also investigated how model checking can be used to generate timeta-
bles and we plan to describe those results in a future paper.

Acknowledgements. This paper is dedicated to Professor Stefania Gnesi on the occa-
sion of her 65th birthday. The first author has had the great pleasure of meeting Stefania
Gnesi at many occasions and would like to thank her for inspiration, discussions, and
collaboration, especially in European Technical Working Group on Formal Methods in
Railway Control.

The research was partially funded by the RobustRailS project (2012-17) granted
by Innovation Fund Denmark under grant agreement 0603-00483B. The authors are
grateful to the organisers of the Festschrift Symposium for giving the opportunity to
prepare this paper. We would like to thank the anonymous reviewers for their com-
ments, and we would like to thank Alex Landex for discussions and sharing of his deep
knowledge about railway timetabling while he was employed as a researcher in railway
operations at DTU Transport.

References

1. Banci, M., Fantechi, A., Gnesi, S.: Some experiences on formal specification of rail-
way interlocking systems using statecharts. In: TRain Workshop at SEFM (2005)

www.manaraa.com

448 A. E. Haxthausen and K. Hede

2. Basile, D., et al.: On the industrial uptake of formal methods in the railway domain
- a survey with stakeholders. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS,
vol. 11023, pp. 20–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98938-9 2

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

4. Di Giandomenico, F., Fantechi, A., Gnesi, S., Itria, M.L.: Stochastic model-
based analysis of railway operation to support traffic planning. In: Gorbenko, A.,
Romanovsky, A., Kharchenko, V. (eds.) SERENE 2013. LNCS, vol. 8166, pp. 184–
198. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40894-6 15

5. Fantechi, A.: Twenty-five years of formal methods and railways: what next? In:
Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05032-4 13

6. Hansen, I.A., Pachl, J.: Railway timetable & traffic: analysis, modelling, simulation.
Eurailpress (2008)

7. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.:
Techniques for modelling and verifying railway interlockings. Int. J. Softw. Tools
Technol. Transf. 16(6), 685–711 (2014)

8. Khan, U., Ahmad, J., Saeed, T., Hayat, S.: Real time modeling of interlocking
control system of Rawalpindi Cantt train yard. In: 2015 13th International Confer-
ence on Frontiers of Information Technology (FIT), pp. 347–352 (2015). https://
doi.org/10.1109/FIT.2015.28

9. Landex, A., Kaas, A., Hansen, S.: Railway Operation. Technical report, Technical
University of Denmark, Centre for Traffic and Transport (2006)

10. Schittenhelm, B., Landex, A.: Jernbanesimuleringsværktøjer i Danmark (Eng.:
Railway Simulation Tools in Denmark). Aalborg Trafikdage (2008) (in Danish).
www.trafikdage.dk/papers 2008/praesentationer/bernd schittenhelm 158.pdf

11. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modelling and verifica-
tion of interlocking systems featuring sequential release. Sci. Comput. Pro-
gram. 133, Part 2, 91–115 (2017). https://doi.org/10.1016/j.scico.2016.05.010.
http://www.sciencedirect.com/science/article/pii/S0167642316300570

12. Winter, K.: Symbolic model checking for interlocking systems. In: Flammini, F.
(ed.) Railway Safety, Reliability, and Security: Technologies and Systems Engineer-
ing. IGI Global (2012)

https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-642-40894-6_15
https://doi.org/10.1007/978-3-319-05032-4_13
https://doi.org/10.1109/FIT.2015.28
https://doi.org/10.1109/FIT.2015.28
www.trafikdage.dk/papers_2008/praesentationer/bernd_schittenhelm_158.pdf
https://doi.org/10.1016/j.scico.2016.05.010
http://www.sciencedirect.com/science/article/pii/S0167642316300570

www.manaraa.com

An Axiomatization of
Strong Distribution Bisimulation for
a Language with a Parallel Operator

and Probabilistic Choice

Jan Friso Groote and Erik P. de Vink(B)

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

J.F.Groote@tue.nl, evink@win.tue.nl

Abstract. In the setting of a simple process language featuring non-
deterministic choice and a parallel operator on the one hand and proba-
bilistic choice on the other hand, we propose an axiomatization capturing
strong distribution bisimulation. Contrary to other process equivalences
for probabilistic process languages, in this paper distributions rather
than states are the leading ingredients for building the semantics and
the accompanying equational theory, for which we establish soundness
and completeness.

1 Introduction

Probabilistic extensions of process algebraic languages have been studied since
the 90s. A frequently reoccurring issue is the interplay of indeterminacy caused
by non-determinism or stemming from probability. Process equivalences, seek-
ing to identify processes for purposes of formal analysis, need to take this into
account. A number of process equivalences for probabilistic process languages
have been proposed, including strong probabilistic bisimulation as introduced
in [27]. For logical characterizations of these process relations, equivalence of two
processes coincides with the two processes satisfying exactly the same formulas
of a particular logic, cf. [11,25,31] for example. For equational characterizations,
equivalence of two processes exactly coincides with the two processes being prov-
ably equal with respect to the axioms of the equational theory at hand. See, e.g.,
[6,14,17].

In this paper we study an equational theory for a process language which
includes non-deterministic choice and a parallel operator in the style of ACP [3,8]
as well as probabilistic choice as in PCCS [27]. We present an operational seman-
tics based on a two-sorted transition system, distinguishing non-deterministic
processes and probabilistic processes, as is usual for the set-up with both types
of indeterminacy. Following [32] we incorporate so-called combined transitions,
meaning that for any two transitions with the same action label any convex
combination of these two transitions is possible as well. The notion of process
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 449–463, 2019.
https://doi.org/10.1007/978-3-030-30985-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_26&domain=pdf
http://orcid.org/0000-0003-2196-6587
http://orcid.org/0000-0001-9514-2260
https://doi.org/10.1007/978-3-030-30985-5_26

www.manaraa.com

450 J. F. Groote and E. P. de Vink

equivalence on the basis of which we identify processes is strong distribution
bisimulation as proposed in [16]. In particular, this process equivalence is based
on distributions rather than on single states, in line with our recent work on
branching distribution bisimulation [22]. For our process language we introduce
an equational theory which characterizes strong distribution bisimulation. Bor-
rowing from [6], the equational theory quite naturally extends the axiomati-
zations of its non-deterministic sublanguage. We prove that our set of axioms
is sound and complete indeed. Also for the proofs we manage to extend the
established approach. The latter constitutes the main contribution of the paper.

Early work on complete axiomatizations for probabilistic process algebras
includes [18]. However, it provides no treatment of a parallel operator. In [4] a
parallel operator is included, but non-determinism is resolved in favor of prob-
abilistic behavior. Completeness in [4,18] is established with respect to strong
probabilistic bisimulation [27]. In [9], in a different vein, an axiom system is
provided for a process algebra including a parallel operator in the setting of
Markovian bisimulation. The paper [6] treats both strong and weak bisimula-
tion, presenting equational theories for a process language with non-deterministic
and probabilistic choice, in the alternating model [24] and in the non-alternating
model [33]. The alternating model is also underpinning [1] where an axiomati-
zation is given for (non-convex) probabilistic version of branching bisimulation.
In [2] it is formally shown that branching bisimulation in the alternating model
and in the non-alternating model differ. In [14] a complete axiomatization is
given, with respect to both strong and weak probabilistic bisimulation, for a
language that also covers recursion, extending [34] to include non-deterministic
choice. In [15] the work of [14] is expanded further to deal with a CCS-style
parallel operator. To the best of our knowledge, [15] is the only paper propos-
ing a complete equational theory for a parallel operator in a semantical model
that supports both non-deterministic and probabilistic behavior. Recursion is
also incorporated in the process language of [17] (but no parallel operator).
This paper focuses on infinitary semantics and weak probabilistic bisimulation.
Also [17] provides a complete equational theory.

The remainder of this paper is organized as follows: After a short recollection
of preliminaries in Sect. 2, we introduce in Sect. 3 the process language under
study together with its transition system. We continue in Sect. 4 to define strong
distribution bisimulation and establish that it is a congruence for the operators
of our language. In Sect. 5 the equational theory is given and it is shown that it
is sound and complete with respect to strong distribution bisimulation. Section 6
wraps up with concluding remarks.

2 Preliminaries

Let Distr(X) be the set of distributions over the set X of finite support. A
distribution μ ∈ Distr(X) can be represented as μ =

⊕
i∈I pi∗xi when μ(xi) = pi

for i ∈ I and
∑

i∈I pi = 1. We assume I to be a finite index set. In concrete
cases, when no confusion arises, the separator ∗ is omitted from the notation.

www.manaraa.com

An Axiomatization of Strong Distribution Bisimulation 451

For convenience later, we do not require xi �= xi′ for i �= i′ nor pi > 0 for i, i′ ∈ I.
We use δ(x) to denote the Dirac distribution for x ∈ X. For μ, ν ∈ Distr(X) and
r ∈ [0, 1] we define μ ⊕r ν ∈ Distr(X) by (μ ⊕r ν)(x) = r ·μ(x) + (1−r) · ν(x).
By definition μ ⊕0 ν = ν and μ ⊕1 ν = μ. For an index set I, pi ∈ [0, 1] and μi ∈
Distr(X), we define

⊕
i∈I pi∗μi ∈ Distr(X) by (

⊕
i∈I pi∗μi)(x) =

∑
i∈I pi ·μi(x)

for x ∈ X. For μ =
⊕

i∈I pi ∗ μi, ν =
⊕

i∈I pi ∗ νi, and r ∈ [0, 1] it holds that
μ ⊕r ν =

⊕
i∈I μi ⊕r νi. For a relation R on Distr(X) we define the convex

closure cc(R) by cc(R) = { 〈⊕i∈I pi ∗ μi,
⊕

i∈I pi ∗ νi〉 | μi R νi,
∑

i∈I pi = 1 }.

3 A Process Language

We introduce a process language of non-deterministic processes featuring non-
deterministic choice and a parallel operator, intertwined with probabilistic pro-
cesses built on Dirac distributions and probabilistic choice. Since the axiomati-
zation presented in Sect. 5 requires auxiliary operators � and |, called leftmerge
and synchronization operator, we introduce an extended class of processes too.

Fix A to be a non-empty alphabet of actions. We use a to range over A.
We assume a so-called communication function γ : A × A → A to be given,
that determines the result of two synchronizing actions. The function γ is both
commutative and associative.

Definition 3.1 (syntax). The class E of non-deterministic processes over A,
with typical element E, and the class P of probabilistic processes over A, with
typical element P , are given by

E ::= 0 | a . P | E + E | E‖E

P ::= Δ(E) | P ⊕r P

where r ∈ (0, 1).

We see that a non-deterministic process is either the nil process 0, which
performs no action, a prefixed probabilistic process a . P , which performs the
action a, a non-deterministic choice E1 + E2, which can behave both like E1

and like E2, or a parallel composition E1‖E2, which interleaves or synchronizes
actions from E1 and E2. In the latter case synchronization is governed by the
communication function γ introduced above.

The subclasses E0 ⊆ E of basic non-deterministic processes and P0 ⊆ P of
basic probabilistic processes consists of processes E ∈ E and P ∈ P such that
the parallel operator ‖ doesn’t occur in E and P , respectively. The extended
classes of non-deterministic processes E ′ and of probabilistic processes P ′ are
obtained by adding (see Definition 3.2 below) the leftmerge operator � and the
synchronization operator | to the grammar of Definition 3.1.

www.manaraa.com

452 J. F. Groote and E. P. de Vink

Definition 3.2 (basic and extended processes).

(a) The subclasses E0 ⊆ E of basic non-deterministic processes and P0 ⊆ P of
basic probabilistic processes are given by

E ::= 0 | a . P | E + E

P ::= Δ(E) | P ⊕r P

(b) The superclass E ′ ⊇ E of extended non-deterministic processes and P ′ ⊇ P
of extended probabilistic processes are defined by the BNF

E ::= 0 | a . P | E + E | E‖E | E �E | E |E
P ::= Δ(E) | P ⊕r P

The behavior of processes is defined using transition relations. We distinguish
a transition relation → for non-deterministic processes and a relation �→ for
probabilistic processes. We blur the difference of probabilistic processes and dis-
tributions over non-deterministic processes by an implicit interpretation given
by the relation �→.

Definition 3.3 (transition relation).

(a) The transition relations → ⊆ E × A × Distr(E) and �→ ⊆ P × Distr(E) are
induced by

P �→ μ

a . P
a−→ μ

(pref)

E1
a−→ μ1

E1 + E2
a−→ μ1

(nd-choice 1)
E2

a−→ μ2

E1 + E2
a−→ μ2

(nd-choice 2)

E1
a−→ μ1

E1‖E2
a−→ μ1 ‖ Δ(E2)

(par 1)
E2

a−→ μ2

E1‖E2
a−→ Δ(E1) ‖ μ2

(par 2)

E1
a−→ μ1 E2

b−→ μ2

E1 ‖ E2
c−→ μ1‖μ2

if γ(a, b) = c (par 3)

Δ(E) �→ δ(E) (Dirac)
P1 �→ μ1 P2 �→ μ2

P1 ⊕r P2 �→ r ∗ μ1 ⊕ (1−r) ∗ μ2

(p-choice)

(b) The combined transition relation → ⊆ Distr(E) × A ×Distr(E) is such that
μ

a−→ μ′ whenever μ =
⊕

i∈I pi ∗ Ei, μ′ =
⊕

i∈I pi ∗ μ′
i, and Ei

a−→ μ′
i for all

i ∈ I.

The rules (par 1) to (par 3) above use the parallel operator in combination with
distributions. For μ1, μ2 ∈ Distr(E) the distribution (μ1‖μ2) ∈ Distr(E) is such
that (μ1‖μ2)(E) = μ1(E1) · μ2(E2) if E ≡ E1‖E2 and (μ1‖μ2)(E) = 0 if E is
not a parallel composition. See e.g. [26,28] for similar use of this construction.
Note the use of the communication function γ in rule (par 3).

www.manaraa.com

An Axiomatization of Strong Distribution Bisimulation 453

The combined transition relation on Distr(E) allows one to split a distribution
μ into μ1 ⊕r μ2 and to consider transitions of μ1 and μ2 for a specific action a
independently and combining the resulting distributions. See Example 4.5 in the
next section.

Also for the classes of extended processes we provide transition relations.

Definition 3.4 (extended transition relation).

(a) The transition relations → ⊆ E ′ ×A×Distr(E ′) and �→ ⊆ P ′ ×Distr(E ′) are
induced by the transition rules pref, nd-choice 1,2, par 1,2,3, Dirac,
and p-choice together with the transition rules

E1
a−→ μ1

E1 �E2
a−→ μ1‖Δ(E2)

(left)
E1

a−→ μ1 E2
b−→ μ2

E1|E2
c−→ μ1‖μ2

if γ(a, b) = c (sync)

(b) The combined transition relation → ⊆ Distr(E ′)×A×Distr(E ′) is such that
μ

a−→ μ′ whenever μ =
⊕

i∈I pi ∗ Ei, μ′ =
⊕

i∈I pi ∗ μ′
i, and Ei

a−→ μ′
i for all

i ∈ I.

The machinery of Definition 3.4 is similar to that of Definition 3.3. The addi-
tional rules (left) and (sync) capture that in a leftmerge E1 � E2 only the
component E1 is responsible for determining a possible transition, while for the
synchronization operator the synchronization of transitions of both components
is required. The former corresponds to rule (par 1), the latter corresponds to
rule (par 3).

4 Strong Distribution Bisimulation

In this section the notion of process equivalence of strong distribution bisim-
ulation is presented. Strong distribution bisimulation has been advocated a.o.
in [12,16,25], called bisimulation, strong probabilistic distribution bisimulation,
and strong d-bisimulation, respectively.

Since strong distribution bisimulation deals with distributions rather than
states, one has to take a proviso for subsumed behavior. For example, one wants
to distinguish the deadlock process 0 and the process (a . Δ(0)) ⊕1/2 (b . Δ(0))
although both processes do not provide a transition. We follow [25] by introduc-
ing the concept of a decomposable relation.

Definition 4.1 (decomposable relation). A symmetric relation R
on Distr(E) is called decomposable iff for all μ, ν ∈ Distr(E) such that μR ν
and μ =

⊕
i∈I pi ∗ μi there are νi ∈ Distr(E), for i ∈ I, such that ν =⊕

i∈I pi ∗ νi and μi R νi for all i ∈ I.

A notion of a decomposable relation on Distr(E ′) is defined similarly. Clearly,
an arbitrary union of decomposable relations is decomposable again.

The next result is a technical aid to go from comparing distributions to
comparing states. It states that every strong distribution bisimulation can be
obtained as the convex closure of a relation on states, cf. [13].

www.manaraa.com

454 J. F. Groote and E. P. de Vink

Lemma 4.2 Let R is a decomposable relation on Distr(E). If μR ν, then there
are an index set K and non-deterministic processes Ek, Fk ∈ E and probabili-
ties rk for each k ∈ K such that

μ =
⊕

k∈K rk ∗ E′
k ν =

⊕
k∈K rk ∗ F ′

k Δ(E′
k)RΔ(F ′

k) for all k ∈ K

Proof. Suppose μR ν and μ =
⊕

i∈I pi ∗ Ei. By decomposability of R we
can write ν =

⊕
i∈I pi ∗ νi and have Δ(Ei)R νi for suitable νi ∈ Distr(E),

for all i ∈ I. Say, νi =
⊕

j∈Ji
qij ∗ Fij . By decomposability of R, we have

Δ(Ei) =
⊕

j∈Ji
qij ∗Δ(Ei) and, more importantly, Δ(Ei)RΔ(Fij) for all j ∈ Ji.

Put K = { (i, j) | i ∈ I, j ∈ Ji }. Put E′
k = Ei, F ′

k = Fij , and rk = pi · qij

if k = (i, j). Note, E′
k RF ′

k for k ∈ K. Moreover, we have μ =
⊕

i∈I pi ∗ Ei =⊕
i∈I

⊕
j∈Ji

(pi · qij) ∗ Δ(Ei) =
⊕

k∈K rk ∗ E′
k, and ν =

⊕
i∈I pi ∗ νi =

⊕
i∈I pi ∗

(
⊕

j∈Ji
qij ∗ Fij) =

⊕
k∈K rk ∗ F ′

k as was to be shown.

The transition systems of Definitions 3.3 and 3.4 incorporate so-called combined
transitions. In order to cater for this when dealing with bisimulation we rely
on the fact that the convex closure of a decomposable relation is decomposable
again.

Lemma 4.3. If a relation R on Distr(E) is decomposable, then Rcc the convex
closure of R given by

Rcc = { (
⊕

i∈I pi ∗ μi,
⊕

i∈I pi ∗ νi) | ∀i ∈ I : μi R νi }

is decomposable as well.

Proof. Suppose μ =
⊕

i∈I pi ∗ μi, ν =
⊕

i∈I pi ∗ νi where μi R νi for i ∈ I.
By applying Lemma 4.2 for each pair μi, νi and combining the results we obtain
μ =

⊕
j∈J qj ∗ Ej and ν =

⊕
j∈J qj ∗ Fj and Δ(Ej)RΔ(Fj) for a suitable index

set J , processes Ej , Fj ∈ E and qj > 0 for j ∈ J .
Now suppose μ =

⊕
k∈K rk ∗ μ′

k. Then we have μ′
k =

⊕
j∈J rjk ∗ Ej for

suitable rjk such that
∑

k∈K rjk · rk = qj . Put ν′
k =

⊕
j∈J rjk ∗ Fj . Then we

have μ′
k Rcc ν′

k since Δ(Ej)RΔ(Fj) for all j ∈ J . Moreover, ν =
⊕

j∈J qj ∗Fj =⊕
j∈J (

∑
k∈K rjk · rk) ∗ Fj =

⊕
k∈K rk ∗ (

⊕
j∈J rjk ∗ Fj) =

⊕
k∈K rk ∗ v′

k. This
proves Rcc to be decomposable. ��
We are now ready to define the notion of equivalence of processes.

Definition 4.4 (strong distribution bisimulation).

(a) A decomposable relation R ⊆ Distr(E) × Distr(E) is called a strong distri-
bution bisimulation, iff for all μ, ν ∈ Distr(E) such that μR ν and μ

a−→ μ′

for some a ∈ A and μ′ ∈ Distr(E) then ν
a−→ ν′ and μ′ R ν′ for some

ν′ ∈ Distr(E).
(b) Strong distribution bisimulation, denoted by ↔ ⊆ Distr(E) × Distr(E), is

defined as the largest strong distribution bisimulation on Distr(E).

www.manaraa.com

An Axiomatization of Strong Distribution Bisimulation 455

By the definition of a decomposable relation we have that a strong distribution
bisimulation is symmetric. Also note that the relation ↔ on Distr(E) is well-
defined. It extends to Distr(E ′) straightforwardly.

Example 4.5. Consider the two non-deterministic processes depicted in Fig. 1.
We verify that the Dirac distributions μ and ν corresponding to these processes,
i.e. μ = δ(a .(P ⊕1/2 Q) + a .(P ⊕1/3 Q)) for the process on the left and ν =
δ(a .(P ⊕1/2 Q) + a .(P ⊕5/12 Q) + a .(P ⊕1/3 Q))) for the process on the right,
are strongly distribution bisimilar.

Let R be the relation on Distr(E) given by R = {〈μ, ν〉, 〈ν, μ〉} ∪ IdDistr(E)
with IdDistr(E) the identity relation { 〈�, �〉 | � ∈ Distr(E) }. We claim that R
is a strong distribution bisimulation. It is straightforward to check that R is
decomposable. To see that R satisfies the transfer condition of Definition 4.4
too, we let �P and �Q denote the distributions corresponding to the probabilistic
processes P and Q, respectively, and consider the transition ν

a−→ �P ⊕5/12 �Q.
Since μ = 1

2μ ⊕ 1
2μ and both μ

a−→ �P ⊕1/2 �Q and μ
a−→ �P ⊕1/3 �Q we

obtain from the operational semantics captured by Definition 3.3 μ
a−→ (�P ⊕1/2

�Q)⊕1/2(�P ⊕1/3�Q) = �P ⊕5/12�Q. Thus, the distribution μ exactly matches the
transition ν

a−→ �P ⊕5/12 �Q which is an explicit option of the non-deterministic
process on the right of Fig. 1 but not of the other.

a a

1
2

1
2

P Q

1
3

2
3

P Q

a a a

1
2

1
2

P Q

5
12

7
12

P Q

1
3

2
3

P Q

Fig. 1. Two bisimilar processes

Example 4.6. Consider the probabilistic processes P and Q given by

P = Δ(a .
(
Δ(b . Δ(0)) ⊕1/2

(
Δ(c . Δ(0)) ⊕1/2 Δ(c .(Δ(0) ⊕1/2 Δ(0))

))
)

Q = Δ(a .
((

Δ(b . Δ(0 + 0)) ⊕1/2 Δ(b . Δ(0))
) ⊕1/2 Δ(c .(Δ(0) ⊕1/2 Δ(0))

)
)

Then we have P
a−→ μ and Q

a−→ ν for distributions μ, ν ∈ Distr(E) where

μ = 1
2δ(b . Δ(0)) ⊕ 1

4δ(c . Δ(0)) ⊕ 1
4δ(c .(Δ(0) ⊕1/2 Δ(0)))

ν = 3
8δ(b . Δ(0 + 0)) ⊕ 1

8δ(b . Δ(0)) ⊕ 1
2δ(c . Δ(0))

By decomposability, bisimulation relating μ and ν should also relate δ(b . Δ(0))
to δ(b . Δ(0 + 0)) and δ(c .(Δ(0) ⊕1/2 Δ(0))) to δ(c . Δ(0)), which requires in
turn that Δ(0) and Δ(0+0)) are related. Therefore, we define R to be the least
binary relation on Distr(E) which

www.manaraa.com

456 J. F. Groote and E. P. de Vink

(i) contains the pairs 〈P,Q〉, 〈μ, ν〉, 〈δ(0), δ(0 + 0)〉, 〈δ(b . Δ(0)), δ(b .

Δ(0 + 0))〉, and 〈δ(c .(Δ(0) ⊕1/2 Δ(0))), δ(c . Δ(0))〉
(ii) contains the diagonal IdE
(iii) is symmetric and convex closed.

It is straightforward to verify that R is a strong distribution bisimulation relation
for P and Q. In particular, because of condition (iii) it is easy to see that R indeed
relates μ1 and ν1 as well as μ2 and ν2 for the decompositions μ = μ1 ⊕1/2 μ2 =
δ(b . Δ(0)) ⊕1/2 (12δ(c . Δ(0)) ⊕ 1

2δ(c .(Δ(0) ⊕1/2 Δ(0))) and ν = ν1 ⊕1/2 ν2 =
(34δ(b . Δ(0 + 0) ⊕ 1

4δ(b . Δ(0)) ⊕1/2 δ(c . Δ(0)).

The next result states that strong distribution bisimulation is a process equiva-
lence indeed. The congruence property of ↔ is essential for proving the soundness
of the equational theory for strong distribution bisimulation that is introduced
in the next section.

Theorem 4.7 (congruence). The relation ↔ is an equivalence relation and
a congruence on E and P.

Proof. The proof of ↔ being an equivalence relation is straightforward. For
congruence we treat the case of the parallel operator.

Suppose R1,R2 are two strong distribution bisimulations. Put

R = cc({ (Δ(E1‖E2),Δ(F1‖F2)) | E1 R 1F1, F1 R 2F2 })

We claim that R is a strong distribution bisimulation too. By Lemma 4.3
it follows that R is decomposable. Now suppose E1 R 1F1 and E2 R 2F2 and
E1‖E2

a−→ μ. We have to show that, for some ν ∈ Distr(E), it holds that
F1‖F2

a−→ ν and μR ν. We distinguish three cases.
Case (i), E1

a−→ μ1 and μ = μ1‖E2: Pick ν1 such that F1
a−→ ν1 and μ1 R 1ν1.

Put ν = ν1‖F2. Assume, with help of Lemma 4.2, μ1 =
⊕

i∈I p1 ∗ E′
i, ν1 =⊕

i∈I pi ∗ F ′
i and Δ(E′

i)R 1Δ(F ′
i) for i ∈ I. Since Δ(E′

i)R 1Δ(F ′
i) for i ∈ I

and Δ(E2)R 2Δ(F2) it follows that Δ(E′
i‖E2)RΔ(F ′

i ‖F2). Since μ = μ1‖E2 =⊕
i∈I pi ∗ (E′

i‖E2) and ν = ν1‖F2 =
⊕

i∈I pi ∗ (F ′
i ‖F2) we obtain μR ν.

Case (ii), E2
a−→ μ2 and μ = E1‖μ2: Symmetric to case (i).

Case (iii), E1
a1−−→ μ1, E2

a2−−→ μ2, μ = μ1‖μ2 and γ(a1, a2) = a: Suppose
μ1 =

⊕
i∈Ipi∗E′

i, μ2 =
⊕

j∈Jqj∗E′′
j . Since Δ(E1)R 1Δ(F1) and Δ(E2)R 1Δ(F2)

we can find ν1 =
⊕

i∈Ipi∗F ′
i , ν2 =

⊕
j∈J qj∗F ′′

j in Distr(E) with Δ(E′
i)R 1Δ(F ′

i)
for i ∈ I and Δ(E′′

j)R 2Δ(F ′′
j) for j ∈ J . Note Δ(E′

i‖E′′
j)RΔ(F ′

i ‖F ′
j) for i ∈

I, j ∈ J . Moreover,

μ = μ1‖μ2 =
⊕

i∈I

⊕
j∈J (pi · qj) ∗ (E′

i‖E′′
j)

ν = ν1‖ν2 =
⊕

i∈I

⊕
j∈J (pi · qj) ∗ (F ′

i ‖F ′′
j)

from which it follows that μR ν, as was to be shown. ��

www.manaraa.com

An Axiomatization of Strong Distribution Bisimulation 457

5 A Complete Axiomatization

In Table 1 we present the equational theory AX that characterizes strong dis-
tribution bisimulation for non-deterministic and probabilistic processes. The
axioms of AX are inspired by the axiomatization of [6] regarding probabilis-
tic choice and that of [8] regarding the synchronization merge. As argued by
Moller [30] the availability of the leftmerge � is essential for a finite axiomatiza-
tion of the merge ‖ itself. This explains why we introduced extended processes
incorporating � and | in Sect. 3.

Definition 5.1 (theory AX). The theory AX consists of the axioms listed in
Table 1.

Table 1. Axioms for strong distribution bisimulation

A1 E + F = F + E

A2 (E + F) + G = E + (F + G)

A3 E + E = E

A4 E + 0 = E

P1 P ⊕r Q = Q ⊕1−r P

P2 P ⊕r (Q ⊕s R) = (P ⊕r′ Q) ⊕s′ R

where r = r′s′ and (1−r)(1−s) = 1−s′

P3 P ⊕r P = P

M E‖F = E � F + F � E + E|F
L1 0� F = 0

L2 (a . P) � F = a .(P ‖F)

L3 (E1 + E2) � F = (E1 � F) + (E2 � F)

S1a 0|F = 0

S1b E|0 = 0

S2 (a . P)|(b . Q) = c .(P ‖Q) if γ(a, b) = c

S3 (E1 + E2)|F = (E1|F) + (E2|F)

S4 E|(F1 + F2) = (E|F1) + (E|F2)

C a . P + a . Q = a . P + a .(P ⊕r Q) + a . Q

The axioms A1 to A4 are as usual. The axioms P1 and P2 express the commu-
tativity and associativity of probabilistic choice, taking into account the proba-
bilities involved. Axiom P3 allows for splitting of a probabilistic process.

The group of processes M, L1 to L3, and S1a to S4 capture the parallel
operator ‖ with the help of the auxiliary operators � and |. Axiom M is an
interleaving rule: behavior of a parallel composition E‖F of two processes E
and F is either stemming from the process E expressed by E � F , stemming

www.manaraa.com

458 J. F. Groote and E. P. de Vink

from the process F expressed by F �E, or stemming from the processes E and F
synchronizing expresses by E|F .

In a leftmerge E � F , by definition, the first step must be taken by the
component E. In the extended transition relation of Definition 3.4 only rule
(left) applies. This explains axioms L1 and L2. In L2 the expression P ‖F
for P ∈ P and F ∈ E is defined by Δ(E)‖F = Δ(E‖F) and (P1 ⊕r P2)‖F =
(P1‖F)⊕r (P2‖F). Axiom L3 expresses that non-deterministic choice distributes
over the leftmerge.

Similar considerations apply to axioms S1a to S4 capturing the synchroniza-
tion operator |. Since E|F requires a transition from both operands, deadlock
results if either of them doesn’t have such. Synchronization of an a-transition
of E and a b-transition of F results in a transition labeled with γ(a, b) ∈ A as
given by the communication function γ. Non-deterministic choice also distributes
over the synchronization operator.

The final axiom C expresses combined behavior. If a non-deterministic pro-
cess has an a-transition evolving into the probabilistic process P and has an
a-transition evolving into the probabilistic process Q, then the non-deterministic
process also admits an a-transition evolving into any convex combination of P
and Q.

Before moving to completeness of AX for ↔ we treat soundness of AX .

Theorem 5.2. The theory AX is sound with respect to strong distribution
bisimulation for E ′ and P ′, i.e. for all E,F ∈ E , if AX � E = F then Δ(E) ↔
Δ(F) and for all P,Q ∈ P ′, if AX � P = Q then P ↔ Q.

Proof. In view of Theorem 4.7 it suffices to show that for each axiom of AX the
left-hand side and right-hand side are strongly distribution bisimilar. We only
cover the case of axiom M.

Pick E′, F ′ ∈ E arbitrarily. Define

R = {〈Δ(E′‖F ′),Δ(E′ �F ′ + F ′ �E′ + E′|F ′)〉} ∪
cc({ 〈Δ(E‖F),Δ(F ‖E)〉 | E,F ∈ E }) ∪ IdΔ

where IdΔ = { 〈Δ(E),Δ(E)〉 | E ∈ E ′ }. We have that R is decomposable, cf.
Lemma 4.3.

To see that E′‖F ′ and E′ � F ′) + F ′ � E′ + E′|F ′ match each other, we dis-
tinguish six cases: (i) If E′‖F ′ a−→ μ‖F ′ because E′ a−→ μ, then E′ �F ′ a−→ μ‖F ′

and μ‖F ′ Rμ‖F ′.
(ii) If E′‖F ′ a−→ E′‖ν because F ′ a−→ ν, then it holds that F ′ � E′ a−→ ν‖F ′

and E′‖ν R ν‖E′.
(iii) If E′‖F ′ c−→ μ‖ν because E′ a−→ μ and F ′ b−→ ν while γ(a, b) = c , then

E′|F ′ c−→ μ‖ν and μ‖ν Rμ‖ν.
(iv) If E′ � F ′ a−→ μ‖F ′ because E′ a−→ μ, then E′‖F ′ a−→ μ‖F ′ and

μ‖F ′ Rμ‖F ′.
(v) If F ′ � E′ a−→ ν‖E′ because F ′ a−→ ν, then it holds that E′‖F ′ a−→ E′‖ν

and E′‖ν R ν‖E′.

www.manaraa.com

An Axiomatization of Strong Distribution Bisimulation 459

(vi) If E′|F ′ c−→ μ‖ν because E′ a−→ μ and F ′ b−→ ν while γ(a, b) = c , then
E′‖F ′ c−→ μ‖ν and μ‖ν Rμ‖ν.

It follows that R is a strong distribution bisimulation relating Δ(E′‖F ′) and
Δ(E′ �F ′ + F ′ � E′ + E′|F ′), hence Δ(E′‖F ′) ↔ Δ(E′ � F ′ + F ′ �E′ + E′|F ′),
which was sufficient to show. ��
In the proof of completeness of AX we make use of a complexity function c
for our inductive argument. We want c to be such that for an axiom E = F
or P = Q of AX the weight c(E) or c(P) of the left-hand side is strictly larger
in weight than the right-hand side c(F) or c(Q). We will deploy sequences of
natural numbers as weights.

Addition on N
∗ is defined as element-wise addition. More concretely: (i) ε +

v = v, (ii) u + ε = u, (iii) (n . u) + (m. v) = (n + m) .(u + v), for u, v ∈ N
∗ and

n,m ∈ N. The ordering of N∗ is the lexicographic order restricted to sequences
of equal length. Thus n1 · n2 · · · · · ns < m1 · m2 · · · · · mt iff s = t and for
some j, 1 � j � s it holds that ni = mi for 1 � i < j and nj < mj . Since we
only compare sequences of equal length, it holds that < is a well-founded partial
order on N

∗.

Definition 5.3 (Complexity function). The function c : E ′ ∪ P ′ → N
∗,

assigning a complexity measure to processes, is defined as follows:

c(0) = 0 c(E‖F) = 4 + c(E) + c(F)
c(a . P) = 1 . c(P) c(E �F) = 1 + c(E) + 0 . c(F)

c(E + F) = c(E) + c(F) c(E|F) = 1 + c(E) + c(F)
c(Δ(E)) = 0 . c(E) c(P ⊕r Q) = c(P) + c(Q)

Please note, with N
∗ the ‘.’-operator in the definition of c above denotes con-

catenation of strings. The complexity function c and the well-foundedness of N∗

are exploited in the technical lemma below.

Lemma 5.4.

(a) For each extended non-deterministic process E′ ∈ E ′ a basic non-
deterministic process E0 ∈ E0 exists such that AX � E′ = E0.

(b) For each extended probabilistic process P ′ ∈ P ′ there is a basic probabilistic
process P0 ∈ P0 such that AX � P ′ = P0.

Proof. Suppose AX � C[E1] = C[E2] for a context C[·] and E1 = E2 an
instance of the axiom X of AX with E1 its LHS and E2 its RHS. If the axiom X
is M, L1-L3, or S1-S4, then it holds that c(C[E1]) > c(C[E2]). Otherwise,
it holds that c(C[E1]) = c(C[E2]). Moreover, in all cases, it holds that the
strings c(C[E1]) and c(C[E2]) are of equal length.

If a process E ∈ E ′ or P ∈ P ′ contains any of the operators ‖, � or | then at
least one of the axioms M, L1–L3, or S1a–S4 applies, matching its LHS to E or
to P , respectively.

If a process E ∈ E ′ or P ∈ P ′ contains none of the operators ‖, � or |, thus
E ∈ E0 or P ∈ P0, then c(E) = 0� or c(P) = 0� for suitable � ∈ N. This is directly

www.manaraa.com

460 J. F. Groote and E. P. de Vink

verified by structural induction on E and P : c(0) = 0 = 01, c(a . P) = 0 . c(P),
c(E + F) = c(E) + c(F), c(Δ(E)) = 0.c(E), c(P + Q) = c(P) + c(Q). Note, a
string 0� is a minimal element in N

∗ for the specific ordering on N
∗ introduced

above.
It follows that successive elimination of the operators ‖, � or | from an

extended non-deterministic process E ∈ E ′ by application of the axioms M, L1–
L3, or S1–S4, with the LHS of the axiom matching the redex and the RHS yield-
ing the reduct, is a terminating rewrite procedure, with a basic process E0 ∈ E0

as its normal form. The same applies to an extended probabilistic process P ∈ P ′

yielding a basic probabilistic process P0 ∈ P. ��
In view of the lemma, relating two bisimilar processes with possible occurrences
of ‖ boils down to relating their basic counterparts. However, for this argument
to be helpful, we need completeness of AX , or part of it, for bisimilar basic
processes.

Theorem 5.5. The equational theory AX 0 consists of the axioms A1–A4, P1–
P3, and C. Then it holds that AX 0 is sound and complete for strong distribution
bisimulation for P0.

As claimed in [6] the proof of Theorem 5.5 is a variation of the standard proof
method, cf. [29], and omitted here.

We are now ready to prove completeness of the proposed axiomatization.

Theorem 5.6. The equational theory AX is complete with respect to ↔ for P.

Proof. Suppose P,Q ∈ P such that P ↔ Q. Choose with help of Lemma 5.4
basic processes P0, Q0 ∈ P0 such that AX � P = P0 and AX � Q = Q0. Then
also P0 ↔ Q0 by Theorem 4.7. By Theorem 5.5 we obtain AX 0 � P0 = Q0.
Since AX 0 is subsumed by AX it follows that AX � P = Q. ��
We see that the extra complexity in proving Theorem 5.6 and subsequently
our resort to the complexity measure c is caused by the mixture P ‖F of a
probabilistic process and a non-deterministic process in the axiom L2 and the
propagation of parallel composition in P ‖Q in the axiom S2. The general outline
however is as established in [8,29].

6 Concluding Remarks

We studied an elementary process language featuring non-deterministic choice
and a parallel operator with synchronous communication on the one hand and
probabilistic choice on the other hand. For this language we presented an axiom-
atization characterizing strong distribution bisimulation and proved soundness
and completeness of the proposed set of axioms. The transition system of the
language supports so-called combined transitions and treats distributions over
non-deterministic processes as its building blocks. In order to support a finite
equational theory the processes language was extended with a leftmerge operator
and a synchronization operator.

www.manaraa.com

An Axiomatization of Strong Distribution Bisimulation 461

Soundness of the equational theory with respect to strong distribution bisim-
ulation involved, as usual, proving congruence and soundness of the axioms them-
selves. For completeness, because of the interplay of non-deterministic processes
involving the parallel operator, via the leftmerge and synchronization merge,
with probabilistic processes, some technical effort was required. The proof, how-
ever, stays in line with the standard approach known from the set-up without
probabilities.

In [22] a sound and complete equational theory for branching distribution
bisimulation, a weak variant of strong distribution bisimulation as treated in
the present paper, for a similar process language is proposed. The language
however doesn’t include a parallel construct. One may expect that establishing
a conservative extension of the theory AX , thus covering a parallel operator, that
captures branching distribution bisimulation will require substantial effort. Not
so much for the completeness proof itself, in view of Lemma 5.4, but because of
the before-mentioned interplay of non-deterministic and probabilistic processes
triggered by the parallel construct. This entanglement requires specific attention
when verifying transitivity of the process equivalence at hand and of a congruence
result for the parallel operator.

Future work aims at building a framework of a distribution-based notion of
process equivalence that allows a complete equational theory, an efficient decision
algorithm, and a logical characterization, both with respect to strong bisimula-
tion as well as to a form of weak bisimulation. Especially the construction of
a decision algorithm for branching distribution bisimulation attracts our atten-
tion. A decision algorithm for weak distribution bisimulation is proposed in [16].
A rather efficient algorithm for strong probabilistic bisimulation has been pre-
sented in [21], building on the the work of [5] and [35]. We hope to be able to
extend the approach of [21] to cater for strong distribution bisimulation first.

In the long run we aim to build a probabilistic extension of the mCRL2
toolset [10] (also see www.mcrl2.org) of which a modest part has been realized
as yet [23]. Possibly the completeness result presented in the current paper will
provide a similar building block for our framework as the completeness result
of [20], reworked in [19], does for ACTL, the action-based version of CTL, which
is underpinning the KandISTI tool family [7] developed at CNR/ISTI.

Acknowledgement. JFG acknowledges the mutual inspiration of the development
teams of mCRL2 and KandISTI. A nice example is the inclusion of the LTS mini-
mization algorithm as provided in the mCRL2 toolset which has been incorporated in
the KandISTI family members UMC and FMC. Also the attention for model checking
of variability and software product lines with the mCRL2 toolset is such an example.
EV acknowledges the warm hospitality of Stefania Gnesi and her research group at the
CNR in Pisa at various occasions and the many pasti accoglienti shared together.

www.mcrl2.org

www.manaraa.com

462 J. F. Groote and E. P. de Vink

References

1. Andova, S., Baeten, J.C.M., Willemse, T.A.C.: A complete axiomatisation of
branching bisimulation for probabilistic systems with an application in protocol
verification. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137,
pp. 327–342. Springer, Heidelberg (2006). https://doi.org/10.1007/11817949 22

2. Andova, S., Willemse, T.A.C.: Branching bisimulation for probabilistic systems:
characteristics and decidability. Theor. Comput. Sci. 356, 325–355 (2006)

3. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories
of Communicating Processes. Cambridge Tracts in Theoretical Computer Science,
vol. 50. CUP, Cambridge (2010)

4. Baeten, J.C.M., Bergstra, J.A., Smolka, S.A.: Axiomatizing probabilistic processes:
ACP with generative probabilities. Inf. Comput. 121(2), 234–255 (1995)

5. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and simi-
larity for probabilistic processes. J. Comput. Syst. Sci. 60, 187–231 (2000)

6. Bandini, E., Segala, R.: Axiomatizations for probabilistic bisimulation. In: Orejas,
F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–
381. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 31

7. ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a family of model
checkers. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems.
LNCS, vol. 8950, pp. 312–328. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15545-6 20

8. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf.
Control 60(1–3), 109–137 (1984)

9. Bernardo, M., Gorrieri, R.: Extended Markovian process algebra. In: Montanari,
U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61604-7 63

10. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

11. Crafa, S., Ranzato, F.: Logical characterizations of behavioral relations on transi-
tion systems of probability distributions. ACM Trans. Comput. Logic 16(1), 2:1–
2:24 (2014)

12. Deng, Y., Hennessy, M.: On the semantics of Markov automata. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 307–318. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8 24

13. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222,
139–168 (2013)

14. Deng, Y., Palamidessi, C.: Axiomatizations for probabilistic finite-state behaviors.
Theor. Comput. Sci. 373, 92–114 (2007)

15. Deng, Y., Palamidessi, C., Pang, J.: Compositional reasoning for probabilistic
finite-state behaviors. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F.,
de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity.
LNCS, vol. 3838, pp. 309–337. Springer, Heidelberg (2005). https://doi.org/10.
1007/11601548 17

16. Eisentraut, C., Hermanns, H., Krämer, J., Turrini, A., Zhang, L.: Deciding bisim-
ilarities on distributions. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R.
(eds.) QEST 2013. LNCS, vol. 8054, pp. 72–88. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40196-1 6

https://doi.org/10.1007/11817949_22
https://doi.org/10.1007/3-540-48224-5_31
https://doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.1007/3-540-61604-7_63
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-642-22012-8_24
https://doi.org/10.1007/11601548_17
https://doi.org/10.1007/11601548_17
https://doi.org/10.1007/978-3-642-40196-1_6

www.manaraa.com

An Axiomatization of Strong Distribution Bisimulation 463

17. Fischer, N., van Glabbeek, R.: Axiomatising infinitary probabilistic weak bisim-
ilarity of finite-state behaviours. J. Log. Algebr. Methods Program. 102, 64–102
(2019)

18. Giacalone, A., Jou, C.-C., Smolka, S.A.: Algebraic reasoning for probabilistic con-
current systems. In: Broy, M. (ed.) Proceedings of IFIP WG 2.2 & 2.3 Working
Conference on Programming Concepts and Methods, pp. 443–458 (1990)

19. Gnesi, S., ter Beek, M.H.: From the archives of the formal methods and tools lab.
In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages,
and Tools for Concurrent and Distributed Programming. LNCS, vol. 11665, pp.
219–235. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21485-2 13

20. Gnesi, S., Larosa, S.: A sound and complete axiom system for the logic ACTL. In:
De Santis, A. (ed.) Proceedings of ICTCS 1995, Ravello, 9–11 November 1995, pp.
291–306 (1995)

21. Groote, J.F., Rivera Verduzco, H.J., de Vink, E.P.: An efficient algorithm to deter-
mine probabilistic bisimulation. Algorithms 11(9), 131–1-22 (2018)

22. Groote, J.F., de Vink, E.P.: A complete axiomatization of branching bisimulation
for a simple process language with probabilistic choice, Submitted

23. Groote, J.F., de Vink, E.P.: Problem solving using process algebra considered
insightful. In: Katoen, J.-P., Langerak, R., Rensink, A. (eds.) ModelEd, TestEd,
TrustEd. LNCS, vol. 10500, pp. 48–63. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68270-9 3

24. Hansson, H., Jonsson, B.: A calculus for communicating systems with time and
probabilities. In: Proceedings of RTSS 1990, pp. 278–287. IEEE (1990)

25. Hennessy, M.: Exploring probabilistic bisimulations, part I. Formal Aspects Com-
put. 24, 749–768 (2012)

26. Hillston, J.: A compositional approach to performance modelling. Ph.D thesis,
University of Edinburgh (1994)

27. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94, 1–28 (1991)

28. Latella, D., Massink, M., de Vink, E.P.: Bisimulation of labelled state-to-function
transition systems coalgebraically. Log. Methods Comput. Sci. 11(4) (2015).
https://doi.org/10.2168/LMCS-11(4:16)2015, https://lmcs.episciences.org/1617

29. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs
(1989)

30. Moller, F.: The importance of the left merge operator in process algebras. In: Pater-
son, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 752–764. Springer, Heidelberg
(1990). https://doi.org/10.1007/BFb0032072

31. Parma, A., Segala, R.: Logical characterizations of bisimulations for discrete prob-
abilistic systems. In: Seidl, H. (ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 287–301.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71389-0 21

32. Segala, R.: Modeling and Verification of Randomzied Distributed Real-Time Sys-
tems. Ph.D thesis, MIT (1995). Technical report MIT/LCS/TR-676

33. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jon-
sson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer,
Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1 35

34. Stark, E.W., Smolka, S.A.: A complete axiom system for finite-state probabilistic
processes. In: Plotkin, G.D., Stirling, C., Tofte, M. (eds.) Proof, Language, and
Interaction, Essays in Honour of Robin Milner, pp. 571–596. The MIT Press (2000)

35. Valmari, A.: Simple bisimilarity minimization in O(mlogn) time. Fundamenta
Informaticae 105(3), 319–339 (2010)

https://doi.org/10.1007/978-3-030-21485-2_13
https://doi.org/10.1007/978-3-319-68270-9_3
https://doi.org/10.1007/978-3-319-68270-9_3
https://doi.org/10.2168/LMCS-11(4:16)2015
https://lmcs.episciences.org/1617
https://doi.org/10.1007/BFb0032072
https://doi.org/10.1007/978-3-540-71389-0_21
https://doi.org/10.1007/978-3-540-48654-1_35

www.manaraa.com

Applications

www.manaraa.com

Enabling Auditing of Smart Contracts
Through Process Mining

Flavio Corradini, Fausto Marcantoni, Andrea Morichetta, Andrea Polini,
Barbara Re(B), and Massimiliano Sampaolo

University of Camerino, Camerino, Italy
{flavio.corradini,fausto.marcantoni,andrea.morichetta,

andrea.polini,barbara.re,massimiliano.sampaolo}@unicam.it

Abstract. The auditing sector is acquiring a strong interest in the dif-
fusion of blockchain technologies. Such technologies guarantee the per-
sistence, and authenticity of transactions related to the execution of a
contract, and then enable auditing activities. In particular, they make
possible to check if observed sequences of transactions are in line with
the possibly expected ones. In other words, auditing blockchain transac-
tions allow users to check if the smart contract fits the expectation of the
designers, that for instance could check if a given activity is performed
or if it satisfies a given set of properties. In such a setting we propose a
methodology that exploits process mining techniques to evaluate smart
contracts, and to support the work of the auditor. Models resulting from
the mining can be used to diagnose if the deployed application works as
expected, and possibly to continuously improve them. We illustrate the
use of our approach using a small, but real, case study.

Keywords: Blockchain · Smart contract · Process mining · Audit

1 Introduction

The adoption of blockchain-related technologies is spreading over many different
contexts. When adopted in a new context [26] they generally have disruptive
effects on traditional business, and they introduce novel ways of interactions
(e.g., payment [19], agriculture [23] and others). Such transformations involve
not only companies but also public authorities, that are currently recognising
the potentialities of such technologies. The success of the “blockchain” is also
confirmed by the significant interest of the community towards a technology able
to guarantee trust natively using a faultless and robust validation system (e.g.,
in the last two years there have been 3.7 million Google searches for blockchain).
The other key factor in the success of such a technology is tied to smart con-
tracts. A smart contract is very much similar to a real physical contract which
however takes the form of a digital artefact, and it can be used to establish
business relations. These relations are enforced automatically via transactions
as soon as the terms of the contract are fulfilled, and then the transactions are
c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 467–480, 2019.
https://doi.org/10.1007/978-3-030-30985-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_27&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_27

www.manaraa.com

468 F. Corradini et al.

stored in the blockchain. The execution of a smart contract results in a set of
activities that are carried out in a particular order. The order of execution of
the activities describes the business logic of the contracts, and provide evidence
to the interested partners about their completion.

Even though in a contract it is generally useful to define an order for the
permitted actions, the smart contract specification does not provide mechanisms
to enforce an order. It is then generally useful to define new methodologies for
auditing the control flow of blockchain-based applications [13], and then to check
if the actual execution of the contract functions conforms to the expected ones.
Process mining is certainly a possible strategy to support auditors in such checks.
Indeed, previous experiences show the possible benefits of process mining [2] in
relation to auditing activities [4,20]. Such experiences underline the possibility
to perform a better analysis of the process flow based on historical data as
well as the possibility of auditing processes on-the-fly. Up to now, blockchain
has the potential to impact the audit sector making particularly significant the
application of process mining as a supporting technique.

In this paper, we illustrate the methodology, and we report the results we
obtained in applying process mining for auditing smart contracts. In particular,
we consider the list of transactions resulting from the execution of RotoHive,
that is an online fantasy sport running weekly tournaments. The application has
been implemented as a smart contract on the Ethreum blockchain, that provides
a set of functions that a player can invoke to play in a tournament. In running
process mining we apply three different algorithms: the Heuristics Miner [24],
the Inductive Miner [21,22], and the Split Miner [10]. Fitness, precision and
generalisation are measured to check the quality of the mining activity. The
major benefits of our methodology are as follows.

– Reduce time and cost for auditing contracts usually done manually on a set
of transactions randomly selected.

– Improve the effectiveness of auditing, since by looking at all the transactions,
auditors will inevitably find more exceptions requiring follow-up.

– Make it easier to investigate deviations highlighting anomalies at run-time.

The rest of the paper is organised as follows. Section 2 provides an overview
of blockchain technology and process mining. Sections 3 introduces the method-
ology we follow in our study, while Sect. 4 presents the case study we consider
as well as recommendations resulting from the conducted analysis. Section 5
presents related works available in the literature. Finally, Sect. 6 closes the paper
with some remarks and opportunities for future works.

2 Background

This section presents the relevant notions related to blockchain, with a particular
focus on Ethereum, and process mining.

Blockchain and Ethereum. A blockchain is a distributed ledger composed
by a linked list (cf. chain) of records called blocks [26]. Each block contains a

www.manaraa.com

Enabling Auditing of Smart Contracts Through Process Mining 469

limited number of transactions in its body, while the header includes, among
other things, the hash of the current block and the hash of the previous block.
New blocks are added to the chain at regular intervals of time by the so-called
“miners”. These are computational nodes related to the blockchain infrastruc-
ture that is needed to derive the hash of a block. The mining process and the use
of consensus protocols permit us to verify the genuineness of the transactions
included in each block. Finally, the replication of the chain in any node of the
network guarantees decentralization and trustworthiness, without the need of a
third party independent authority. The blockchain ideas have been initially pro-
posed to support payment systems based on cryptocurrencies. In the last years,
its adoption spread off in many different contexts, also about the inclusion of
additional mechanisms, such as that of smart contracts. These can be considered
as special programs which are executed over the blockchain infrastructure, whose
nodes are now equipped, in some specific technologies such as Ethereum, with
computational power. The execution of smart contracts produces transactions
to be stored in the blockchain, thus ensuring trust among the parties.

Ethereum is a concrete implementation of the blockchain that includes sup-
port for the execution of smart contracts [33]. This is the technology we used
in our approach. In Ethereum every node connected to the Ethereum network
embeds an instance of the Ethereum Virtual Machine (EVM). The operations
executed in the EVM, like storage of information or contract instructions have an
associated economic cost defined in terms of GAS, which is the unit measuring
the amount of computational effort needed for the execution of the operation.
The execution cost has two main advantages: (i) it reduces the risk of mali-
cious computational tasks, and (ii) it encourages mining activities by network
participants and, hence, it permits to keep the overall system working. Indeed,
miners are rewarded for each block they mine with a default amount of Ethers
plus the sum of the transaction fees included in the block. Currently, the most
prominent language to write smart contracts for Ethereum is Solidity (https://
solidity.readthedocs.io/).

Process Mining. Process Mining is a discipline in between data mining and
computational intelligence on the one hand, and process modeling and analysis
on the other [2]. Process mining aims to extract non-trivial and useful infor-
mation from event logs available in today’s information systems for discovering,
monitoring and improving real processes [3]. It is an evidence-based approach,
and this ensures a closer correspondence between modeled and observed behav-
ior because the evaluation and definition of the model are based on real process
execution traces.

In process mining, we can distinguish different activities such as discovery
and conformance. The first technique, discovery, produces a model from an
event log without using any a priori information, and usually, the discovered
model is a process model expressed in a formal notation. The second class is
conformance; it allows users to compare a process model with an event log
of the same process. This is a useful technique to check whether a process as
inferred from the log corresponds to the expected model and vice versa.

https://solidity.readthedocs.io/
https://solidity.readthedocs.io/

www.manaraa.com

470 F. Corradini et al.

The discovery activity is generally based on an algorithm able to produce a
model from a log. Over the years several mining algorithms have been developed,
each with its proper characteristics [9]. In this paper, we apply three of them,
such as Heuristics Miner, Inductive Miner and Split Miner, and we shortly discuss
the results we get.

– The Data-aware Heuristic Miner (DHM) is an algorithm for discovering
process models where the behaviour is obscured in the event logs by noise,
infrequent outliers or recording errors [24]. Data-aware Heuristic Miner uses
the data attributes and dependency condition to distinguish infrequent paths
from random noise by using classification techniques directly embedded in the
discovery algorithm built upon the Heuristic Miner. The discovered models
are, then, visualized as Causal Nets (C-Nets), a concise graphical notation
with clear semantics, which includes information on split and join gateways.

– The Inductive Miner is an algorithm based on a divide-and-conquer app-
roach [21,22]. Such an approach is applied to the log splitting it into sub-logs
and then recursively applied to these sub logs until they contain only a sin-
gle activity. In this way, the problem of discovering a process model for a
log is broken down in discovering several sub-processes, one for each sub-log.
The algorithm ensures to return a sound, fitting and block-structured process
model in finite time.

– The Split Miner is an algorithm similar to the heuristic miner, however
experiments showed that the algorithm is 2–6 times faster than other state-of-
the-art methods [10]. The first step of the algorithm constructs the Directly-
Follows Graph; then it detects self-loops and short-loops to discover con-
currency relations between pairs of tasks. Whenever a likely concurrency
relation between two tasks is discovered, the arcs between these two tasks
are pruned from the Directly-Follows Graph resulting in a pruned Directly-
Follows Graph. In the third step filtering is applied to the pruned Directly-
Follows Graph to strike balanced fitness and precision, still maintaining low
control-flow complexity. In the fourth step, split gateways are discovered for
each task in the filtered pruned Directly-Follows Graph with more than one
outgoing arc. This is followed by the discovery of join gateways that is the
last step of the algorithm.

It is worth noticing that processes resulting from the mining are different in
term of representation language. All of them can be traced back, up to some
transformations, to BPMN [27] that is the target language we use in this paper
being well-know and understandable to auditors.

To measure the quality of a discovered model in comparison to the event log
that generated it several quality parameters have been defined [30]. Among the
other we refer to:

– Fitness: permits to measure the extent to which the discovered model can
accurately reproduce the cases recorded in the log;

– Precision: permits to measure how much additional behaviour is included in
the model i.e. a poor precision means that a model admits much additional
behaviour with respect to that reported in the log;

www.manaraa.com

Enabling Auditing of Smart Contracts Through Process Mining 471

– Generalization: permits to measure how much the model just reproduce the
behaviour reported in the log i.e. a low level of generalization means that the
model cannot handle much more behavior with respect to the one reported
in the log, maybe because not yet observed.

Overall the purpose of mining is to discover a model representative of the
behaviour expressed by the event log and “to guess” additional behaviour. To
generate a process model in line with reality, the algorithms should maintain a
proper balance between overfitting and underfitting. The former property means
that the generated model is too specific and only admits behaviour similar to
that observed, while the latter property, however, presents a model too general
which also accepts behaviours that are probably unrelated to the observed one.

3 Enabling the Auditing of Blockchain Contract

In this paper, we envisage a scenario based on process mining techniques to sup-
port auditing of processes “enacted” using smart contracts. In Fig. 1 we illustrate
how the methodology we propose fits in the life-cycle of business transactions
established through a smart contract. In particular, given a set of requirements
on the transactions, a developer will define a smart contract (expressed in Solid-
ity in our case), that will be successively deployed and executed over a blockchain
infrastructure (EVM in our case). The execution of the contract will lead to a set
of related transactions stored in the blockchain. At that point, it is important
to check that, among other checks, the sequence of actions and interactions put
in place by the contract participants are in line with what was expressed in the
requirements. To enable such auditing activity we conceived and implemented
the ABC (Auditing Blockchain Contracts) methodology that we will detail in
the following. The methodology consists of four phases executed one after the
other iteratively as represented in Fig. 2.

Smart Contract Transactions Retrieval. The first phase of the method-
ology consists in the selection of a smart contract to be audited from the
blockchain. The proposed approach has some interest in case the contract embeds
a complex behaviour in terms of ordering of the contract foreseen operations.
In general, not all contracts implement complex behaviours, since they contain
single functionality usually not correlated each others. In this work, we are inter-
ested in challenging contracts with a complex logic since we believe that auditing
can give greater benefit in case of complex behaviour. In this work, we select
two requirements to consider the contract auditable: (i) the number of recorded
transactions should be higher of a given threshold calculated on the dimension
of the contract (i.e., in our case we set such threshold to 100), and (ii) it should
contain at least one user any links to multiple interactions on different meth-
ods of the contract to observe meaningful emergent behaviours. Indeed, if this
were not the case, we would not have a concrete order on the operations of
the contract. From a technical point of view, the described operations are pretty

www.manaraa.com

472 F. Corradini et al.

Fig. 1. ABC methodology context.

straightforward. We developed a simple application in C# integrating the Ether-
scan API, that permits to scan the blockchain looking for contracts according
to pre-selected requirements, and it allows users to get the list of transactions
in JSON format.

Transactions Clustering. The second phase of the methodology performs
clustering activities on the retrieved blockchain transactions. The main chal-
lenge at this point is connected to the selection of the clustering criteria. Smart
contracts do not integrate the notion of traces; each transaction represents some-
thing performed without any links with other transactions. To implement a sig-
nificant correlation and to generate a set of traces we need to cluster transactions
according to some logic.

In our approach, we solve the problem of creating traces grouping together
transactions coming from the same sender. This means that a new trace is gener-
ated for each user. This trace contains the list of transactions exchanged between
the user, and the contract ordered according to their timestamps. The main
drawback of this clustering methodology refers to the possibility of correlating
sequential operations just because they are executed one after the other, even if
in reality they do not have any causal dependency.

Fig. 2. ABC methodology.

www.manaraa.com

Enabling Auditing of Smart Contracts Through Process Mining 473

From a technical perspective, in the clustering step we take the JSON file
produced in the previous phase, and we generate an event log, which is then
stored in a file in XES format [28].

Discovery and Evaluation. The third phase of the methodology performs a
process mining discovery activity. In this work we have used three different dis-
covery algorithms: the Heuristics Miner [24], the Inductive Miner [21,22], and
the Split Miner [10]. We consider the Inductive Miner and the Split Miner thanks
to its performance characteristics [9], and we also include the Heuristic Miner
because it generally performs better with respect to quality criteria [12]. The used
algorithms generate three different models that are compared using quality mea-
sures like fitness, precision and generalization [1]. Running three algorithms the
auditor has the possibility to consider a wider spectrum of possible behaviours.
Indeed the three resulting models collectively represent different and possible
working scenarios. From a technical perspective, we take in input the log in
the XES format and using the Apromore process mining tool1 we discover the
behavioural model emerging from the recorded transactions using Split Miner,
while we use ProM2 in the case of Heuristic and Inducting. Finally, ProM was
used to compute quality measure.

Conformance. The last phase of the methodology analyses the models gener-
ated by the discovery phase, to find discrepancies concerning what is expected
by the specified requirements. This is the most important phase of the audit-
ing activity; furthermore, this analysis phase will lead to a successive contract
re-engineering in case of unsatisfactory results. In the presented approach this
activity does not include automatic support, yet. Nevertheless, it is clear that
model checking techniques [15,16], to check interesting temporal properties, seem
to be a perfect fit for such an activity. Clearly, in such a case it will be necessary
to equip the auditor with user-friendly tools to define relevant properties out of
the requirements list.

4 Process Mining in Blockchain: The RotoHive Case

In this section, we show the methodology in practice considering a real case
study such as RotoHive3. More details on data used in the experiment as well
as resulting model are available on-line4.

4.1 RotoHive Overview

RotoHive is a fantasy sport running weekly tournaments. Every Tuesday a new
tournament starts, and users are asked to rank National Football League (NFL)

1 http://apromore.unicam.it.
2 http://www.promtools.org.
3 https://www.rotohive.com.
4 http://pros.unicam.it/blockchainauditing/.

http://apromore.unicam.it
http://www.promtools.org
https://www.rotohive.com
http://pros.unicam.it/blockchainauditing/

www.manaraa.com

474 F. Corradini et al.

players by role based on projected performance for the week. RotoHive user sub-
missions are then rated against real player performances. At the end of Monday
night football matches, top performing RotoHive users are paid according to the
rank of the selected players. This process repeats on Tuesday morning when the
next weekly tournament begins. Roto can then be staked to user submissions to
win a portion of a separate weekly Ethereum prize pool.

4.2 ABC Methodology in Practice

Considering the smart contract transactions retrieve activity, the Roto-
Hive application was selected since it contains more than 3000 transactions5 dis-
tributed over 4 months (from August to December 2018), and it includes several
users. This characteristics make it a quite challenging scenario for experimenting
with the proposed approach.

The transactions were clustered and formatted in a XES file considering
the users interacting with the contract. Each trace is identified by a tag contain-
ing the address of the user, and a list of events performed by the user on the
contract. Each event contains the name of the method called if it is completed
and the corresponding timestamp. Listing 1.1 shows an excerpt of the XES file
representing a trace performed by a user for the RotoHive stake method resulting
in a transaction.

Listing 1.1. Log Excerpt.
1 <trace>
2 <s t r i n g key= ‘ ‘ concept : name” value = ‘ ‘0 xd12c89fe9dccb84dd8fc2ba426df fe94169”/>
3 <event>
4 <s t r i n g key= ‘ ‘ concept : name” value = ‘ ‘ s take”/>
5 <s t r i n g key= ‘ ‘ l i f e c y c l e : t r a n s i t i o n ” value = ‘ ‘ complete”/>
6 <date key= ‘ ‘ time : timestamp” value=‘‘2018−10−12T04 :39:00.000+02:00”/ >
7 <s t r i n g key= ‘ ‘ event ” value= ‘ ‘ s take”/>
8 </event>
9 .

10 .
11 .
12 <event> . . . </event>
13 </trace>

The process discovery resulted in three models generated applying the
Split Miner, Inductive Miner and the Heuristic Miner. The processes are depicted
in Figs. 3, 4 and 5 respectively.

The three discovered models contain the same number of tasks, with two
principal dominant behaviours, one representing the users playing the game and
the other covering the behaviour of the administrator. The path representing the
users contains just one task stake closed in a loop, indicating that a player can
perform multiple stakes in each tournament. The path representing the admin-
istrator is composed of two initial tasks constructor (i.e., 0x60806040) and set-
tokencontract indicating the first initialization of the game followed by the tasks
representing the tournaments. In the tournament we have createtournament for
the creation of a new tournament followed by the operation performed once the
tournament is completed releaseroto, rewardroto, destroyroto, and closetourna-
ment.

5 https://etherscan.io/address/0x0d19d264207a3afad4094f26b693ff5590361b0d.

https://etherscan.io/address/0x0d19d264207a3afad4094f26b693ff5590361b0d

www.manaraa.com

Enabling Auditing of Smart Contracts Through Process Mining 475

Analysing the models we can state that the behaviour of each player is rather
simple, and all the models reproduce a similar structure. Different is the case for
the administrator part where the three models differ significantly for the tasks
executed at the end of each tournament: destroyroto, releaseroto, rewardroto,
and closetournament. The Split Miner, in Fig. 3, admits a first occurrence of
the rewardroto task, and then the other tasks. In particular, destroyroto when
executed occurs always after releaseroto. The Inductive Miner, in Fig. 4, admits
to create the tournament and then two paths are possible. It can complete or
execute rewardroto followed by two paths in parallel. The first includes the possi-
bility to eventually execute several times releaseroto, while the other can execute
destroyroto follow by closetournament tasks enclosed in a loop structure. This
two paths are successively synchronised, and then the process ends. The Heuris-
tic Miner, in Fig. 5, instead admits createturnament that is always followed by
rewardroto. Than the three tasks releaseroto, destroyroto and closeturnament can
be execute in sequence. Eventually releaseroto and destroyroto can be skipped.

Fig. 3. RotoHive Split Miner.

To evaluate the quality of the mining algorithms applied to the RotoHive case
study we considered fitness, precision, and generalisation in Table 1. Generally,
we can observe that both fitness and generalization values are quite good for all
3 algorithms, while precision is more variable, and in general observed values are
lower. Notably, having models with a value of fitness equal to one guarantees
that all the traces in the log can be reproduced by it.

All three models represent quite well the application domain, so it is chal-
lenging to choose the best process mining algorithm to be used for audit applied
to the blockchain domain. At this point, the evaluation is up to the auditor, who
must consider all the models and their quality. If the auditors are interested in
a model reflecting better the whole log our best solution is the Split Miner or
Inductive Miner with the highest value of fitness, but with the drawback of low
precision. If the auditors are more interested in highest value of precision they

www.manaraa.com

476 F. Corradini et al.

Fig. 4. RotoHive Inductive Miner.

Fig. 5. RotoHive Heuristic Miner.

should use the Heuristic Miner loosing a bit the quality of the other parameters
that are slightly below the others but not significantly.

4.3 Discussion

The used approach has lead to good results with sound models discovered, and
pretty good quality parameters measured. The usage of more than one mining
algorithm seems somehow desirable for auditing purpose. Indeed, the objective
of the auditors is to identify any potential risk, and to make a careful assessment
on what happened, but also on what could potentially happen. In this sense, we
are working to make the presentation of potential risks easier.

Potentially the methodology used could also be useful to understand how
a user interacts with a system, and to compare different behaviours with the
expected one defined by requirements. Going even further in this direction we
could understand the characteristics of certain users by analysing how they inter-
acted on different systems. The designer after an accurate evaluation of the diver-
gences can also decide to review the contract to force or avoid specific behaviour.

www.manaraa.com

Enabling Auditing of Smart Contracts Through Process Mining 477

Table 1. RotoHive quality measures.

Algorithm Fitness Precision Generalization

Split Miner 1 0.20486 0.99897

Inductive Miner 1 0.20389 0.99881

Heuristic Miner 0.92307692 0.5 0.99872

5 Related Work

In this section, we refer to the research available in the literature that inspired
our work. We first discuss other papers proposing process mining techniques for
audit, then we discuss solutions to enable secure and trustworthy auditing of
logs.

Much effort has been devoted to the application of process mining techniques
to auditing scenarios. Here in the following, we refer to those contributions sup-
porting, as in the case of our approach, a semi-automatic strategy.

Dogana and Curbera [17] present a semi-automatic auditing approach in
cases where there is no process execution engine. Ghose and Koliadis [18] present
a broad auditing framework suitable to check the compliance status of a business
process against given regulations. Zerbino et al. [34] propose a novel method-
ology for auditing information systems; they also discuss an application on the
information exchange among port stakeholders. The authors provide operational
guidance bridging the gaps of the current approaches for off-line information sys-
tem auditing. Similarly to our approach the proposed methodology promotes the
process reengineering, and for revising the boundaries in the process flow of the
port community system. Accorsi and Stocker [5] use conformance checking for
security auditing. They also discuss a case study employing a bank scenario and
a real-life loan application process. Conformance checking is also introduced by
Ramezani et al. [29]. In this paper the check considers the control flow and the
normative requirements. Mayers et al. [25] use process mining and conformance
checking analysis techniques to identify anomalous behaviour and cyber-attacks
using industrial control systems data logs. Moreover, Arya et al. [7] use event
logs collected in real time to run conformance on the operational process. The
obtained results are also compared with simulated event logs to perform more
accurate conformance checking. Different from our work none of the considered
papers take into account blockchain transactions as a log for auditing those
applications based on blockchain.

Finally, we considered solutions to enable secure and trustworthy auditing of
logs. Among the others, we refer to Ahmad et al. [8], and Sutton and Samavi
[31,32] discussing the possibility of the blockchain to enable privacy auditing.
In particular, Ahmad et al. [8] present a scalable and tamper-proof system.
Sutton and Samavi [32] provide a mechanism for log integrity and authenticity
verification, by means of compliance checking queries. These papers underline

www.manaraa.com

478 F. Corradini et al.

the importance of performing the auditing in blockchain-related scenarios even
though they do not propose any possible solutions for such an activity.

6 Conclusions and Future Work

The increasing adoption of blockchain technology disrupts traditional businesses,
and it introduces a novel way to sign and run contracts. The combined use of
blockchain technologies and process mining presents novel challenges and oppor-
tunities for auditing activities that can rely on trustworthy logs.

In this paper, we present the results we obtained in applying process min-
ing for auditing Ethereum applications. In particular, we consider RotoHive’s
generated transactions. This is an on-line fantasy sport that runs weekly tour-
naments. The auditing activity has been performed using the discovered models
and considering fitness, precision and generalization.

In the future, we plan to continue our programme to support auditors of
blockchain-based applications effectively. Therefore we aim at enlarging the
study running a more extensive validation, and considering a broad set of differ-
ent blockchain-based applications that can be optimized via cost/reward method
[6]. We also intend to deepen our research on the possible selection of one or more
mining algorithm, and their suitability and checking its performance and effec-
tiveness. Moreover, we would evolve the methodology with a prototype suitable
to run auditing activity in a user-friendly manner. Finally, we would like to
explore other analysis techniques for auditing, i.e. monitoring [11] and confor-
mance [14].

Acknowledgement. It is really our pleasure to take part in Stefania’s Festschrift. The
cooperation with her and her group is somehow recent, nevertheless it has been very
profitable, and inspiring both from the professional and human profile. In particular the
cooperation has strengthened in relation to the Learn PAd European research project
where both UNICAM and ISTI–CNR were partners. The work we present here can be
somehow considered a germination of the research carried on together within Learn
PAd. We thank Stefania for her friendship, and wish her all the best for the future.

References

1. Van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisc. Rev.
Data Min. Knowl. Disc. 2(2), 182–192 (2012)

2. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

3. van der Aalst, W.M.P., et al.: Process mining manifesto. In: Daniel, F., Barkaoui,
K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28108-2 19

4. van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M.E.M., Verdonk, M.:
Auditing 2.0: using process mining to support tomorrow’s auditor. IEEE Comput.
43(3), 90–93 (2010)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-642-28108-2_19

www.manaraa.com

Enabling Auditing of Smart Contracts Through Process Mining 479

5. Accorsi, R., Stocker, T.: On the exploitation of process mining for security audits:
the conformance checking case. In: Symposium on Applied Computing, pp. 1709–
1716. ACM (2012)

6. Aceto, L., Larsen, K.G., Morichetta, A., Tiezzi, F.: A cost/reward method for
optimal infinite scheduling in mobile cloud computing. In: Braga, C., Ölveczky, P.C.
(eds.) FACS 2015. LNCS, vol. 9539, pp. 66–85. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-28934-2 4

7. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards robust con-
formance checking. In: zur Muehlen, M., Su, J. (eds.) BPM 2010. LNBIP, vol.
66, pp. 122–133. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
20511-8 11

8. Ahmad, A., Saad, M., Bassiouni, M., Mohaisen, A.: Towards blockchain-driven,
secure and transparent audit logs. In: 15th EAI International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Services, pp. 443–448. ACM
(2018)

9. Augusto, A., et al.: Automated discovery of process models from event logs: review
and benchmark. IEEE Trans. Knowl. Data Eng. 31, 686–705(2018)

10. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L.: Split Miner: discovering accu-
rate and simple business process models from event logs. In: International Confer-
ence on Data Mining, pp. 1–10. IEEE (2017)

11. Bertolino, A., Marchetti, E., Morichetta, A.: Adequate monitoring of service com-
positions. In: 9th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
pp. 59–69 (2013)

12. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: Meersman, R.,
et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33606-5 19

13. Casino, F., Dasaklis, T.K., Patsakis, C.: A systematic literature review of
blockchain-based applications: current status, classification and open issues. Telem-
atics Inform. 36, 55–81 (2019)

14. Corradini, F., Morichetta, A., Polini, A., Re, B., Tiezzi, F.: Collaboration vs. chore-
ography conformance in BPMN 2.0: from theory to practice. In: 22nd International
Enterprise Distributed Object Computing Conference, pp. 95–104. IEEE (2018)

15. Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F.: A formal approach to
modeling and verification of business process collaborations. Sci. Comput. Pro-
gram. 166, 35–70 (2018)

16. Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., Vandin, A.: BproVe: a
formal verification framework for business process models. In: Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering,
ASE 2017, Urbana, IL, USA, 30 October–03 November 2017, pp. 217–228 (2017)

17. Doganata, Y., Curbera, F.: Effect of using automated auditing tools on detecting
compliance failures in unmanaged processes. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 310–326. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03848-8 21

18. Ghose, A., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74974-5 14

https://doi.org/10.1007/978-3-319-28934-2_4
https://doi.org/10.1007/978-3-319-28934-2_4
https://doi.org/10.1007/978-3-642-20511-8_11
https://doi.org/10.1007/978-3-642-20511-8_11
https://doi.org/10.1007/978-3-642-33606-5_19
https://doi.org/10.1007/978-3-642-03848-8_21
https://doi.org/10.1007/978-3-540-74974-5_14

www.manaraa.com

480 F. Corradini et al.

19. Holotiuk, F., Pisani, F., Moormann, J.: The impact of blockchain technology on
business models in the payments industry. In: Towards Thought Leadership in
Digital Transformation: 13. Internationale Tagung Wirtschaftsinformatik, pp. 12–
15 (2017)

20. Jans, M., Alles, M.G., Vasarhelyi, M.A.: The case for process mining in auditing:
sources of value added and areas of application. Int. J. Accounting Inf. Syst. 14(1),
1–20 (2013)

21. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06257-0 6

22. Leemans, S.J., Fahland, D., van der Aalst, W.M.: Discovering block-structured
process models from event logs - a constructive approach. Petri Nets 7927, 311–
329 (2013)

23. Leng, K., Bi, Y., Jing, L., Fu, H., Nieuwenhuyse, I.V.: Research on agricultural
supply chain system with double chain architecture based on blockchain technology.
Future Gener. Comp. Syst. 86, 641–649 (2018)

24. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Data-driven
process discovery - revealing conditional infrequent behavior from event logs. In:
Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 545–560. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59536-8 34

25. Myers, D., Suriadi, S., Rad, K., Foo, E.: Anomaly detection for industrial control
systems using process mining. Comput. Secur. 78, 103–125 (2018)

26. Nakamoto, S., et al.: Bitcoin: A peer-to-peer electronic cash system (2008)
27. OMG: Business process model and notation (2011)
28. OMG: XES standard definition (2019)
29. Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did i misbehave? diag-

nostic information in compliance checking. In: Barros, A., Gal, A., Kindler, E.
(eds.) BPM 2012. LNCS, vol. 7481, pp. 262–278. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32885-5 21

30. Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der
Aalst, W.M.P.: The need for a process mining evaluation framework in research
and practice. In: ter Hofstede, A., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007.
LNCS, vol. 4928, pp. 84–89. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-78238-4 10

31. Samavi, R., Consens, M.P.: Publishing privacy logs to facilitate transparency and
accountability. J. Web Semant. 50, 1–20 (2018)

32. Sutton, A., Samavi, R.: Blockchain enabled privacy audit logs. In: d’Amato, C.,
et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 645–660. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68288-4 38

33. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Tech-
nical report, Ethereum Project Yellow Paper 151 (2014)

34. Zerbino, P., Aloini, D., Dulmin, R., Mininno, V.: Process-mining-enabled audit of
information systems: methodology and an application. Expert Syst. Appl. 110,
80–92 (2018)

https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-59536-8_34
https://doi.org/10.1007/978-3-642-32885-5_21
https://doi.org/10.1007/978-3-540-78238-4_10
https://doi.org/10.1007/978-3-540-78238-4_10
https://doi.org/10.1007/978-3-319-68288-4_38

www.manaraa.com

A Refined Framework for Model-Based
Assessment of Energy Consumption

in the Railway Sector

Silvano Chiaradonna1, Felicita Di Giandomenico1, Giulio Masetti1(B),
and Davide Basile1,2

1 Institute of Science and Technology “A. Faedo”, 56124 Pisa, Italy
giulio.masetti@isti.cnr.it

2 University of Florence, Florence, Italy

Abstract. Awareness and efforts to moderate energy consumption,
desirable from both economical and environmental perspectives, are
nowadays increasingly pursued. However, when critical sectors are
addressed, energy saving should be cautiously tackled, so to not impair
stringent dependability properties such contexts typically require. This is
the case of the railway transportation system, which is the critical infras-
tructure this paper focuses on. For this system category, the attitude has
been typically to neglect efficient usage of energy sources, motivated by
avoiding to put dependability in danger. The new directives, both at
national and international level, are going to change this way of think-
ing. Our study intends to be a useful support to careful energy consump-
tion. In particular, a refined stochastic modeling framework is offered,
tailored to the railroad switch heating system, through which analyses
can be performed to understand the sophisticated dynamics between the
system (both the cyber and physical components) and the surrounding
weather conditions.

Keywords: Stochastic modeling · Rail road heating system ·
Reliability · Energy management

1 Introduction

Energy efficiency is increasingly a target at Country level, and directives are
issued to take appropriate measures to use energy more efficiently at all stages
of the energy chain, from production to final consumption. Both economical
aspects and environmental impact are at the basis of such initiatives. At EU
level, on 30 November 2016 the Commission proposed an update to the Energy
Efficiency Directive, including a new 30% energy efficiency target for 2030, and
measures to update the Directive to make sure the new target is met1.

1 https://ec.europa.eu/energy/en/topics/energy-efficiency.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 481–501, 2019.
https://doi.org/10.1007/978-3-030-30985-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_28&domain=pdf
https://ec.europa.eu/energy/en/topics/energy-efficiency
https://doi.org/10.1007/978-3-030-30985-5_28

www.manaraa.com

482 S. Chiaradonna et al.

When dealing with critical sectors such as transportation infrastructures,
the trend so far has been mainly to neglect energy saving, thus affording higher
energy costs, being mostly concentrated on assuring dependability properties.
However, the above mentioned initiatives are going to put the development of
even dependability-critical systems under a new perspective, where energy con-
sumption will gain more attention. In fact, while priority remains on depend-
ability and resilience requirements, these need to be reconciled with other rel-
evant requirements as well, among which the energy consumption. To assist
the designer in devising appropriate energy management strategies, it is highly
beneficial to develop supports able to analyze the behavior of such strategies,
especially in critical situations such as in presence of failures. The contribution
of this paper goes in this direction.

In more details, the paper focuses on the railway sector, and specifically on
the rail road switch heating system [10,21]. A rail road switch is a mechanism
enabling trains to be guided from one track to another. It works with a pair
of linked tapering rails, known as points. These points can be moved laterally
into different positions, in order to direct a train into the straight path or the
diverging path. Such switches are therefore critical components in the railway
domain, since their correct operation highly impacts on the reliability of the
railway transportation system. Among environmental conditions that may pre-
vent the switches to work properly there are snow and ice, which are typical
in many regions in winter time. In consequence, the mechanisms that enable a
train to be directed can be blocked by an excessive amount of snow or ice. To
overcome this issue, rail road switches heaters are used nowadays, so that the
temperature of the rail road switches can be kept above freezing. The heaters
may be powered by gas or electricity [10]. In this paper, we focus on electricity
and develop an approach to model and evaluate the behavior of heating policies.
In particular, resorting to a stochastic model-based approach, the switch heat-
ing system and control policies are modeled and properly analyzed, to assess the
impact of major factors characterizing the system components and the environ-
ment (weather conditions) it operates in, as well as failure events, on indicators
representative of the energy consumption.

This paper extends previous work [2–9] recently published by a subset of the
authors in two main directions: (i) a more comprehensive architectural frame-
work of the system under analysis is targeted, starting from current practice at
the Italian railway system level; (ii) more sophisticated aspects are included in
the modeling and evaluation effort, such as humidity and power line communi-
cations failure, which have an impact on both energy consuming and depend-
ability/resilience but were neglected in previous studies. The result is a more
accurate modeling and analysis framework, to support heating policies defini-
tion aiming at reaching the highest energy saving, while satisfying dependabil-
ity/resilience related requirements. The framework is built following a modular
and compositional approach to promote further extensions, some of which are
already identified and discussed as future work.

www.manaraa.com

A Refined Framework for Model-Based Assessment 483

The rest of the paper is structured as follows. Section 2 overviews related
work, to better position the current contribution. The logical architecture of
the rail road switch heating system and related stochastic process are presented
in Sect. 3. Then, the modeling framework, through which energy consumption
for the target system can be assessed, is the subject of Sect. 4. The case study
and the scenarios considered to exemplify the usage of the developed modeling
framework are introduced in Sect. 5, and obtained results are discussed. Finally,
conclusions and future research lines are briefly outlined in Sect. 6. A list of
acronyms and symbols used in this paper is given at the end.

We would like to underline that this work is strictly related with Stefania’s
research activities in recent years, as testified by the several publications on
the topic included in the reference list of this paper. Stefania’s competences
in the railway domain are outstanding; therefore, discussing with her about
these new directions to energy consumption awareness and containment was
very interesting, fruitful and enjoyable!

2 Related Work

Formalisms such as hybrid automata [16], hybrid Petri nets [14], Stochastic
Activity Networks (SANs) [22] have been proposed for modeling and evaluat-
ing energy-saving systems. Several tools have been proposed for their modeling,
evaluation and verification, as for example Uppaal [17], Kronos [24], Möbius [12].

Previously, Stefania Gnesi et al. have analyzed the problem of energy opti-
mization of rail-road switch heaters and the trade-off between energy consump-
tion and reliability of the system. We briefly summarize the previous efforts
in this specific domain. The adopted policy of energy consumption was an
on/off strategy based on temperature thresholds (both for turning off and on
the energy). The system has been initially modeled and analyzed using Möbius
and SANs in [2–4,6]. It was supposed that heaters have different priorities in
accessing the energy resources, and so the policy of energy consumption was
tuned to adapt to the different priorities of the heaters as well as the different
periods of a day (warmer and colder). The presented model was equipped with
both a logical part representing the energy consumption policy and a physical
part modeling the temperature behavior and the weather. In [9] the same sys-
tem has been modeled and analyzed with Uppaal SMC and stochastic hybrid
automata. Temporal logic was used instead of Markov Reward Models to model
the measures of interest, that are the energy consumption and the probability
of failure. The logic of the energy policy was verified in [7] against progress of
interactions, to prevent deadlocks in the communications between the different
components. The two formalizations were then compared in [5] to draw pros and
cons of each of these approaches. Finally, in [8] the methodology was generalized
so to automatically map an automata-based model representing a qualitative
verified policy of energy consumption to a stochastic Petri net dialect equipped
with stochastic behavior related to phenomena such as weather conditions, to
perform quantitative evaluation.

www.manaraa.com

484 S. Chiaradonna et al.

In this paper we took different steps forward in analyzing the rail road switch
heating problem. A more accurate physical model is proposed, which takes into
account humidity and dew points as parameters affecting the probability of fail-
ure. Moreover, the communication layer is modeled as a power line. Different
topologies are analyzed that affect the relation between failures of different
heaters.

Analyzing the trade-off among dependability parameters and energy con-
sumption is a rather new research field. Hence, there is not a uniform method-
ology to tackle this problem but rather several techniques and formalisms have
been used. The chosen formalism comes paired with specific analysis techniques.
Whilst we focus on modeling the system through SANs and evaluating the mea-
sures of interest through simulations, other families of Petri net models and state
machine models have also been used in the literature, and other evaluation tech-
niques such as quantitative (e.g. probabilistic, statistical) model checking are
used.

We firstly review a set of contributions using Petri net dialects and simula-
tions for evaluating the energy consumption. An example of combining stochas-
tic simulation and model checking is in [19], where a tool chain comprising
Uppaal and Möbius is used for the proactive schedule generation for manu-
facturing scenarios with resource competition, stochastic resources breakdowns,
and earliness/tardiness penalties. We do not model competitions in accessing the
energy resource: all switches must be heated. Hence, no strategy is synthesized
for scheduling the access to the energy source. Hybrid Petri Nets [14] are used for
modeling the survivability of a smart house in [15], that is the probability that a
house with locally generated energy (photovoltaic) and a battery storage can con-
tinuously be powered in case of a grid failure. The authors consider a randomly
chosen probability of failure and fixed thresholds. Whilst a threshold-based pol-
icy is also adopted in [15], we aim at building a more comprehensive modeling
framework, able to account for dependencies among components/environmental
aspects and a variety of failure events.

In addition to our energy consumption policy, other aspects have been con-
sidered in the literature. For example, in [25] a dynamic voltage and frequency
scaling is also studied in the context of self-organizing systems for different fields
of power system control [20]. The authors study how to balance the voltage and
frequencies stability of the network to meet the demand of energy. Similarly
to the previous papers, these parameters are linked to reliability and safety of
the system. Dynamic voltage and frequency scaling were coupled with energy
consumption policies in [1] to reduce the energy consumption in multiproces-
sor dataflow applications by means of analyses performed through Statistical
Model Checking. Energy consumption policies reduce the energy consumption
of processors while they are idle, and dynamic voltage and frequency scaling
reduce the energy consumption by lowering the voltage and clock frequency.
Adopting sophisticated policies regulating energy consumption is certainly a
valuable direction, and our framework is open to accommodate such investiga-
tions in future studies. The effort so far has been primarily directed to build an

www.manaraa.com

A Refined Framework for Model-Based Assessment 485

evaluation framework rich enough to account for behavioral and structural
aspects of the system at hand in the addressed railway context, as well as failure
and weather dynamics, to set the basis for accurate analyses.

3 System Under Analysis: Logical Architecture
and Stochastic Process

The system under analysis is logically structured in three parts, as shown
in Fig. 1: (i) n railroad switch heaters SH1, . . . , SHn, one for each switch, that
heat the switches through electricity, (ii) the heater control system, that decides
when to turn on or off the heaters as needed to prevent the congelation of the
railway switches, and (iii) the weather conditions, i.e., the weather data, varying
over time, used by the control subsystem to decide the control actions.

CMDA1 CMDAm· · ·

CH1 CHi· · · CHj CHn· · ·· · ·

MDA1 MDAi· · · MDAj MDAn· · ·· · ·

SH1 SHi· · · SHj SHn· · ·· · ·

RS1 RSi· · · RSj RSn· · ·· · ·

WeatherData

Weather Forecast Service

Heater Control System

CMDAs

PLC

MDAs

Heaters

Rail Road
Switches

Weather
Conditions

Fig. 1. Logical architecture of the system.

Each heater SHi is installed close to the switch RSi and is powered through
power lines connected to the power system. Different heaters can be connected
in series on the same power line. The state at time t of each heater SHi is

www.manaraa.com

486 S. Chiaradonna et al.

represented by the stochastic process {Xi(t)|t ≥ 0} defined by

Xi(t) =

{
1 if SHi is on at time t,

0 otherwise.
(1)

A heater consumes electrical energy only when it is switched-on.
The heater control system is composed by the following logical components:

(i) n Modules for Data Acquisition (MDAs) MDA1, . . . ,MDAn, one for each
heater, partitioned in m different subsets, (ii) m Coordinator Modules for Data
Acquisition (CMDAs) CMDA1, . . . , CMDAm, one for each different subset in
which the whole set of MDAs is partitioned, (iii) a Power-Line Communication
(PLC), composed by n logical communication channels, CH1, . . . , CHn, each
one connecting a MDA with the associated CMDA.

CMDAs and MDAs are in charge of switching on or off the heaters, in accor-
dance to heating policies described later in this section.

Each MDAi includes a sensor to measure the temperature of RSi, it is
installed close to SHi and is powered by the same power line as SHi. Each
CMDAj is powered by a power line connected to all the MDAs controlled by
CMDAj .

The physical layers of the communication channels are the power lines pow-
ering the MDAs and the CMDAs. Each CHi can fail, interrupting the com-
munication between MDAi and CMDAi, due to a fault at level of the power
line. Weather conditions, especially temperature and humidity, may induce mal-
functions on the power line, with direct impact on the reliability of the PLC
based on the affected power line. Moreover, a physical fault that interrupts CHi

can also affect other communication channels, depending on the topology of the
connected power lines. For example, in the case that MDAs and the associated
CMDAs are connected in series through a single power line, the physical fault
of CHi can impact on some or all CHh, for h = i, i + 1, . . . , n.

The list of the δi indexes of the communication channels where the failure
of CHi can propagate is Δi = {h1, h2, . . . , hδi}. The topology of interactions
among the logical communication channels is given by the n×n adjacency matrix
T = [Ti,j], where Ti,j = 1 if j ∈ Δi, else Ti,j = 0.

The time to the physical fault of CHi is a random variable exponentially
distributed with rate

λi(tk) = c · wHi(tk) (2)

where w represents the weight, i.e. the impact, over time of the humidity Hi(tk)
on the fault rate, and the constant c represents the impact of all the other influ-
encing aspects (including the characteristics of the power lines, e.g. the distance
between MDAs and CMDAs, the air temperature and others) on the fault rate.
The recovery time of CHi is a random variable exponentially distributed with
constant rate μi.

Concerning the weather aspects, to advance on previous studies also the
humidity is accounted for in addition to the temperature, since they both con-
tribute to the ice formation. Because of this particular emphasis on humidity,

www.manaraa.com

A Refined Framework for Model-Based Assessment 487

also the above expression of the CHi failure rate explicitly accounts for it. In
more detail, at each instant of time tk, weather conditions are represented by a
stochastic process composed by a (2n + 3)-tuple of random variables:

(T0(tk),H0(tk), T dew(tk), T1(tk), . . . , Tn(tk),H1(tk), . . . , Hn(tk),

where tk = tw · k, tw ∈ R>0, k ∈ N, Ti(tk) ∈ [−50, 50] ◦C and Hi(tk) ∈ [0.01, 1].
Thus, the random variables representing the weather conditions are piece-wise
constants over time and change value every tw units of time.

T0(tk), H0(tk) and T dew(tk) are the temperature, the air relative humidity
and the dew point, respectively, provided by the weather forecast service for the
geographical area where the n railroad switches are installed. Ti(tk) and Hi(tk)
with i = 1, · · · , n are the temperature and the air relative humidity, respectively,
close to the switch RSi heated by SHi. The values of Ti(tk) and Hi(tk) can
be different from those of T0(tk) and H0(tk), due to specific conditions at the
position of RSi (e.g., better/worse exposition to sun, or the presence of shadow,
or others).

The measurement of the dew point is related to humidity. A higher dew
point means that there is more moisture in the air. The dew point is defined as a
function of T0(tk) and H0(tk), and can be computed following the Magnus-Tetens
approximation as

Tdew(tk) =
b α(tk)

a − α(tk)
, with α(tk) =

aT0(tk)
b + T0(tk)

+ ln(H0(tk)), (3)

where a = 17.27, b = 237.7 ◦C [18,23].
When the temperature is below the freezing point of water, i.e., T dew(tk) ≤

0 ◦C, the dew point is called the frost point, as frost is formed rather than dew.
In this case, i.e., when Ti(tk) ≤ T dew(tk) ≤ 0 ◦C, the moisture on RSi turns into
ice that can prevent the switch from working correctly.

It is assumed that if Ti(tk) ≤ 0 ◦C then Ti(tk−1) ≤ 5 ◦C, i.e., the tempera-
ture cannot drop from 5 ◦C to 0 ◦C in less than tw time units. This is a realistic
assumption for the weather conditions and for the value of tw = 10 min consid-
ered in this paper.

The relative humidity Hi(tk) is a function of the local temperature Ti(tk)
and the dew point T dew(tk), according to the formulation

Hi(tk) = e

(
aTdew(tk)

b+Tdew(tk)
− aTi(tk)

b+Ti(tk)

)
, (4)

where a and b assume the same values as in Eq. (3).
After introducing the logical structure of the reference system, the control

actions performed by the heater control system are now detailed. At a higher
level, the behavior is the following. At each instant of time tk, each MDAi

transmits instantaneously to the associated CMDAj the value of the tempera-
ture obtained from its local sensor and receives instantaneously from CMDAj

the command to turn on or off SHi (if needed). This exchange occurs if the
communication channel between MDAi and CMDAj is working.

www.manaraa.com

488 S. Chiaradonna et al.

Otherwise, when the communication channel between MDAi and CMDAj

does not work, MDAi turns on SHi as soon as Ti(tk) ≤ 5 ◦C and turns off SHi

as soon as Ti(tk) > 5 ◦C. The previous assumption that the temperature cannot
drop from a value greater than 5 ◦C to a value lower than or equal to 0 ◦C in
less than tw time units, prevents the switch RSi from freezing in the interval
between two consecutive instants of time tk−1 and tk.

Going in more details, at each instant of time tk, for each working communi-
cation channel CHi, CMDAj associated to SHi receives instantaneously from
MDAi the measured value of Ti(tk). Then, using the temperature and humidity
values received from the weather forecast service at time tk, CMDAj sends to
MDAi the following command:

– if Ti(tk) ≤ T dew(tk) and Ti(tk) ≤ 0 ◦C, the command is to turn on SHi;
– if Ti(tk) > T dew(tk) or Ti(tk) > 0 ◦C, the command is to turn off SHi.

Note that this last condition, used by CMDAj to turn off SHi, could not
prevent the railway switch RSi from freezing when the values of Ti(tk) and
Hi(tk) are different from those of T0(tk) and H0(tk), respectively. In fact, SHi is
turned off when SHi is working, Ti(tk) > T dew(tk) and Ti(tk) < 0 ◦C, but Ti(tk)
could be lower than, or equal to, the dew point local to RSi. In this case, RSi

freezes. In the weather profiles considered for this paper, the values of Ti(tk) and
Hi(tk) are such that, although they differ from T0(tk) and H0(tk), respectively,
the just described event cannot occur.

Another observation is that the values of Hi(tk), with i = 1, · · · , n, are not
exploited by the control system in taking decisions on the heating of the railway
switches, since humidity sensors are currently not deployed close to switches (at
least considering the Italian railway system, which inspired our study). However,
we used humidity values at each CHi, as defined by Eq. (4), to determine with
higher accuracy the failure rate of each communication channel CHi, according
to Eq. (2).

In order to evaluate the impact of the failure of CHi on the energy consump-
tion, it is assumed that all the components other than CHi do not fail, i.e., they
work correctly.

Let PSH be the electrical power required by each switched-on heater SHi,
i.e., when Xi(t) = 1. The electrical energy consumed in the interval of time [0, t]
by all the heaters is

E(t) = PSH
n∑

i=1

Jon
i (t)dt, (5)

where

Jon
i (t) =

∫ t

0

Xi(t) dt

is the random variable representing the total time Xi is equal to 1, i.e., the total
time SHi is switched on, in the time interval [0, t].

www.manaraa.com

A Refined Framework for Model-Based Assessment 489

4 SAN Model

A stochastic model-based approach is adopted to analyze the rail road switch
heating system. In particular, the logical architecture of the system under anal-
ysis is modeled and evaluated following the DARep compositional approach, as
proposed in [11], by means of the tool Möbius [13]. The DARep approach is based
on: (i) template stochastic models, each one representing a different generic com-
ponent; (ii) dependency-aware State Variables (SVs), representing part of the
state of a template model; (iii) a topology, associated to each dependency-aware
SV; (iv) two functions Index() and Deps() that extend the template model; (v)
the compositional operator D.

An SV defined in a template model can be: (i) local, if each instance (replica)
of the SV can be accessed only by the instance of the template model where it
has been generated by D, i.e., instances of the local SV cannot be shared among
different instances of the template model, (ii) common, if it is shared among all
the instances of templates, i.e., the operator D merges all the instances (replicas)
of the SV into one unique SV, (iii) dependency-aware, if each instance of the SV
can be accessed (shared) by different instances of template models, following the
topology of dependencies associated to the SV. The topology associated to each
dependency-aware SV defines which different instances of the SV are generated
by D in each instance of the template model. The instances of a dependency-
aware SV can be accessed in the template model only using the function Deps().
Moreover, the function Deps() can be used in the template model to access only
to the instances of the dependency-aware SV defined by the topology for the
current replica of the template. Thus, for example, H–>Deps() and H–>Deps()
return the list of instances of the dependency-aware SV H or the h-th instance
of the list (that is usually different from the h-th instance of H), respectively, as
defined by the topology for each instance of the template model. The operator
D generates automatically the instances, replicas with identity, of each template
model. Moreover, it shares, i.e. merges into one SV, all the occurrences of an
instance of dependency-aware SV in different instances of the template model.
The function Index() can be used to access to the index of the current instance
of the template model in order to obtain a parametric definition of the template
model as a function of the index of the instance.

(a) TM W (b) TM MDA

Fig. 2. SAN template model for weather conditions (a) and SAN template model for
CHi and MDAi (b). (Color figure online)

www.manaraa.com

490 S. Chiaradonna et al.

Two atomic template models TM W and TM DMA, shown in Fig. 2, are
defined using the SAN formalism [22], a stochastic extension of Petri nets, based
on the following primitives: plain and extended places (blue and orange circles,
respectively), timed and instantaneous activities (hollow and solid vertical bars,
respectively), input and output gates (triangles pointing left or right, respec-
tively). The SAN primitives are defined by expressions or statements of the pro-
gramming language C++. Places and activities correspond to SV and actions,
respectively. Plain places represent C++ short types, whereas extended places
represent primitive C++ data types (like short, int, float, double) including also
structures and arrays. Input gates control when an activity is enabled. Marking
changes occur when an activity completes (fires), as defined by the input and
output gates.

The overall system model is obtained generating and composing automati-
cally through the D operator one instance TM W1 of the template model TM W
and n instances TM DMA1, . . . , TM DMAn of the template model TM DMA.
TM W1 represents the changes of the weather conditions at each instant of time
tk. Each instance TM DMAi represents the failure and repair of CHi and the
actions of MDAi turning on and off SHi at each instant of time tk. In the tem-
plate models, the function Index() represents the generic index i of an instance
of template. In the i-th instance of template Index() returns the value of i.

The extended places T and H are dependency-aware SVs with n instances,
T1, . . . , Tn and H1, . . . , Hn, respectively. The instances Ti and Hi represent the
current values of Ti(tk) and Hi(tk), respectively. The topology associated to
T and H in TM DMA is defined such that the instances Ti and Hi are only
generated in TM DMAi, where T–>Deps(0) = Ti and H–>Deps(0) = Hi.
The topology associated to T and H in TM W is defined such that in TM W1

are generated all the instances of T and H, such that T–>Deps(i) = Ti and
H–>Deps(i) = Hi, with i = 1, . . . , n. The extended place DP is a common SV
representing the current value of T dew(tk) and is shared among all the instances
of TM W and TM DMA.

In TM W, the always enabled timed activity TWU represents the determin-
istic time tw between two consecutive updates of the weather conditions data.
The values of Ti(tk), Hi(tk) and T dew(tk), in the interval of time [0, t], are stat-
ically defined at compilation time in C++ constant arrays, one array for each
different weather condition profile considered in the analysis, and can be accessed
at time tk using the index k. The local place NU (initialized to 0) has only one
instance generated in TM W1, that represents the index k of tk used to access
to the current weather condition data. At each completion, TWU adds 1 token
to NU and performs the code of the output gate WU. Such code consists in
assigning the current values of Ti(tk) and Hi(tk), for i = 1, . . . , n, to Ti (i.e.,
T–>Deps(i) = Ti(tk)) and Hi (i.e., T–>Deps(i) = Ti(tk)), respectively, and
T dew(tk) to DP, where k = NU–>Mark() (the marking of the place NU).

In TM DMA, the timed activities TCF and TCR represent the exponen-
tially distributed random time to the fault occurrence and to the recovery
of the fault, respectively, in CHi. The rate λi(tk) is defined by the C++

www.manaraa.com

A Refined Framework for Model-Based Assessment 491

expression: c*pow(w, SANDAREP::TM DMA::H–>Deps(0)–>Mark()), being
SANDAREP::TM DMA::H–>Deps(0) = Hi in the instance TM DMAi. TCF
is enabled when there is 1 token in the local place NF (initialized with 1 token),
i.e., when CHi is not faulty. TCR is enabled when there is 1 token in the local
place F (initialized with 0 token), i.e., when a fault occurred in CHi.

The place NW is a dependency-aware SV with n instances NW1, . . . , NWn,
one for each TM DMAi. Each instance NWi represents the dependency of the
failure of CHi on the faults occurred on other communication channels, depend-
ing on the topology T associated to NW. The value of NWi is the current number
of faulty communication channels the failure of CHi depends on. The channel
CHi is working when NWi = 0, otherwise it is failed when NWi > 0. For each
TM DMAi, a subset of δi instances of NW is automatically generated by D,
such that NW–>Deps(j) = NWhj

with hj = Δi[j], for j = 1, . . . , δi.
At each completion in the instance TM DMAi, TCF moves the token from

NF to F and propagates the failure, by executing the C++ code of the out-
put gate IncNW that adds one token to each instance NW–>Deps(j) for
j = 1, . . . , δi. At each completion in the instance TM DMAi, TCR moves the
token from F to NF and removes the failures propagated from the just removed
fault, executing the C++ code of the output gate DecNW that remove one token
from each instance NW–>Deps(j) for j = 1, . . . , δi.

The places HOn or HOff are local SVs with n instances HOn1, . . . , HOnn

and HOff1, . . . , HOffn, respectively, one instance for each TM DMAi. Notice
that the notation HOn and HOff , used for local SVs in the template model
TM DMA, corresponds to HOni and HOffi, respectively, in the instance
TM DMAi of the template model. The instances HOni and HOffi represent
the state of the heater SHi, that is on or off when there is one token in HOni or
HOffi, respectively. In each TM DMAi, the instantaneous activities tOn and
tOff represent the turning on and off, respectively, of SHi.

tOn is enabled when HOff–>Mark() = 1 (i.e., the heater is off) and one
of the following conditions defined in the input gate CanTOn is true:

– SANDAREP::TM DMA::NW–>Deps(0)–>Mark() > 0 (i.e., the channel is
not working) and
SANDAREP::TM DMA::T –>Deps(0)–>Mark() ≤ 5 (i.e., Ti(tk) ≤ 5 ◦C), or

– SANDAREP::TM DMA::NW–>Deps(0)–>Mark() = 0 (i.e., the channel is
working) and
SANDAREP::TM DMA:: T –>Deps(0)–>Mark() ≤ SANDAREP::
TM DMA:: DP–>Deps(0)–>Mark() (i.e., Ti(tk) ≤ T dew(tk)) and
SANDAREP::TM DMA::T –>Deps(0)–>Mark() ≤ 0 (i.e., Ti(tk) ≤ 0).

tOff is enabled when HOn–>Mark() = 1 (i.e., the heater is on) and one of the
following conditions defined in the input gate CanTOff is true:

– SANDAREP::TM DMA::NW–>Deps(0)–>Mark() > 0 (i.e., the channel is
not working) and
SANDAREP::TM DMA::T –>Deps(0)–>Mark() > 5 (i.e., Ti(tk) > 5 ◦C), or

www.manaraa.com

492 S. Chiaradonna et al.

– SANDAREP::TM DMA::NW–>Deps(0)–>Mark() = 0 (i.e., the channel is
working) and
“SANDAREP::TM DMA::T –>Deps(0)–>Mark() > SANDAREP::
TM DMA:: DP–>Deps(0)–>Mark() (i.e., Ti(tk) > T dew(tk)) or
SANDAREP::TM DMA::T –>Deps(0)–>Mark() > 0 (i.e., Ti(tk) > 0)”.

At each completion in the instance TM DMAi, tOn moves the token from
HOff to HOn, turning on SHi, whereas tOff moves the token from HOn to
HOff , turning off SHi.

5 Evaluation Results

The case study introduced to demonstrate the feasibility and utility of the pro-
posed analysis approach is based on a real-world system, namely the Lecco-
Maggianico railway station in the North of Italy. In particular, it is composed
by n = 19 railroad switches, partitioned in two groups denoted as North and
South switches, with size 9 and 10, respectively, and controlled by CMDA1 and
CMDA2, also denoted as north CMDA and south CMDA, respectively, as shown
in Fig. 3.

Power

CMDAnorth CMDAsouth

MDA1 MDAm1· · · MDAm1+1 MDAn· · ·

PLC

Fig. 3. Logical architecture of the PLC at Lecco-Maggianico railway station.

The focus of the analysis is on measuring the impact of the communication
channels behavior on the consumption of the electrical power needed to heat all
the railway switches in one day. To this purpose, the impact of different settings
for the PLC parameters c, w, and μi, together with the failure modes of each
SHi (namely, either independent or correlated to the failure of one or more other
SHk, according to a failure dependency topology) on E[Eday], the expected
value of the random variable E[day] as defined in Eq. (5), is evaluated during a
representative day. Different scenarios are considered, characterized by having a
subgroup of the parameters discussed in Sect. 3 at a fixed value and varying the
values of the other parameters, to conduct a sensitivity analysis. The measure
E[Eday] is obtained solving the model presented in Sect. 4 through simulation,
using the simulator of the Möbius tool and performing 10000 runs for each

www.manaraa.com

A Refined Framework for Model-Based Assessment 493

0 2 4 6 8 10 12 14 16 18 20 22 24

0

5

10

Time (h)

T
em

pe
ra
tu
re

(C
el
si
us
) T1, . . . , T9

T10, . . . , T19

T dew

Fig. 4. Temperature Ti(t) for the North region (i = 1, . . . , 9) and the South region
(i = 10, . . . , 19) of Lecco - Maggianico railway station during December 21, 2018. The
dew point T dew(t) is reported as a tick black line.

obtained result. When considered of particular relevance, also the Probability
Density Function (PDF) of Eday is reported.

In detail, the parameters setting for the conducted evaluation is:

– Two configurations of the logical communication architecture to connect the
CMDAs and the controlled MDAs through the electrical grid, shown in Fig. 3,
are considered:

• All the MDAs communicate directly with the CMDA they are associated
to, implying that each CHi fails independently from the others. We call
this topology of interactions T p as the failure-independent topology,

• all the MDAs associated to the same CMDA are connected in series to
a single electrical power line. In such configuration, the failure of CHi

propagates to all CHh on the same power line, for h ≥ i. We call this
topology of interactions T s as the failure-correlated topology.

– The values to assign to H0(tk) and T0(tk) are those of weather data collected
by ARPA Lombardia2 during December 21, 2018 for the city of Lecco, where
tk = tw · k for tw = 10 min and k = 0, . . . , 143.

– The dew point T dew(tk) is then computed in terms of H0(tk) and T0(tk), as
defined in Eq. (3), and depicted (thick line) in Fig. 4.

– Real values for Ti(tk) are not available, since it was not possible to get access
to historical temperature data as detected by the sensors installed close to
MDAi. Therefore, they have been derived from T0(tk) through a mathemat-
ical manipulation, with the objective to take into account the geographical
exposition of switches in the analyzed railway station. Namely, temperatures
at the North group of heaters are considered (in mean) lower than those at
the South group of heaters.

2 Agenzia Regionale per la Protezione dell’Ambiente (ARPA) of the Lombardia Italian
region.

www.manaraa.com

494 S. Chiaradonna et al.

Concerning the humidity, values of Hi(tk) are also not available, since humid-
ity sensors are currently not adopted. Therefore, their values have been
defined in terms of T dew(tk) and Ti(tk), according to Eq. (4).

– The constant c in the formula of the channel failure rate can vary from 1 over
5 days to 1 over 1 h.

– The constant w in the formula of the channel failure rate can vary from 1
to 10 (representing no impact and high impact of humidity on the channel
failure rate, respectively).

– The constant μi, representing the recovery time of CHi, can vary from 1 over
3 h to 1 over 5 min, and has a default value of 1 over 1 h, assumed whenever
not explicitly specified.

– Each heater is supposed to consume PSH = 7.4 kW when in state on, and 0
kW when in state off.

The performed analyses are grouped in three scenarios, where a subset of the
above reported system characteristics (becoming parameters of the system model
described in Sect. 4) are considered fixed and others are varied, to carry on
sensitivity analysis. As already indicated, the emphasis of the evaluation is on
the impact of the behavior of the communication network on power consumption,
so the profiles for temperature and humidity are kept the same in all the scenarios
(as in Figs. 4 and 5, respectively). In more details:

0 2 4 6 8 10 12 14 16 18 20 22 24

0.4

0.6

0.8

1

Time (h)

R
el
at
iv
e
hu

m
id
it
y

H1, . . . , H9

H10, . . . , H19

Fig. 5. Humidity Hi(t) for the North region (i = 1, . . . , 9) and the South region (i =
10, . . . , 19) of Lecco - Maggianico railway station during December 21, 2018.

Scenario (1) this scenario considers the topology T p, varying values for the
parameters c and w, and fixed values for the other parameters;

Scenario (2) this scenario complements the previous one by considering the
other channel failure model, i.e., the failure-correlated mode through the
topology T s, and adopting the same setting as in the previous study for
the other parameters;

www.manaraa.com

A Refined Framework for Model-Based Assessment 495

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·10−2

0

1000

2000

3000

c (minutes−1)

E
[E

(d
ay
)]
(k
W

h)

maxE(day) = 2963

minE(day) = 197

w = 10

w = 1

Fig. 6. Scenario 1: expected value of E[day] at increasing of c (from one every 5 days
to one every hour), and varying w (from 1, i.e., no impact of Hi on λi, to 10). The
failure-independent topology T p is considered.

Scenario (3) the third scenario explores the impact of the recovery parameter
μi in rather critical conditions for the other parameters as derived from the
analysis in the previous two scenarios (namely, when the topology is T s and
c is equal to 3.47 · 10−4 (minutes−1)).

The minimal and maximal energy that can be consumed during the day for the
considered case study, corresponding to no channels failure and continuous chan-
nels failure, respectively, are statically computed and reported in Figs. 6, 7 and 9.
The maximal energy is about one order of magnitude greater than the minimal
energy, so choosing the right combination of parameters and topology can have
a great impact on energy consumption, and then cost and environmental foot-
print. Notice that in Figs. 6, 7 and 9 the ordinates are in linear scale spanning
from the minimal to maximal energy, whereas the abscissas are in linear scale for
Figs. 6 and 7 and in logarithmic scale for Fig. 9, so it is possible to graphically
compare results from different scenarios.

5.1 Scenario 1

In this scenario, the failure-independent topology T p is considered and, fixing all
the μi to their default value of one over 60 min, E[E(day)] is evaluated at increas-
ing values of c. As expected, keeping constant the relative humidity, a small c
produces a small λi(tk), and then a large Mean Time Between Failures, whereas
increasing c produces a small Mean Time Between Failures. Thus, at the increas-
ing of c, E[E(day)] increases, as shown in Fig. 6. As revealed by the sensitivity
analysis, E[E(day)] increases quite rapidly for c lower than 0.4·10−2 (minutes−1),
still remaining under 2000 (kWh), and then increases slowly towards the maximal
energy. Of particular relevance is then studying the impact of w on E[E(day)].
In Fig. 6, 10 curves, one for each w from 1 to 10, are depicted. For w equal to

www.manaraa.com

496 S. Chiaradonna et al.

1, relative humidity has no impact on λi(tk), because 1Hi(tk) = 1, otherwise, for
w equal to 10, if relative humidity is equal to 1 then λi(tk) is 10 times greater
than c. As depicted in Fig. 6, for c equal to 0.4 ·10−2 (minutes−1), E[E(day)] can
double when switching w from 1 to 10.

5.2 Scenario 2

This scenario differs from Scenario 1 only for the topology. In fact, here the
failure-correlated topology T s is considered. Comparing Fig. 7 with Fig. 6, it
is possible to appreciate the impact of correlations among channels failure. As
expected, an high degree of correlation among channel failures produces values of
E(day) that are in mean higher than those produced by the failure-independent
topology. This means that, even with relatively small values of c, the energy
consumed during one day can reach high values. For example, for c equal to
0.4 · 10−2 (minutes−1) and w greater than 2, the value of E[E(day)] is already
greater than 2000 (kWh).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·10−2

0

1000

2000

3000

c (minutes−1)

E
[E

(d
ay
)]
(k
W

h)

maxE(day) = 2963

minE(day) = 197

w = 1

Fig. 7. Scenario 2: expected value of E(day) at increasing of c (from one every 5 days
to one every hour), and varying w (from 1, i.e., no impact of Hi on λi, to 10). The
failure-correlated topology T s is considered.

For energy saving oriented analysis it is of particular importance to study not
only the mean value of E(day) but also its Probability Distribution Function,
because different choices of parameters can produce the same mean value but
different distribution of E(day). Thus, in Fig. 8 the frequencies at which E(day)
appears in the simulation are reported for three representative values of c and
w. Scaling the values of the frequencies by a factor of 10000 it is possible to
estimate the PDF of E(day).

www.manaraa.com

A Refined Framework for Model-Based Assessment 497

5.3 Scenario 3

In this scenario a different perspective with respect to Scenarios 1 and 2 is
considered. Here, the failure-correlated topology T s is adopted, but the sen-
sitivity analysis is performed with respect to μi and w, instead of c and w.
At the increasing of μi, the Mean Time Between Failures decreases, and then
E[E(day)] decreases, as shown in Fig. 9, where the abscissas axis is in logarithmic
scale. As expected, if μi is equal to 1 over 3 h then a channel failure can remain
un-recovered for a long period of time, forcing all the MDAi for h = 1, . . . , 9
(North) or h = 10, . . . , 19 (South) to follow the most energy consuming strategy
of comparing Ti(tk) with 5 ◦C. In addition, for small values of μi, switching from

0 1,000 2,000 3,000
0

200

400

600

800

1,000

E(day) (kWh)

Fr
eq
ue
nc
y

PDF of E(day)

(a) c = (5 days)−1, w = 1

0 1,000 2,000 3,000
0

200

400

600

800

1,000

E(day) (kWh)

Fr
eq
ue
nc
y

PDF of E(day)

(b) c = (1 day)−1, w = 1

0 1,000 2,000 3,000
0

200

400

600

800

1,000

E(day) (kWh)
Fr
eq
ue
nc
y

PDF of E(day)

(c) c = (1 hour)−1, w = 1

0 1,000 2,000 3,000
0

200

400

600

800

1,000

E(day) (kWh)

Fr
eq
ue
nc
y

PDF of E(day)

(d) c = (5 days)−1, w = 5

0 1,000 2,000 3,000
0

200

400

600

800

1,000

E(day) (kWh)

Fr
eq
ue
nc
y

PDF of E(day)

(e) c = (1 day)−1, w = 5

0 1,000 2,000 3,000
0

200

400

600

800

1,000

E(day) (kWh)

Fr
eq
ue
nc
y

PDF of E(day)

(f) c = (1 hour)−1, w = 5

0 1,000 2,000 3,000
0

200

400

600

800

1,000

E(day) (kWh)

Fr
eq
ue
nc
y

PDF of E(day)

(g) c = (5 days)−1, w = 10

0 1,000 2,000 3,000
0

200

400

600

800

1,000

E(day) (kWh)

Fr
eq
ue
nc
y

PDF of E(day)

(h) c = (1 day)−1, w = 10

0 1,000 2,000 3,000
0

200

400

600

800

1,000

E(day) (kWh)

Fr
eq
ue
nc
y

PDF of E(day)

(i) c = (1 hour)−1, w = 10

Fig. 8. Scenario 2: Frequencies at which E(day) values appear in the simulation, from
which the PDF of E(day) can be estimated, when c spans from one every 5 days to
one every hour, and w spans from 1 to 10. Here, the failure-correlated topology T s is
considered.

www.manaraa.com

498 S. Chiaradonna et al.

w = 1 to w = 10 makes a great difference, whereas for greater values of μi the
impact of w becomes less relevant.

10−2 10−1
0

1000

2000

3000

µ (minutes−1)

E
[E

(d
ay
)]
(k
W

h)

maxE(day) = 2963

w = 10

Fig. 9. Scenario 3: expected value of E(day) at increasing of μi, from one every 3 h to
one every 5 min, and varying w from 1, i.e., no impact of Hi on λi, to 10. Here, the
failure-correlated topology T s is considered.

6 Conclusions and Future Work

This paper presented a stochastic model-based framework for assessing energy
consumption of railroad switch heating systems. The developed approach, and
obtained quantitative results, advance on previous studies by introducing impor-
tant aspects of the weather conditions, namely the humidity and derived dew
point, and more sophisticated failure models of the communication network,
which have been shown to have an impact on the analysis outcomes. Moreover,
a more structured picture of the heating control policies, physical structure of
the switches and the communication network has been defined, inspired by the
Italian railway system.

The feasibility and utility of the developed analysis framework have been
demonstrated through a case study, which represents the switch heating infras-
tructure of a medium-size railway station in the North of Italy. From the sen-
sitivity analysis to varying parameters values, representing relevant aspects of
the communication network behavior, it is possible to understand the impact of
different phenomena on the evaluated energy consumption; this is a useful basis
to devise better energy-aware heating policies. The investigations conducted in
this paper are partial, since the modeling and analysis framework introduced
in Sect. 4 has the powerfulness to deal with more sophisticated structures and
behaviors of the involved components (e.g., in terms of population size, failure
models, heating policies, and others). Therefore, the agenda of future extensions
includes several items, among which:

www.manaraa.com

A Refined Framework for Model-Based Assessment 499

– generalize the correlation factor among channels failure to k out of n;
– relax the assumption of guaranteed reliability and identify heating policies

leading to satisfactory trade-offs between reliability and energy consumption;
– address the analysis of bigger railway stations, with a variety of CMADs and

communication topologies;
– develop and evaluate more sophisticated heating policies;
– introduce a more accurate representation of the heating physical model of the

switch component (currently assumed to become warm instantaneously).

List of Main Acronyms and Symbols

CMDA Coordinator Module for Data Acquisition
MDA Module for Data Acquisition
PLC Power-Line Communication
SAN Stochastic Activity Network
SV State Variable
c constant parameter representing the impact of the characteristics of the power

lines on the fault rate of CHi

CHi i-th communication channel
CMDAi i-th coordinator module for data acquisition
D DARep operator
δi Number of communication channels where the failure of CHi can propagate
Δi List of the indexes of the communication channels where the failure of CHi

can propagate
E(t) Electrical energy consumed in the interval of time [0, t] by all the heaters
H0(tk) Relative humidity at time tk provided by the weather forecast service
Hi(tk) Relative humidity at time tk close to SHi, 1 ≤ i ≤ n
λi(tk) Fault rate of CHi at time tk
m Number of CMDAS
MDAi i-th module for data acquisition
μi Recovery rate of CHi

n Number of rail-road switch heaters
PSH Electrical power required by a switched-on heater
RSi i-th rail-road switch, heated by SHi

SHi i-th rail-road switch, heated
T Topology of interactions among communication channels
T p Failure-independent topology of interactions among communication chan-

nels, when each CHi fails independently from the others
T s failure-correlated topology of interactions among communication channels,

when the failure of CHi propagates to all CHh connected in series on the
same power line, for h ≥ i

T dew(tk) Dew point at time tk provided by the weather forecast service
T0(tk) Temperature at time tk provided by the weather forecast service
Ti(tk) Temperature of SHi at time tk, 1 ≤ i ≤ n
w Constant parameter representing the impact of the characteristics of the

power lines on the fault rate of CHi

Xi(t) Switched-on or switched-off state at time t of SHi

www.manaraa.com

500 S. Chiaradonna et al.

References

1. Ahmad, W., van de Pol, J.: Synthesizing energy-optimal controllers for multipro-
cessor dataflow applications with Uppaal Stratego. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2016. LNCS, vol. 9952, pp. 94–113. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-47166-2 7

2. Basile, D., Chiaradonna, S., Di Giandomenico, F., Gnesi, S.: A stochastic model-
based approach to analyse reliable energy-saving rail road switch heating systems.
JRTPM 6, 163–181 (2016)

3. Basile, D., Chiaradonna, S., Di Giandomenico, F., Gnesi, S., Mazzanti, F.: Stochas-
tic model-based analysis of energy consumption in a rail road switch heating sys-
tem. In: Fantechi, A., Pelliccione, P. (eds.) SERENE 2015. LNCS, vol. 9274, pp.
82–98. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23129-7 7

4. Basile, D., Di Giandomenico, F., Gnesi, S.: Model-based evaluation of energy saving
systems. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds.) Green IT Engi-
neering: Concepts, Models, Complex Systems Architectures. SSDC, vol. 74, pp.
187–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44162-7 10

5. Basile, D., Di Giandomenico, F., Gnesi, S.: On quantitative assessment of reli-
ability and energy consumption indicators in railway systems. In: Kharchenko,
V., Kondratenko, Y., Kacprzyk, J. (eds.) Green IT Engineering: Social, Business
and Industrial Applications. SSDC, vol. 171, pp. 423–447. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-00253-4 18

6. Basile, D., Di Giandomenico, F., Gnesi, S.: Tuning energy consumption strate-
gies in the railway domain: a model-based approach. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2016, Part II. LNCS, vol. 9953, pp. 315–330. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-47169-3 23

7. Basile, D., Giandomenico, F.D., Gnesi, S.: Enhancing models correctness through
formal verification: a case study from the railway domain. In: Proceedings of the 5th
International Conference on Model-Driven Engineering and Software Development,
MODELSWARD 2017, Porto, 19–21 February 2017, pp. 679–686 (2017)

8. Basile, D., Di Giandomenico, F., Gnesi, S.: A refinement approach to analyse crit-
ical cyber-physical systems. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS,
vol. 10729, pp. 267–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-74781-1 19

9. Basile, D., Giandomenico, F.D., Gnesi, S.: Statistical model checking of an energy-
saving cyber-physical system in the railway domain. In: The 32nd ACM Symposium
on Applied Computing, SAC 2017, Marrakech, pp. 1356–1363 (2017)

10. Brodowski, D., Komosa, K.: A railroad switch and a method of melting snow and
ice in railroad switches (2013). https://data.epo.org/publication-server/rest/v1.0/
publication-dates/20131225/patents/EP2677079NWA1/document.html

11. Chiaradonna, S., Di Giandomenico, F., Masetti, G.: A stochastic modeling app-
roach for an efficient dependability evaluation of large systems with non-anonymous
interconnected components. In: The 28th International Symposium on Software
Reliability Engineering (ISSRE 2017), Toulouse, pp. 46–55. IEEE. October 2017

12. Clark, G., et al.: The Möbius modeling tool. In: PNPM, pp. 241–250 (2001)
13. Courtney, T., Gaonkar, S., Keefe, K., Rozier, E.W.D., Sanders, W.H.: Möbius 2.3:

an extensible tool for dependability, security, and performance evaluation of large
and complex system models. In: 39th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2009), Estoril, pp. 353–358 (2009)

14. David, R., Alla, H.: On hybrid Petri nets. DEDS 11(1–2), 9–40 (2001)

https://doi.org/10.1007/978-3-319-47166-2_7
https://doi.org/10.1007/978-3-319-47166-2_7
https://doi.org/10.1007/978-3-319-23129-7_7
https://doi.org/10.1007/978-3-319-44162-7_10
https://doi.org/10.1007/978-3-030-00253-4_18
https://doi.org/10.1007/978-3-319-47169-3_23
https://doi.org/10.1007/978-3-319-74781-1_19
https://doi.org/10.1007/978-3-319-74781-1_19
https://data.epo.org/publication-server/rest/v1.0/publication-dates/20131225/patents/EP2677079NWA1/document.html
https://data.epo.org/publication-server/rest/v1.0/publication-dates/20131225/patents/EP2677079NWA1/document.html

www.manaraa.com

A Refined Framework for Model-Based Assessment 501

15. Ghasemieh, H., Haverkort, B.R., Jongerden, M.R., Remke, A.: Energy resilience
modeling for smart houses. In: 45th Annual IEEE/IFIP, DSN 2015, pp. 275–286.
IEEE Computer Society (2015)

16. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292.
IEEE Computer Society (1996)

17. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. JSTTT 1, 123–133
(1997)

18. Lawrence, M.G.: The relationship between relative humidity and the dewpoint
temperature in moist air: a simple conversion and applications. Bull. Am. Meteorol.
Soc. 86(2), 225–234 (2005)

19. Mader, A., Bohnenkamp, H., Usenko, Y.S., Jansen, D.N., Hurink, J., Hermanns, H.:
Synthesis and stochastic assessment of cost-optimal schedules. Int. J. Softw. Tools
Technol. Transfer (STTT) 12(5), 305–317 (2009). http://doc.utwente.nl/69344/

20. Müller, S.C., Häger, U., Rehtanz, C., Wedde, H.F.: Application of self-organizing
systems in power systems control. In: Dieste, O., Jedlitschka, A., Juristo, N. (eds.)
PROFES 2012. LNCS, vol. 7343, pp. 320–334. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31063-8 25

21. http://www.railsco.com/∼electric switch heater controls.htm. Accessed June 2016

22. Sanders, W.H., Meyer, J.F.: Stochastic activity networks: formal definitions and
concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000.
LNCS, vol. 2090, pp. 315–343. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44667-2 9

23. Tetens, O.: Uber einige meteorologische begriffe. Zeitschrift fur Geophysik 6, 297–
309 (1930)

24. Yovine, S.: KRONOS: a verification tool for real-time systems. Int. J. Softw. Tools
Technol. Transfer 1, 123–133 (1997)

25. Zhu, D., Melhem, R., Mossé, D.: The effects of energy management on reliability
in real-time embedded systems. In: International Conference on Computer Aided
Design (ICCAD), pp. 35–40, November 2004

http://doc.utwente.nl/69344/
https://doi.org/10.1007/978-3-642-31063-8_25
https://doi.org/10.1007/978-3-642-31063-8_25
http://www.railsco.com/~electric_switch_heater_controls.htm
https://doi.org/10.1007/3-540-44667-2_9
https://doi.org/10.1007/3-540-44667-2_9

www.manaraa.com

Modelling of Railway Signalling System
Requirements by Controlled Natural

Languages: A Case Study

Gabriele Lenzini1(B) and Marinella Petrocchi2,3

1 Interdisciplinary Center for Security Reliability and Trust (SnT),
University of Luxembourg, Luxembourg, Luxembourg

gabriele.lenzini@uni.lu
2 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche (IIT-CNR),

Pisa, Italy
marinella.petrocchi@iit.cnr.it

3 IMT Scuola Alti Studi Lucca, Lucca, Italy

Abstract. The railway sector has been a source of inspiration for gen-
erations of researchers challenged to develop models and tools to analyze
safety and reliability. Threats were coming mainly from within, due to
occasionally faults in hardware components. With the advent of smart
trains, the railway industry is venturing into cybersecurity and the rail-
way sector will become more and more compelled to protect assets from
threats against information & communication technology. We discuss
this revolution at large, while speculating that instruments developed
for security requirements engineering can then come in support of in the
railway sector. And we explore the use of one of them: the Controlled
Natural Language for Data Sharing Agreement (CNL4DSA). We use it
to formalize a few exemplifying signal management system requirements.
Since CNL4DSA enables the automatic generation of enforceable access
control policies, our exercise is preparatory to implementing the security-
by design principle in railway signalling management engineering.

Keywords: System modelling · Analysis and enforcement ·
Railway systems · CNL4DSA · Moving block railway signalling

1 Modern Railways Systems and Cyber-Security

The railway system industry responsible for command and control systems, traf-
fic, and operations is experiencing a radical change. In the last two decades it has

Lenzini is supported by Luxembourg National Research Fund (FNR) CORE project
C16/IS/11333956 “DAPRECO: DAta Protection REgulation COmpliance”; Petrocchi
is supported by the TOFFEe Integrated Activity Project funded by IMT Scuola Alti
Studi Lucca.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 502–518, 2019.
https://doi.org/10.1007/978-3-030-30985-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_29&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_29

www.manaraa.com

Modelling of Railway Signalling System Requirements by CNL 503

been shifting from relying on almost exclusive proprietary technology to rely-
ing on solutions based on information & communication technologies originally
designed for more open-market sectors.

The shift is motivated by the need to ensure that the railway industry can
rapidly adapt to forthcoming technological innovations and to future requests of
integration and interoperability. Modern trains are expected to be “intelligent”,
critical assets in the development of smart public transport systems where trains
and other means of transportation will work together to realize the full potential
of emerging technologies in the functioning of smart cities.

Several EU projects, such as, Roll2Rail1, In2Rail2, and Shift2Rail3, have
highlighted the potentials of a data-enhanced railway infrastructure, where real-
time rail data coming from intra-train, train-to-train, and/or train-to-ground
communications is processed to ensure optimal control, keep schedules, and
reduce consumption. Rail digital information comes also in forms of inputs for
IP-connected signalling systems, as well as infotainment to provide better ser-
vices to travellers. This communication revolution is pushing railway industry
towards a future where the safety of train operations will depend on networked
devices with access and control capabilities.

Not that safety will become less important: the railway industry has always
been very attentive to safety and it will continue to be so. But with the adop-
tion of information & communication technologies, railway safety-critical com-
ponents, for long threatened mainly by hardware and software failures4, no
longer will be designed to be only fault-tolerant, thus only safeguarded by hard-
ware/software redundancy; they will also be designed to be resilient against
malicious attacks, protected by solutions proper of security engineering such
as authentication protocols, access control enforcement points, and intrusion
detection and attack containment systems. In a more general sense, safety gets
intertwined with security.

Therefore, the railway industry has become attentive to matters of cybersecu-
rity. Today, railway industry is concerned about disruption of railway services,
about criminal damage to the information and communication infrastructure,
and about terrorist cyber-attacks. As well, it is worried about loss of commer-
cial sensitive information, reputation damage, and failure to comply with the
data protection regulations such as the GDPR.

As a result, cybersecurity for railway systems is enjoying a great deal of atten-
tion. The already mentioned EU projects “∗2Rail” vouch for it, while others, like
the EU CYRail5, address specifically detection, assessment, and mitigation of
safety and security threats in railway infrastructures. Cybersecurity is also in
1 www.roll2rail.eu.
2 www.in2rail.eu.
3 www.shift2rail.eu.
4 Not that it matters in the argument we are here developing, but one of the authors

recalls to have worked in his early PhD to the validation of a safety-critical hardware
system for the management of medium-large railway networks against the occurrence
of Byzantine faults [18].

5 www.cyrail.eu.

www.roll2rail.eu
www.in2rail.eu
www.shift2rail.eu
www.cyrail.eu

www.manaraa.com

504 G. Lenzini and M. Petrocchi

the agenda of the European Union Agency for Railways (formerly European
Railway Agency - ERA), the agency charged to develop European-wide com-
mon approaches to safety and security; not surprisingly, it is also subject of
interest for the European Union Agency for Network and Information Security
(ENISA), which on June 2019 has become the EU Cybersecurity Agency. In
January 2019, ENISA organized the first Transport Cybersecurity Conference6.
A few years before, in 2015, it edited a report on good practices and recom-
mendations for cybersecurity in intelligent public transport [14], suggesting the
adoption of security standards and security best practices and principles such
that of security-by-design. Later, in 2017 and 2018, CYRail published two reports
giving recommendations and discussing a list of safety and security requirements
for the railways industry [11,12].

1.1 Railways and Tools for Security Requirement Engineering

Despite the plethora of initiatives to provide guidelines and recommendations
for railway cybersecurity, the documents of reference for the implementation of
secure-by-design systems in the railway industry are largely the same as those
used in cybersecurity in general, for instance the ISO/IEC 27001-2 standards or
the NIST Cybersecurity Framework. Others domain-specific documents of refer-
ence are those released by the ERA, for instance the Technical Specifications for
Interoperability (TSIs), which “defines the technical and operational standards
which must be met by each subsystem or part of subsystem in order to meet the
essential requirements and ensure the interoperability of the railway system of
the European Union”7.

However, railway cybersecurity is not the same as ICT cybersecurity. The
complexity of the security issues in an European-wide train control system
requires at least a specific understanding of the domain and, we believe, ad-
hoc solutions. And to realize appropriate domain-specific defences and counter-
measures, engineers have to identify, read, understand, and interpret relevant
documents, regulations, and provisions. Eventually, they have to elicit clearly
defined requirements and implement them. These are renowned and challeng-
ing tasks. Requirements are often written in natural language and their correct
interpretation and implementation into systems, for instance as policies in access
control mechanisms, is threaten by vagueness and ambiguity (e.g., see [15,16]).

We do not expect such problems being different in the railway sector than in
other sectors, but because cybersecurity for railway system is a relative young
discipline, there may be lack of evidence that security requirements engineering
tools that have been used successfully in other sectors (e.g., in the banking
sector) can work in railway as well.

Here, we are interested to test whether one of such tools, the Controlled
Natural Languages (CNLs) (see Sect. 2), can be of benefit for the specification
of railway requirements. CNLs are instruments that help write requirements,

6 https://www.enisa.europa.eu/events/first-transport-cyber-security-conference/.
7 www.era.europa.eu/activities/technical-specifications-interoperability en.

https://www.enisa.europa.eu/events/first-transport-cyber-security-conference/
www.era.europa.eu/activities/technical-specifications-interoperability_en

www.manaraa.com

Modelling of Railway Signalling System Requirements by CNL 505

still without departing from the natural language playground which remains
pivotal for humans to express themselves and communicate ideas. But differ-
ently from natural languages, CNLs use a controlled grammar, a precise seman-
tics, and the possibility to process statements automatically. For instance, from
requirements written in Controlled Natural Language for Data Sharing Agree-
ment (CNL4DSA), the CNL we consider in this paper, it is possible to generate
access control policies and enforcement points.

As a case study, we take five requirements defined for real railway signalling
systems. They are among the main pillars to guarantee sustainable transporta-
tion. Precisely, they are about the “ERTMS L3 moving block”, one of the
next generation railway signalling systems currently under trial deployment that
promises to increase capacity on railway tracks, reduce costs, and improve reli-
ability. L3 moving block technology is fully radio-based: instead of sidetrack
blocks on the rail track, it uses special equipment within the train to contin-
uously supply the train position to a remote control centre, the Radio Block
Center (RBC), from which it receives inputs. If communication is lost because
of a train radio failure or because the radio network has become defective due to
interference or attacks, the message fail to be delivered and the train is stopped
with no easy means of recovery.

We translate the five ERTMS L3 moving block requirements from their
expression in natural language into the CNL4DSA. This particular CNL was
originally developed to formally model legal contract regulating data shar-
ing [9,25], but then extended to model requirements in other sectors as well.
Thus, we hypothesise, it fits our motivation of being of help in expressing rail-
way security-related requirements. The translation is evaluated with respect to
key properties defined in the so-called PENS (Precision, Expressiveness, Natu-
ralness, Simplicity) classification scheme [21]. In addition, we consider one more
property, Policy Enforcement.

The characterisation of CNL4DSA, with respect to that set of properties, will
allow railway engineers to judge the pertinence of such formalisms to automat-
ically process the terms and conditions regulating the next generation railway
signalling systems.

Outline. The rest of the paper is structured as follows. Section 2 briefly presents
control natural languages and the CNL4DSA. Section 3 describes the key prop-
erties of the PENS evaluation scheme. Section 4 introduces our case study and
the translation of part of its rules into CNL4DSA. Section 5 presents an assess-
ment of the considered translations and of the CNL4DSA. Outlines directions
for future work and conclusions are discussed in Sect. 6.

2 Controlled Natural Languages

Controlled Natural Languages, hereafter CNLs, are a subset of natural languages,
specifically conceived to make machine processing simpler. A CNL is, in essence,
a developed language that is based on natural language, but it is more restrictive

www.manaraa.com

506 G. Lenzini and M. Petrocchi

in terms of lexicon, syntax, semantics, while at the same time retaining most
of its natural properties [21]. CNLs have a more contrived representation, in
terms of grammar and vocabulary, and they thus reduce the ambiguity and
complexity of a complete language [28]. CNLs have been proved to be effective
in mitigating linguistic ambiguity challenges, as they can easily be translated
into a formal language such as first-order logic or different version of description
logic, automatically and mostly deterministically [28]. Noticeably, a branch of
CNLs conceived for expressing data privacy regulations are formal per se, being
born with an associated formal syntax and semantics, see, e.g. [25]. In general,
these languages can conveniently express the kind of information that occurs in,
e.g., software specifications, formal ontologies, business rules, legal and medical
regulations.

One interesting feature of CNLs is that they usually maintain a readability
that is not so different from that of pure natural languages. This makes them
more easy to write and understand by people than pure formal languages. Fur-
thermore, they are precisely defined subsets of natural languages and they can
be translated into rigorous target languages and, then, used for automated rea-
soning [28]. For example, the Attempto Controlled English (ACE) [17] has been
designed with an expressive knowledge representation that is easy to learn, read
and write for domain experts; RABBIT was developed for ontologies author-
ing with the help of domain experts [20], Sydney OWL Syntax (SOS) [10] was
designed as high-level interface language for OWL [29] and developed for domain
specialists for knowledge representation, authoring ontologies and knowledge
processing mapping to OWL. The variety of CNLs attributes suggests that it is
difficult to identify their general properties. CNLs are defined for different areas
(e.g., academia and industry), and for different fields (e.g., computer science,
mathematics, engineering, linguistics, etc), and even if CNLs usually share com-
mon properties some resemble natural languages, others programming languages
or logic-based formalisms, others are complex and their syntax and semantics
are not easy to define and/or understand [21].

2.1 CNL4DSA

Controlled Natural language (CNL) for Data Sharing Agreement (DSA) has
been introduced with the purpose to reduce the barrier of adoption of DSA
in terms of privacy as well as to ensure DSA mapping to formal languages that
allow the automatic verification of the agreement [25]. A data sharing agreement
is essentially a contract between two or more parties to agree on some terms
and conditions with respect to data sharing and usage. This language can also
support the enforcement of privacy and security of electronic data exchange.
CNL4DSA allows simple, yet formal, specifications of different classes of privacy
policies, as listed below:

– authorizations, expressing the permission for subjects to perform actions
on objects (e.g., data), under specific contextual conditions;

www.manaraa.com

Modelling of Railway Signalling System Requirements by CNL 507

– prohibitions, referring to prohibit the fact that a subject performs actions
on an object (e.g., on a set of data), under specific contextual conditions;

– obligations, defining that subjects are obliged to perform actions on objects,
under specific contextual conditions.

Central to CNL4DSA is the notion of fragment, i.e., a tuple f = 〈s, a, o〉,
where s is the subject, a is the action, o is the object. A fragment simply says
that ‘subject s performs action a on object o’. By adding the can/must/cannot
constructs to the basic fragment, a fragment becomes an authorisation, an obli-
gation, or a prohibition. Such composite fragments are by the following BNF-like
syntax:

F := NIL | mod f | F ; F | IF C THEN F | AFTER f THEN F

where:

– NIL is the null policy;
– mod ranges over {CAN, MUST, CANNOT} and models different type of

policies and respectively, authorization, obligation, and prohibition policies;
– mod f is the atomic authorization/obligation/prohibition fragment that

expresses that f (= 〈s, a, o〉) is allowed/obliged/denied. Its informal meaning
is that subject s can/must/cannot perform action a on object o.

– F ;F is a list of composite fragments.
– IF C THEN F expresses the logical implication between a composite context

C (see later) and a composite fragment: if C holds, then F is permitted.
– AFTER f THEN F is a temporal sequence of fragments. Informally, after

f has happened, then the composite fragment F is permitted.

Fragments are evaluated within a context. In CNL4DSA, a context c is eval-
uated as a boolean value (true/false) and it asserts properties of subjects and
objects, in terms, e.g., of users’ roles, data categories, time, and geographical
location. Simple examples of contexts are ‘subject hasRole Facebook admin’, or
‘object hasCategory user post’. The constructs linking subjects and objects to
their values, like hasRole and hasCategory in the above examples, are called
predicates. To describe complex policies, contexts can be combined using the
boolean connectors and, or, and not. Specifically, composite contexts are defined
as follows:

C := c | C AND C | C OR C | NOT c

2.2 CNL4DSA-Based Toolkit

Although born as a language to describe data sharing policies, CNL4DSA has
been proved suitable for expressing other kind of requirements, such as software
product lines specifications, e.g., see [19]. The language is not domain-specific,
since it has not a fixed vocabulary associated. Hence, it can be applied to various
use cases, as, e.g., social networking [31], e-health [24] and emergency manage-
ment [22] scenarios.

www.manaraa.com

508 G. Lenzini and M. Petrocchi

The strength of this language is that, over the years, a series of tools have
been developed around it, each of which serves a precise purpose within the life
cycle of a rule. Below, we describe each of these tools, and the role covered by
CNL4DSA.

A textual rule, either written in CNL4DSA or in natural language, is man-
aged by a CNL4DSA-based toolkit, originally proposed in [27] and successively
renewed. Initially comprising a CNL4DSA Authoring Tool, a CNL4DSA Policy
Analyser, and a CNL4DSA Mapper Tool, the toolkit has recently been enriched
with a translator from natural language rules to CNL4DSA rules, the NL2CNL
translation tool [31].

– NL2CNL Translator: a user with no expertise of CNLs can edit rules in natural
language (e.g., in English); with a minimal user’s effort, the translator outputs
the rules in CNL4DSA;

– CNL4DSA Authoring Tool: an author with expertise in CNLs can edit rules
directly in CNL4DSA. The rules are constrained by CNL4DSA constructs (see
Sect. 2) and the terms in the rules come from specific vocabularies (ontolo-
gies);

– CNL4DSA Analyser: it analyses a set of CNL4DSA rules, detecting potential
conflicts among them. In case a conflict is detected, a conflict solver strategy
based on prioritisation of rules is put in place to correctly enforce the right
rules;

– CNL4DSA Mapper: it translates the CNL4DSA rules into an enforceable
language. The mapping process takes as input the analysed CNL4DSA rules,
translates them in a XACML-like language [26], and combines all the rules
in line with the predefined conflict solver strategies. The outcome of this tool
is an enforceable policy. Such policy will be evaluated at each request to use
the objects specified in the policy itself.

A CNL4DSA Lifecycle Manager orchestrates all the previous components8.
When a user logs into the Lifecycle Manager, this enacts her specific functions,
according to the user’s role (e.g., end-user, policy maker, legal user, as defined
in [4]). Thus, users interact with the toolkit via the Lifecycle Manager.

Overall, CNL4DSA richness and flexibility, both in terms of describing spec-
ifications from different domains and of being equipped with different specifica-
tions processing tools, go into the direction to achieve an integrated framework
for the specification and analysis of safety, security and trust in complex and
dynamic scenarios, as demanded in [23].

3 The PENS Classification Scheme

A standard classification scheme is a good approach for controlled natural lan-
guages analysis, to determine whether a language fulfils certain characteristics.

8 The integration of the NL2CNL Translator is under development.

www.manaraa.com

Modelling of Railway Signalling System Requirements by CNL 509

The PENS scheme [21] was defined following the intuition that CNLs place
themselves in between natural and formal languages. In general, CNLs are quite
structured and constrained (thus, closer to pure formal languages). Still, their
syntax is close to natural terms.

Furthermore, to establish a general, but, at the same time, restricted classi-
fication, the PENS scheme considers English as a natural language and propo-
sitional logic as a formal language.

Also, to develop a base classification scheme, it was important to put the
properties under a few dimensions, to avoid as much as possible dependence
between each other [21]. The PENS classification scheme considers only four
properties Precision, Expressiveness, Naturalness, Simplicity, to condense under
those hats the highest number of possible characteristics. For example, attributes
like ambiguity in text, formal definition of language, and capability to transform
the language into a propositional logic can be merged under the Precision dimen-
sion. Natural writing, and natural feeling and understanding of the language
can be put under the Naturalness dimension. Instead, Simplicity measures the
(non)complexity of the language. Expressiveness of a language is a measure of
the variety of lexical and grammatical constructions it allows (irrespective of the
reader).

In the following, we will consider such four properties as the standard base for
our evaluation, plus one more property Policy enforcement, which is discussed
later in this section.

Each of the PENS dimensions are measured through five classes, ranging over
the interval 1, . . . , 5. Each of the five classes presents a one-dimensional area
between the two extremes, i.e., English at one end and propositional logic on
the other one. The decision to assign a language to one of the five classes, for
each dimension, is left arbitrary. Considering Simplicity and Precision, English
is at the bottom, i.e., S1 and P 1, while propositional logic is at the top, S5 and
P 5. Conversely, for Expressiveness and Naturalness, English is at the top: E5

and N5 while propositional logic is at the bottom: E1 and N1. We remand the
reader to [21] for all details about the PENS scheme.

The five classes for each dimension are described in a broadened scope and
cover a wide range of CNLs. Therefore, to make a simple but effective evaluation,
we select only one class for each dimension (usually, a class in the middle).

Precision. Precision is referred as the degree to which the meaning of a text
can be directly understood and recovered from its textual form in a particular
language, i.e., the sequence of linguistic symbols [21]. The ambiguity in the
meaning, predictability, and formality of the definition can be combined with
precision. Formal logic languages are highly precise because the meaning of the
text is strictly defined based on the possible sequences of the symbols of the
language, as compared to natural languages which are, according to the property
definition, imprecise and ambiguous.

The precision classes are defined as: Imprecise languages, Less impre-
cise languages, Reliably interpretable languages, Deterministically interpretable

www.manaraa.com

510 G. Lenzini and M. Petrocchi

languages, Languages with fixed semantics. We select ‘Deterministically Inter-
pretable Languages’ as the reference class: this class includes languages that are
completely formal at the syntactic level. Texts in this language can be deter-
ministically translated into a logical representation that define the meaning of
sentences. However, any sensitive deduction may require additional background
axioms, external or heuristic resources [21].

Expressiveness. Expressiveness is related to the range of propositions that a
language is capable of expressing. For example, language ‘Y’ is more expressive
than language ‘Z’ if ‘Y’ can describe all that ‘Z’ can, but ‘Z’ can not do the
same w.r.t. ‘Y’. This relationship does not necessarily induce a total order. For
example, given two languages, it might be that none of them is more expressive
than the other one. This makes it hard, or even unfeasible, to objectively rank
in a linear order a set of languages, in terms of expressiveness [21].

PENS considers the following characteristics of expressiveness:

a universal quantification over individual s, i.e., the presence in the language
syntax of the logical predicate ∀, ‘given any’ or ‘for all’.

b relations of arity greater than one, i.e., languages which functions/predicates
taking as input more than one argument.

c general rule structures, e.g., if-then-else conditions.
d negation (failure or strong negation).
e second-order (extension of first order logic) universal quantification over con-

cepts and relations [30].

By considering the above characteristics, it is possible to categorize languages
according to five different classes of expressiveness: inexpressive languages, lan-
guages with low expressiveness, languages with medium expressiveness, lan-
guages with high expressiveness and languages with maximal expressiveness.

In this paper, we concentrate on ‘Languages with Medium Expressiveness
(LwME)’, i.e., languages with all the characteristics of expressiveness as above,
except second-order universal quantification.

Naturalness. The dimension of naturalness defines how a language is ‘natural’,
in terms of reading and understanding from the user standpoint. Linguistic prop-
erties such as modification of grammar, comprehensibility, and natural reading
and writing can be considered elements of naturalness. CNLs retain most of the
natural properties of native languages, so that native language users can, quite
effortlessly, understand texts without the need of language experts.

The five naturalness classes are as follows: unnatural languages, languages
with dominant unnatural elements, languages with dominant natural elements,
languages with natural sentences, languages with natural texts. This study con-
siders ‘Languages with Dominant Natural Elements (LwDNE)’ as point of ref-
erence. With these types of languages, natural elements of languages dominates
unnatural elements and the overall grammar structure corresponds to grammar

www.manaraa.com

Modelling of Railway Signalling System Requirements by CNL 511

of natural language. However due to rest of natural elements or combination of
unnatural elements, these languages can not be considered valid natural sen-
tences. Natural language speakers can not easily recognizes the sentences state-
ments and can not understand their essence without any guidance or instructions
but still intuitively understand the language to a substantial degree [21].

Simplicity. This dimension considers how much simple (resp., complex) is to
describe the language in an exact and comprehensive manner, covering syn-
tax and semantics. These ‘exact and comprehensive descriptions’ should define
all syntactic and semantic properties of the language using accepted grammar
notations to define the syntax and accepted mathematical or logical notations
to define the semantics.

With respect to the PENS classification scheme, the indicator of simplicity
is the number of natural language pages needed to describe the language in an
exact and comprehensive way, consisting in the definition of all the syntactic and
semantic properties of the language. Page counting should be done considering
a single-column format, with a maximum of 700 words per page. The language
descriptions do not require to include vocabularies [21].

The five categories of simplicity are as follows: very complex languages, lan-
guages without exhaustive descriptions, languages with lengthy descriptions, lan-
guages with short descriptions and languages with very short descriptions. For
our study, we consider ‘Languages with Short Descriptions (LwSD)’ as the term
of comparison: a language considered to be simple enough to be described in
more than a single page but less than ten pages.

3.1 Policy Enforcement

A standard architecture for the application (technically, ‘enforcement’) of policies
is as follows. Consider a generic subject ‘S’ that tries to perform some action on
the object ‘O’.

A module, called Policy Enforcement Point (PEP) temporarily blocks the
subject’s request. The PEP takes as input the values of some attributes of the
subject ‘S’, of the object ‘O’, and of the external environment (for example, the
role of the subject, the type of object, the date and time when the request is
made). These values are sent by the PEP to the Policy Decision Point (PDP).
The PDP is a decision-making module of the architecture used to establish
whether or not to allow the subject to access the object. The decision is made by
evaluating the policies regulating which actions can be performed on the object.
The PDP evaluates the policies based on the attributes values, and grants or
denies the request of S, accordingly. Finally, the PEP applies the PDP decision.

This sketched architecture is adopted by the most common and tested con-
trol systems, such as the one implemented in the authorization infrastructure
associated with XACML [26].

We will thus consider a further property, Policy Enforcement, taking into
accounts if the CNL under investigation is enforceable, or not. In other words,
we will consider if it serves as input to standard tools for policy enforcement.

www.manaraa.com

512 G. Lenzini and M. Petrocchi

4 Translating Railway Requirements in CNS4DSA

The European Railway Traffic Management System (ERTMS) is a set of inter-
national standards for the interoperability, performance, reliability, and safety
of modern European rail transport [13]. ‘It relies on the European Train Control
System (ETCS), an automatic train protection system that continuously super-
vises the train, ensuring to not exceed the safety speed and distance. The current
standards distinguish four levels (0–3) of operation of ETCS signalling systems,
depending largely on the role of trackside equipment and on the way information
is transmitted to and from trains’ [2]. In particular, in the next generation Level
3 signalling systems, the train carries the Location Unit (LU) and OnBoard Unit
(OBU) components, while the Radio Block Center (RBC) is a trackside com-
ponent. The LU receives the train’s location from a Global Navigation Satellite
System (GNSS), sends this location, together with a messages ensuring of the
train integrity, to the OBU, which, in turn, sends the location to the RBC. Upon
receiving a train’s location, the RBC sends a Message Authority (MA) to the
OBU (together with speed restrictions and route configurations), indicating the
space the train can safely travel based on the safety distance with preceding
trains. The RBC computes the MA by communicating with neighbouring RBCs
and by exploiting its knowledge of the positions of switches and other trains
(head and tail position) by communicating with a Route Management System
(RMS)9.

4.1 ERTMS L3 Signalling System Security Requirements

Work in [2,3] extracts a series of requirements from the general description of
the next generation L3 signalling system. Here, we report (an excerpt of) such
requirements in natural language. Later, we translate them in CNL4DSA.

– Temporal Requirements

R1: GNSS must send the train location to LU every 5 s.
R2: If the train position cannot be received within the maximum time limit,
the OBU must transit to degraded mode.
R3: If the train integrity cannot be confirmed within the maximum time limit,
OBU shall order the brake activation.

– Alarm Triggering Requirements

R4: If the connection between the RBC and OBU is lost, OBU must trigger
an alarm.
R5: Once OBU receives an alarm, it must send it to RBC.

9 The description of the L3 signalling system is kindly provided by the authors of [3].

www.manaraa.com

Modelling of Railway Signalling System Requirements by CNL 513

R1–R5 can be expressed in CNL4DSA. We observe that they all express an
obligation, as they all express some mandatory requirement for the L3 signalling
system. We name subjects ‘subject‘ and objects ‘object’ followed by a number
(e.g., subject1, subject2), while we name actions with a phrase, in slanted style,
that reminds their doing (hasCategory). Actions are used in infix (e.g., subject1
Trigger objects1), with the exception of the action of s sending o to s′, which we
write in a mixed prefix-infix form as s sendTo(s′, o).

R1: IF c1 THEN MUST f1

where c1 is a composite context and f1 is an atomic fragment, defined as follows:

– c1 = IF subject1 hasRole ‘GNSS’ AND subject2 hasRole ‘LU’ AND
object1 hasCategory ‘TrainPosition’ AND object1 isProvidedBy subject1
AND object2 hasCategory ‘ElapsedTime’ AND object2 hasValue ‘5’.

– f1 = 〈subject1, sendTo(subject2), object1〉
where sendTo(s′) is the action of sending to s′.

R2: IF c1 THEN MUST f1

where c1 is a composite context and f1 is an atomic fragment, defined as follows:

– c1 = subject1 hasRole ‘OBU’ AND object1 hasCategory ‘TrainPosition’
AND NOT object1 isReceivedBy subject1 AND object2 hasCategory
‘ElapsedTime’ AND object2 hasValue ‘maxtimelimit’ AND object3 has-
Category ‘mode’ AND object3 hasValue ‘Degraded’.

– f1 = 〈subject1 ,Transit, object3〉

R3: IF c1 THEN MUST f1

where c1 is a composite context and f1 is an atomic fragment, defined as follows:

– c1 = subject1 hasRole ‘train’ AND object1 hasRole ‘Integrity’ AND object1
isRelatedTo subject1 AND NOT object1 hasStatus ‘Confirmed’ AND
object2 hasCategory ‘ElapsedTime’ AND object2 hasValue ‘MaxTimeLimit’
AND subject2 hasRole ‘OBU’ AND object3 hasCategory ‘OrderToBrake’.

– f1 = 〈subject2, SentTo(subject1), object3〉

R4: IF c1 THEN MUST f1

where c1 is a composite context and f1 is an atomic fragment, defined as follows:

– c1 = subject1 hasRole ‘RBC’ AND subject2 hasRole ‘OBU’ AND object1
hasCategory ‘Connection-RBC-OBU’ AND object1 hasStatus ‘Lost’ AND
object2 hasCategory ‘Alarm’.

– f1 = 〈subject2,Trigger,object2〉

www.manaraa.com

514 G. Lenzini and M. Petrocchi

R5: IF c1 THEN MUST f1

where c1 is a composite context and f1 is an atomic fragment, defined as follows:

– c1 = subject1 hasRole ‘OBU’ AND subject2 hasRole ‘RBC’ AND object1
hasCategory ‘alarm’ AND object1 isReceivedBy subject1 AND object2 has-
Category ‘BrakeActivation’.

– f1 = 〈subject1,Order,object2〉

5 Evaluation

In order to assess whether our exercise of expressing cybersecurity requirements
in CNL4DSA has the potentiality to lead to a better implementation of the
requirements, as we claimed in the introduction, we evaluate to which degree
our translation fulfils the evaluation criteria that we introduced in Sect. 3. The
result of this evaluation depends in large part on the classification that the
PENS scheme gives to CNL4DSA, in the sense we would not be able to conclude
that our translation of the requirements satisfies, for instance, naturalness if
CNL4DSA would not be enjoying that property in the first place.

Regarding precision, our translation in CNL4DSA is formal at syntactic level,
thus it falls into the category of Deterministically Interpretable Language.

The CNL4DSA syntax does not include a universal quantification opera-
tor. It supports negation for predicates but not negation for actions [25]. Thus,
it cannot be classified as a pure Language with Medium Expressiveness. How-
ever, it should be noticed that negation on actions can be handled through
the CANNOT modality. Moreover, being CNL4DSA coupled with hierarchi-
cal vocabularies, it is possible to express fine-grained terms, representing spe-
cific subjects, actions, and objects, as well as coarse-grained terms, representing
generic subjects, actions, and objects. This implies the capability to express poli-
cies valid for every possible subject, action, and object as our translation shows
clearly.

In terms of naturalness, CNL4DSA can be classified as a Language with
Dominant Natural Elements, because the translations show the domination of
natural elements over unnatural elements and the overall grammar structure of
this language correlates to natural language grammar. Our translations harder to
read than the natural language, but we claim they can be intuitively understood
by non experts. This claim, to be substantiated, requires experimental validation,
an activity we consider for future work.

As for simplicity, the description of the language, in terms of explanations
of its syntax and semantics, needs more than a single page but less then ten
pages [9]. Therefore, it can be classified as a Language with Short Descriptions.

The most interesting property at least in the scope of this work is that
CNL4DSA is amenable to automatic policy verification [8] and enforcement.
This can be realized via the existing implementation of the automatic translation
of CNL4DSA into the enforceable language UPOL Usage control POLicy that

www.manaraa.com

Modelling of Railway Signalling System Requirements by CNL 515

has been introduced in [5–7]). Thus, CNL4DSA indirectly enjoys, through an
automatic translation, the property of policy enforcement. Although we did show
it here, being out of scope in this work, it is possible to have the requirements
automatically translated in to XACML enforceable policies.

6 Conclusions

Aware of the technological shift that drives modern railway system industry
towards the adoption of cybersecurity solutions, we tested the use of controlled
natural language in expressing five exemplifying requirements. The requirements,
coming from a subset of real control rules about the “ERTMS L3 moving block”,
have been expressed in CNL4DSA, a controlled natural language, and evaluated
for precision, expressiveness, naturalness, and simplicity.

The chosen requirements describe obligations in case of communication fail-
ure between the L3 moving block on-line unit (OBU), the train, and the Radio
Block Center (RBC). One could argue that these are not purely cybersecurity
requirements, and that this choice of ours is not appropriate for our goal to test
the helpfulness of tools for security requirement engineering in the railway sec-
tor. We sustain that in the railway requirement engineering, security and safety
requirements are usually entangled, since security issues often require a safety
response. Thus, deciding whether a certain set of requirements concerns more
security than safety, or the vice versa, may be argued differently by different
experts. We are not interested in taking position. Rather, we are willing to see
among the reasons for a L3 moving block’s communication failure also signal
jamming. In that case, a safe stop of the train is still the right response to
avoid dramatic consequences, and this is unquestionably a safety reaction to a
cybersecurity threat. And if jamming is a possible threat, then in a more cyber-
security perspective one could considered that signals can also be spoofed. In
a spoofing attack one successfully masquerades itself as being another. If such
an attack against train-to-ground communication is feasible, then safety will
become dependent on signal integrity and authenticity. Thus, future L3 mov-
ing block requirements could also be about signal assurance levels, signal source
authentication and signal integrity. In that case, having proved that tools from
security requirement engineering are able to express already original ERTMS L3
moving block requirements will make the transition to integrate further cyber-
security requirements easier.

That said, our exercise shows that the user of a CNL output a specification
that is formal, with a clear syntax and an unambiguous semantics. The language
used, the CNL4DSA, features degrees of expressiveness (in terms of expressible
logical operators and functions), presence of natural elements, and simplicity of
its description. Moreover, it gives our translation a further desirable property: the
possibility to generate inputs for a standard policy enforcement infrastructure à
la XACML.

Despite our work alone is not sufficient to draw a general conclusion, we can
at least say that our exercise to automatically translate railway signalling system

www.manaraa.com

516 G. Lenzini and M. Petrocchi

requirements in CNL4DSA has been possible without problem. On the contrary,
we appreciate CNL4DSA’s closeness to a natural language, which helped read-
ability, and its rigorous syntax and semantics, which was expressive enough to
express the modalities in the chosen requirements. Besides, learning how to use
CNL4DSA (one of the two author was not familiar with the formalism) required
little effort. These are notable qualities in themselves, but there is one more
that we should consider: CNL4DSA comes with a devoted toolkit for policy
authoring, analysis and enforcement and this feature potentially enables at least
within the scope of railway requirements in our use case, an implementation of
the principle of security-by design.

A natural next step is to encode more requirements that express different
modalities than obligation to test how far we succeed in producing comprehensi-
ble translations and in composing guidelines for a good practice in such a trans-
lation task. Future work is also designing a quantitative methodology to assess
CNL4DSA’s output for understandability by non experts in formal methods,
which likely calls for user studies similar to what has been proposed in [1]. To pre-
serve readability for non expert end-users may indeed become a challenge when
trying to obtain formal requirements that are automatically machine-readable
(i.e., analyzable and enforceable).

Acknowledgement. This work has been written for the Festschrift in honor of
Stefania Gnesi, head of the Formal Methods & Tools group of the Istituto di Scienza
e Tecnologie dell’Informazione “A. Faedo” (ISTI) of the National Council of Research
(CNR), in Pisa, Italy. Both authors wish to express their professional and personal
gratitude to Stefania for the time spent together at the CNR in Pisa and for years of
fruitful collaboration. Stefania has been our mentor but she is also a friend. Rephrasing
what we took from a comic strip about Livorno, the seaside town where she lives, we
could affectionately say: “È una livornese, una donna forte con un cuore di madre”.

References

1. Bartolini, C., Lenzini, G., Santos, C.: An agile approach to validate a formal repre-
sentation of the GDPR. In: New Frontiers in Artificial Intellingence. New Frontiers
in Artificial Intelligence. Springer (2019, in press)

2. Basile, D., ter Beek, M.H., Ciancia, V.: Statistical model checking of a moving
block railway signalling scenario with Uppaal SMC - experience and outlook. In:
Leveraging Applications of Formal Methods, Verification and Validation. Verifica-
tion - 8th International Symposium, ISoLA 2018, Limassol, Cyprus, 5–9 November
2018, Proceedings, Part II, pp. 372–391 (2018). https://doi.org/10.1007/978-3-030-
03421-4 24

3. Basile, D., ter Beek, M.H., Ferrari, A., Legay, A.: Modelling and analysing ERTMS
L3 moving block railway signalling with simulink and Uppaal SMC. In: Formal
Methods for Industrial Critical Systems - 24th International Conference, FMICS
2019, Amsterdam, The Netherlands, 30–31 August 2019, Proceedings (2019).
https://doi.org/10.1007/978-3-030-27008-7 1

https://doi.org/10.1007/978-3-030-03421-4_24
https://doi.org/10.1007/978-3-030-03421-4_24
https://doi.org/10.1007/978-3-030-27008-7_1

www.manaraa.com

Modelling of Railway Signalling System Requirements by CNL 517

4. Caimi, C., Gambardella, C., Manea, M., Petrocchi, M., Stella, D.: Legal and tech-
nical perspectives in data sharing agreements definition. In: Privacy Technologies
and Policy - Third Annual Privacy Forum, APF 2015, Luxembourg, 7–8 October
2015, Revised Selected Papers, pp. 178–192 (2015). https://doi.org/10.1007/978-
3-319-31456-3 10

5. Coco Cloud Consortium - Confidential and Compliant Clouds: Deliverable
4.2: First DSA management infrastructure (2015). http://www.coco-cloud.eu/
deliverables

6. Coco Cloud Consortium - Confidential and Compliant Clouds: Deliverable
4.3: Final DSA management infrastructure (2016). http://www.coco-cloud.eu/
deliverables

7. Coco Cloud Consortium - Confidential and Compliant Clouds: Deliverable 5.3:
Final version of the enforcement infrastructure (2016). http://www.coco-cloud.
eu/deliverables

8. Costantino, G., Martinelli, F., Matteucci, I., Petrocchi, M.: Analysis of data sharing
agreements. In: Information Systems Security and Privacy, pp. 167–178 (2017)

9. Costantino, G., Martinelli, F., Matteucci, I., Petrocchi, M.: Efficient detection of
conflicts in data sharing agreements. In: Mori, P., Furnell, S., Camp, O. (eds.)
ICISSP 2017. CCIS, vol. 867, pp. 148–172. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-93354-2 8

10. Cregan, A., Schwitter, R., Meyer, T., et al.: Sydney OWL syntax - towards a con-
trolled natural language syntax for OWL 1.1. In: OWL: Experiences and Directions,
vol. 258. CEURs Workshop Proceedings (2007)

11. CYRAIL: Safety and security requirements of rail transport system in multi-
stakeholder environment. Technical report, EU, June 2017

12. CYRail: Recommendations on cybersecurity of rail signalling and communications
systems. Technical report, CYRail, September 2018

13. EEIG ERTMS Users Group: ERTMS/ETCS RAMS Requirements Specifica-
tion - Chapter 2 - RAM (1998). http://www.era.europa.eu/Document-Register/
Documents/B1-02s1266-.pdf

14. ENISA: Cyber Security and Resilience of Intellingent Public Transport, Good Prac-
tices and Recommendations. Technical report, ENISA, December 2015

15. Ferrari, A., Lipari, G., Gnesi, S., Spagnolo, G.O.: Pragmatic ambiguity detection
in natural language requirements. In: Proceedings of AIRE, pp. 1–8 (2014)

16. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity cues in requirements elicitation
interviews. In: Proceedings of RE, pp. 56–65 (2016)

17. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto controlled English for knowledge
representation. In: Baroglio, C., Bonatti, P.A., Ma�luszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85658-0 3

18. Gnesi, S., Lenzini, G., Latella, D., Abbaneo, C., Amendola, A., Marmo, P.: An
automatic SPIN validation of a safety critical railway control system. In: Proceed-
ings of the International Conference on Dependable Systems and Networks (DSN
2000), 25–28 June 2000, New York, NY, USA, pp. 119–124 (2002)

19. Gnesi, S., Petrocchi, M.: Towards an executable algebra for product lines. In: 16th
International Software Product Line Conference, SPLC 2012, Salvador, Brazil,
2–7 September 2012, vol. 2, pp. 66–73 (2012). https://doi.org/10.1145/2364412.
2364424

20. Hart, G., Dolbear, C., Goodwin, J.: Lege Feliciter: using structured English to
represent a topographic hydrology ontology. In: OWL: Experiences and Directions
(2007)

https://doi.org/10.1007/978-3-319-31456-3_10
https://doi.org/10.1007/978-3-319-31456-3_10
http://www.coco-cloud.eu/deliverables
http://www.coco-cloud.eu/deliverables
http://www.coco-cloud.eu/deliverables
http://www.coco-cloud.eu/deliverables
http://www.coco-cloud.eu/deliverables
http://www.coco-cloud.eu/deliverables
https://doi.org/10.1007/978-3-319-93354-2_8
https://doi.org/10.1007/978-3-319-93354-2_8
http://www.era.europa.eu/Document-Register/Documents/B1-02s1266-.pdf
http://www.era.europa.eu/Document-Register/Documents/B1-02s1266-.pdf
https://doi.org/10.1007/978-3-540-85658-0_3
https://doi.org/10.1145/2364412.2364424
https://doi.org/10.1145/2364412.2364424

www.manaraa.com

518 G. Lenzini and M. Petrocchi

21. Kuhn, T.: A survey and classification of controlled natural languages. Comput.
Linguist. 40(1), 121–170 (2014)

22. Martinelli, F., Matteucci, I., Petrocchi, M., Wiegand, L.: A formal support for
collaborative data sharing. In: Multidisciplinary Research and Practice for Infor-
mation Systems - IFIP WG 8.4, 8.9/TC 5 International Cross-Domain Conference
and Workshop on Availability, Reliability, and Security, CD-ARES 2012, Prague,
Czech Republic, 20–24 August 2012, Proceedings, pp. 547–561 (2012). https://doi.
org/10.1007/978-3-642-32498-7 42

23. Martinelli, F., Petrocchi, M.: A uniform framework for security and trust model-
ing and analysis with crypto-CCS. Electr. Notes Theor. Comput. Sci. 186, 85–99
(2007). https://doi.org/10.1016/j.entcs.2007.03.024

24. Matteucci, I., Mori, P., Petrocchi, M., Wiegand, L.: Controlled data sharing in
E-health. In: Socio-Technical Aspects in Security and Trust (STAST), pp. 17–23.
IEEE (2011)

25. Matteucci, I., Petrocchi, M., Sbodio, M.L.: CNL4DSA: a controlled natural lan-
guage for data sharing agreements. In: Symposium on Applied Computing, pp.
616–620. ACM (2010)

26. OASIS XACML Technical Committee: eXtensible Access Control Markup Lan-
guage (XACML) Version 3.0 (2013)

27. Ruiz, J.F., et al.: A lifecycle for data sharing agreements: how it works out. In:
Schiffner, S., Serna, J., Ikonomou, D., Rannenberg, K. (eds.) APF 2016. LNCS,
vol. 9857, pp. 3–20. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44760-5 1

28. Schwitter, R.: Controlled natural languages for knowledge representation. In:
Proceedings of the 23rd International Conference on Computational Linguistics:
Posters, pp. 1113–1121. Association for Computational Linguistics (2010)

29. Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C., Hart, G., et al.: A compari-
son of three controlled natural languages for OWL 1.1. In: OWL: Experiences and
directions (2008)

30. Stanford Encyclopedia of Philosophy: Quantifiers and quantification (2018).
https://plato.stanford.edu/entries/quantification/#SecOrdQua

31. Tanoli, I.K., Petrocchi, M., De Nicola, R.: Towards automatic translation of social
network policies into controlled natural language. In: 12th International Conference
on Research Challenges in Information Science, RCIS 2018, Nantes, France, 29–31
May 2018, pp. 1–12 (2018). https://doi.org/10.1109/RCIS.2018.8406683

https://doi.org/10.1007/978-3-642-32498-7_42
https://doi.org/10.1007/978-3-642-32498-7_42
https://doi.org/10.1016/j.entcs.2007.03.024
https://doi.org/10.1007/978-3-319-44760-5_1
https://doi.org/10.1007/978-3-319-44760-5_1
https://plato.stanford.edu/entries/quantification/#SecOrdQua
https://doi.org/10.1109/RCIS.2018.8406683

www.manaraa.com

Single-Step and Asymptotic Mutual
Information in Bipartite Boolean Nets

Tommaso Bolognesi(B)

CNR–ISTI, Pisa, Italy
t.bolognesi@isti.cnr.it

Abstract. In this paper we contrast two fundamentally different ways
to approach the analysis of transition system behaviours. Both methods
refer to the (finite) global state transition graph; but while method A,
familiar to software system designers and process algebraists, deals with
execution paths of virtually unbounded length, typically starting from
a precise initial state, method B, associated with counterfactual reason-
ing, looks at single-step evolutions starting from all conceivable system
states.

Among various possible state transition models we pick boolean nets
– a generalisation of cellular automata in which all nodes fire syn-
chronously. Our nets shall be composed of parts P and Q that interact by
shared variables. At first we adopt approach B and a simple information-
theoretic measure – mutual information M(yP , yQ) – for detecting the
degree of coupling between the two components after one transition step
from the uniform distribution of all global states. Then we consider an
asymptotic version M(y∗

P , y∗
Q) of mutual information, somehow mixing

methods A and B, and illustrate a technique for obtaining accurate
approximations of M(y∗

P , y∗
Q) based on the attractors of the global graph.

Keywords: Boolean network · Mutual information ·
Counterfactual analysis · Integrated Information Theory ·
Transition system behaviour · Attractor

1 Introduction

This paper is dedicated to Stefania Gnesi. In spite of my long term permanence
in the Formal Methods group of ISTI that, under her coordination, has reached
results of internationally recognized excellence, Stefania and I have not had
many opportunities of doing joint, cheek-by-jowl work, for reasons that I tend
to attribute more to the meanderings of chance than to the (often prolonged)
divergence of our specific research inclinations and goals.

If I had to mention today just one topic in the large area of Software Engi-
neering in which I suspect we might have enjoyed working together, that topic
would be Requirements Engineering (RE), especially in those aspects that con-

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 519–530, 2019.
https://doi.org/10.1007/978-3-030-30985-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_30&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_30

www.manaraa.com

520 T. Bolognesi

nect to Natural Language Processing.1 But it is, in many respects, too late to
draft notes on a possible joint RE-paper!

In the present contribution I will instead focus on the most elementary and
abstract mathematical structure that one encounters when engaging with Formal
Methods for system specification and analysis – the omnipresent Global State
Transition Graph – but will handle it in a rather peculiar way, at least when
compared with the traditional analytical techniques familiar to our research
group.

Once the global graph of a concurrent, distributed system is available, typical
analytical objectives include reachability, deadlocks, livelocks, connected compo-
nents, attractors, liveness or fairness properties, all of which involve – in practice
or in principle – execution paths of virtually infinite length, starting from the
specified initial state.

By following an alternative approach, one tries to obtain information about
the system by considering paths of length one – just one transition – starting
from any state, including those that are not reachable from the assumed initial
state. Indeed, under this counterfactual reasoning, the notion of a definite initial
state becomes irrelevant. Counterfactual thinking informs J. Pearl’s Do-Calculus
of intervention [8] and is at the core of Integrated Information Theory (IIT) [1,7],
which studies massively parallel artificial/natural systems and aims at modelling
and measuring phenomena associated with consciousness.

Crucial to IIT is the idea to partition a system (typically modelled as a
boolean net) into parts that communicate with one another by sharing some
variables – some nodes of the net. Roughly speaking, Integrated Information,
denoted ‘Φ’, measures the added value provided by the composition/integration
of the parts w.r.t. the plain sum of their contributions. (More precisely, Φ is
a function of the current global state X of the system, and of some partition,
say {P,Q}, and measures the entropy of the distribution pre(X) of the pre-
decessor states of X relative to the product pre(XP) × pre(XQ) of the anal-
ogous distributions referring to the state components XP and XQ and to the
independent behaviours of system components P and Q. Relative entropy is also
known as Kullback-Leibler divergence. The independent behaviour of the parts is
achieved by cutting the communication channels between P and Q and replacing
with noise the information that they would exchange under normal, cooperative
behaviour. The interested reader may consider the simple examples in [1], Figs. 3
and 4.).

For this reason it seems attractive to export the tools of the theory to other
areas beyond neurophysiology, e.g. for investigating communication mechanisms
and processes in Software Engineering.

In this paper we initially retain the IIT approach of one-step-from-all-states,
as opposed to many-steps-from-one-state, but without using Φ, a rather sophis-
ticated concept which is still evolving as new versions of IIT are elaborated;

1 Among other things, I am particularly grateful to Stefania for having offered me to
replace her for several years in teaching Software Engineering at the Engineering
Dept. of the University of Siena.

www.manaraa.com

Single-Step and Asymptotic Mutual Information in Bipartite Boolean Nets 521

we shall instead use a more fundamental and familiar informational measure,
namely mutual information M (which indeed plays a role also in the definition
of Φ in IIT 2.0 [1]).

The paper is organised as follows.
In Sect. 2 we introduce the state transition model of boolean nets and the

idea to partition them into parts P and Q that interact by shared variables,
introducing also a measure of their structural (or syntactic) degree of coupling.

In Sect. 3 we recall the notion of mutual information between two (discrete)
random variables, to be applied to the next states yP and yQ of the two bool
net components, written M(yP , yQ).

In Sect. 4 we plot values of M(yP , yQ) for randomly generated, bipartite bool
nets, as a function of the syntactic coupling degree between the two components.

In Sect. 5 we push the analysis of mutual information to bool net computa-
tions of virtually infinite length, and show how these asymptotic values can be
obtained by using the attractors of the bool net global graph. This technique has
been implemented in a freely downloadable interactive demonstration, which is
briefly illustrated.

The main objective of the paper is to obtain some numerical characterisation
of the behavioural (semantic) coupling between system parts P and Q that
interact by shared variables, and of its dependence on the structural (syntactic)
coupling, expressed by the number of variables that P and Q share.

2 Bipartite Boolean Nets

Boolean nets [6] are discrete sequential dynamical systems. An (n, k)-boolean net
(‘bool net’ in the sequel) is a pair (G(B,E), F) where:

– G(B,E) is a directed graph with vertex set B = {b1, . . . , bn} and edge set E;
each vertex bi ∈ B has exactly k incoming edges:2 bi,1 → bi, . . . , bi,k → bi, so
that |E| = nk.

– F = {f1, . . . fn) is a set of n boolean functions of k arguments, one for each
vertex in B.

Each vertex bi ∈ B is a boolean variable controlled by boolean function
fi(bi,1 . . . bi,k), where the ordered k-tuple of arguments (bi,1 . . . bi,k) corresponds
to the edges incident to bi.3

A bool net computation is a sequence of steps, assumed to take place in dis-
crete time – one step at each clock tick. Each step consists of the instantaneous
and synchronous firing of all nodes, which means that the computation is deter-
ministic. (The asynchronous execution mode in which one randomly chosen node
is fired at each step yields nondeterministic computations, but we shall not deal
with this alternative here.).
2 This limitation on node in-degree is not essential; we adopt it only for convenience

of implementation and notation.
3 Note that the graph is not sufficient for correctly identifying the order of function

arguments: this is disambiguated in F .

www.manaraa.com

522 T. Bolognesi

Bool net steps are computed by the transition probability matrix (tpm), in
which entry tpm(X,Y) expresses the conditional probability p(Y |X) that the
next state be Y , given current state X. The introduction of transition proba-
bilities, which are derived from the (normalised) count of possible transitions,
is a natural and necessary step for being able to apply formal informational
measures.

We use lower case letters, e.g. x or y, to denote a state variable (e.g. the
current or next state of a bool net), but also, with symbol overloading, their
distributions; we use upper case letters, e.g. X or Y , to denote a specific state
value (a specific bit-tuple). The tpm of an (n, k) bool net S has 2n rows and
2n columns, since 2n is the number of possible states of S. Each row of the tpm
must be a probability vector – its total must be 1; since (standard) bool nets
are deterministic, each row is formed by 0’s except for one entry with value 1.

Let x̄S denote the uniform distribution of all 2n possible states of an (n, k)-
bool net S, and let tpm be the transition probability matrix of the net. Then,
the next state distribution is:

yS = x̄S .tpm (1)

where ‘.’ denotes dot product.
Let us now split the node set B of boolean net S into parts P and Q and let

α be the number of P -Q bridges, i.e. edges in E with one endpoint in P and one
in Q. We take α to represent the coupling factor between P and Q. If bi → bj

is a bridge from P to Q and the inputs to bi are from P , then, at each step,
Q reads a node of P which has been written, at the previous step, by P itself,
implementing a form of shared variable cooperation between the two parts – an
alternative to the shared labelled transition interaction mechanism commonly
adopted in process algebra.

We shall use notation

P (nP , k)<α>Q(nQ, k)

to indicate the number of nodes in P and Q, the fixed arity k of the involved
boolean functions and the α coupling parameter, where <α> is reminiscent of
process algebraic parallel composition operators. We shall also use abbreviations
P < α > Q and PQ for denoting the same system, especially in subscripts.

3 Mutual Information Between yP and yQ

Two random variables y1 and y2 are independent if and only if their mutual
information [5] is null: M(y1, y2) = 0.

Mutual information M(y1, y2), a symmetric quantity representing the infor-
mation provided on average by one variable about the other, is:

M(y1, y2) =
∑

i,j

py1y2(Yi, Yj)Log2
py1y2(Yi, Yj)

py1(Yi)py2(Yj)
, (2)

www.manaraa.com

Single-Step and Asymptotic Mutual Information in Bipartite Boolean Nets 523

where py1y2 is the joint distribution of the two variables, while py1 and py2 are
the respective marginal distributions.

It is customary to represent two random variables y1 and y2 as bubbles
in a sort of Venn diagram, where the area of the bubble corresponds to the
information provided by each variable. In that case, the mutual information that
y1 provides about y2, and vice versa, corresponds to the area of the intersection
of the two bubbles. When the variables are independent, their joint distribution
py1y2 is simply the product of their individual distributions py1 and py2 , which
implies that the fraction in Eq. (2) assumes value 1, yielding M(y1, y2) = 0;
pictorially, the two bubbles are disjoint.

Let xPQ be a random variable ranging in the set {0, 1}n of n-tuples of bits,
denoting the current state of an (n, k)-bool net P<α>Q. Similarly, let yPQ

denote the next state of the bool net: yPQ = xPQ.tpm. Let then yP and yQ

denote the two variables obtained by splitting yPQ in its P and Q components.
As anticipated, with notational abuse we let xPQ, yPQ, xP , xQ, yP and yQ

denote not only random variables, but also their probabilistic density functions
(or their ‘distributions’) – the meaning being clear from the context.

If variable xPQ is uniformly distributed, written x̄PQ, then its components
xP and xQ are independent random variables, so that their mutual information
is null: M(xP , xQ) = 0. Knowing xP does not give any clue about the value of
xQ. On the other hand, when bool net P<α>Q performs just one transition,
starting from x̄PQ, variables yP and yQ will in general be coupled, due to the
interaction between the parts, yielding MP<α>Q(yP , yQ) > 0. In the sequel we
shall sometimes drop the subscript from MP<α>Q. We are interested in observing
this value and its dependence on α.

4 Experimental Results

In Fig. 1 we consider a family of bool nets of form P (n, k)<α>Q(n, k) with
n = 5, k = 3 and α ranging from 0 to αmax = 2nk. The maximum value of α is
obtained when all 2nk edges of the net become bridges: in this case, the nodes
of P only read those of Q and viceversa.

At first thought one might perhaps expect M(yP , yQ) to grow monotonically
with α: the tighter the structural P -Q coupling measured by α, the higher the
mutual information between the local next states yP and yQ. As apparent from
the plots, however, M(yP , yQ) tends to assume a bell shape, with value 0 at both
endpoints of the spectrum of α values.4 Indeed, this fact can be easily established
formally.

4 The averaged plot in Fig. 1-right suffers from a slight asymmetry. We conjecture
that this corresponds to an asymmetry in the bool-net construction procedure: in
the initial bipartite net each node has incoming edges from k distinct from-nodes
while in the creation of new edges that cross between P and Q this concern is dropped
and multiple edges between the same two nodes may appear, with boolean functions
possibly reading duplicated arguments. The validity of the subsequent propositions
is not affected by this asymmetry.

www.manaraa.com

524 T. Bolognesi

Fig. 1. Left: Mutual information MP<α>Q(yP , yQ) between the P and Q components
of the next state yPQ, starting from a uniformly distributed state x̄PQ, of a randomly
generated bool net of form P (5, 3)<α>Q(5, 3) as a function of α – the structural
coupling factor of the net that counts the number of P-Q bridges. Right: Similar plot,
obtained by averaging the mutual information over a set of 20 bool nets of the same
form. Standard deviations are also shown.

Proposition 1. Let P (nP , k)<α>Q(nQ, k) be a bool net with nP + nQ nodes,
as many k-ary bool functions, and α bridges between P and Q. Let yP and
yQ denote the P and Q components of state yPQ reached by the net in one
transition, starting from the uniform distribution x̄PQ of global states. If α = 0,
then M(yP , yQ) = 0.

Proof. Since bool net computations are deterministic we can write transition
xPQ → yPQ in functional form: yPQ = PQ(xPQ), where ‘PQ’ is the function
that transforms one state into the next (in fact, this function is implemented by
the tpm – see Eq. 1). Let us write state xPQ as a concatenation xP .xQ of local
states. It is easy to see that if xPQ is uniformly distributed, then its compo-
nents xP and xQ are (uniformly distributed and) independent: M(xP , xQ) = 0.
When α = 0 there are no bridges between P and Q and the two components
are completely separated. Thus the global transition can be decomposed into
yP = P (xP) and yQ = Q(xQ). From the independence of xP and xQ, then, the
independence of yP and yQ immediately follows: M(yP , yQ) = 0. []

Proposition 2. Let P (nP , k)<α>Q(nQ, k), xP , xQ, yP and yQ be as defined
for Proposition 1. If α = αmax = 2nk, then M(yP , yQ) = 0.

Proof. When α = αmax all edges of P (nP , k)<α>Q(nQ, k) are bridges between P
and Q. Thus, the global transition can be decomposed into yP = P (xQ) and yQ =
Q(xP) (note the swap of indices w.r.t. Proposition 1). Again the independence of
xP and xQ implies that of yP and yQ: MP<αmax>Q(yP , yQ) = 0. []

The one-step policy adopted for the above analysis, involving just one tran-
sition x̄PQ → yPQ, is the same that inspires the already mentioned Integrated
Information Theory (IIT) and, in particular, its central informational measure
‘Φ’ [1,7]. While the application of Φ to bool nets that interact by shared variables

www.manaraa.com

Single-Step and Asymptotic Mutual Information in Bipartite Boolean Nets 525

as well as by the process-algebraic mechanism of shared labelled transitions (see
Sect. 6) will be the subject of a forthcoming paper, we are interested here in
dropping the one-step restriction for pushing the analysis of mutual informa-
tion to transition sequences of virtually infinite length, thus recovering in part
an analytical style more familiar to process algebraists and system designers at
large.

5 Asymptotic P-Q Mutual Information via Global Graph
Attractors

Let
yh

PQ = x̄PQ.tpmh
PQ (3)

be the next state distribution after h steps of bool net P<α>Q, where tpmh
PQ

is the hth power of matrix tpmPQ, y0
PQ ≡ x̄PQ and y1

PQ ≡ yPQ. Recall that the
‘transitions’ we handle here involve state distributions, not definite states.

As in the case of a single transition, we split yh
PQ into its components yh

P and
yh

Q and set to analyse MP<α>Q(yh
P , yh

Q), with fixed α, as h → ∞.
The sequence of global state distributions yh

PQ is defined by the recurrence

y0
PQ = x̄PQ (4)

yh+1
PQ = yh

PQ.tpmPQ. (5)

Consider, for simplicity, a bool net P (2, 2)<α>Q(2, 2) with a total of 4 nodes
and some unspecified coupling parameter α, and consider distribution yh

PQ for
a specific value of h. This distribution will be a probability vector with 24 = 16
elements, whose values are represented by grey levels in Fig. 2-left. By splitting
this vector into 4 segments of length 4 and stacking them on top of one another,
we obtain precisely the joint distribution matrix pyh

P ,yh
Q

for random variables yh
P

and yh
Q.

All we need for computing the mutual information between two random vari-
ables y1 and y2 is their joint distribution py1,y2 , since the marginal distributions
that appear in Eq. 2 are derived from it by adding up rows or columns. In fact,
we could write M(py1,y2) in place of M(y1, y2).

Hence, given the sequence of global state distributions yh
PQ, we rearrange each

element as illustrated in Fig. 2 and compute the associated mutual information,
obtaining the sequence M(yh

P , yh
Q).

Four such sequences are illustrated in Fig. 3. Depending on the structure of
the bool net, the sequence of M values may stabilise or permanently enter an
oscillatory phase. The red dotted lines in Fig. 3 provide a quite good approxima-
tion of the values of M in the long run, and are obtained by an attractor-based
technique that we now illustrate.

Let GG denote the directed, global state transition graph of the (n, k)-bool
net under study. GG has 2n nodes – as many as the bit tuples of length n.

www.manaraa.com

526 T. Bolognesi

Fig. 2. Left: the yh
PQ distribution assigns a probability, represented by a grey level, to

each global state, represented as a quadruple of bits. Right: by stacking the 4 segments
of length 4 from yh

PQ we obtain the joint distribution matrix for the (coupled) variables
yh

P and yh
Q.

The 16-node GG of a (4, 3)-bool net is shown in Fig. 4. Each node of the graph
represents a different state of the bool net, i.e. a quadruple of bits (only the node
corresponding to (0,0,0,0) is identified in the diagram).

The fact that bool net computations are deterministic has an impact on the
general structure of GG. The graph may be formed by multiple weakly connected
components (WCC) (the GG in Fig. 4 has three of them with, respectively, 10, 4
and 2 nodes). But each WCC has exactly one attractor, which can take the form
of a cycle of nodes (two 4-node attractor cycles are found in the 10-node and
4-node WCC’s) or a single node (one is found in the 2-node WCC). This general
structure of each WCC is a direct consequence of the fact that the directed paths
of GG cannot bifurcate.

For obtaining an intuitive idea about how distribution yh
PQ develops from

the initial distribution x̄PQ as h progresses we can imagine 2n ‘agents’, each
initially placed on a different GG node, that simultaneously start moving syn-
chronously along the directed paths of the graph. Assume we have m WCC’s. Let
size(WWC(i)) be the size of the i-th WCC, with i = 1 . . . m, and let size(A(i))
be the size of the attractor A(i) of WCC(i). Sooner or later each agent will be
trapped in the attractor of the WWC where it was initially placed, and we will
have size(WWC(i)) agents trapped in A(i). All nodes that are not elements of
an attractor will be deserted. For our approximation, we imagine these trapped
agents to end up being uniformly distributed across the nodes of the attractor.
In conclusion, for the approximate, asymptotic distribution y∗

PQ we can write:

y∗
PQ(X) =

⎧
⎪⎨

⎪⎩

γ size(WWC (i))

size(A(i))
if X ∈ A(i)

0 if X is not in any attractor,
(6)

where γ is the normalisation factor that makes y∗
PQ a probability vector.

Once y∗
PQ is computed, the joint distribution matrix for variables y∗

P and
y∗

Q is derived as illustrated in Fig. 2, and the associated value M(y∗
P , y∗

Q) is

www.manaraa.com

Single-Step and Asymptotic Mutual Information in Bipartite Boolean Nets 527

Fig. 3. Each of the four plots shows M(yh
P , yh

Q) as a function of h, the number of
computation steps, for a different bool net of form P (2, 2)<α>Q(2, 2) (values of α
are irrelevant here). The dotted red lines indicate the M values as computed by the
approximation technique based on the attractors of the global state transition graph.
(Color figure online)

obtained. The advantage of this technique is that it does not require to compute
the sequence of distributions yh

PQ (Eqs. 4 and 5); its accuracy is illustrated by
the dotted lines of Fig. 3.

5.1 A Demonstration Tool

The attractor-based approximation technique described above has been imple-
mented in Mathematica and is at the core of a freely downloadable Demonstra-
tion [3].

The tool interface is shown in Fig. 5. The upper portion of the panel offers
selectors and cursors allowing the user to control various parameters:

– the number nn of bool net nodes – an even number, in light of the partition
of the node set into parts P and Q of equal size;

– the arity k of the boolean functions associated to each node;
– the P -Q coupling factor – the number of bridges between P and Q, called α

in the paper;
– the degree of visual separation (‘P-Q unravel’) between node sets P and Q,

that facilitates the visualisation of bridges between them;
– the seed that triggers the random number generator that supports the con-

struction of the net.

www.manaraa.com

528 T. Bolognesi

0000

Fig. 4. The Global Graph of a (4, 3)-bool net, with three weakly connected components,
each with one attractor. One of the attractors is a single node (in red). The other two
attractors are cycles of four edges (in red). (Color figure online)

Fig. 5. The interface of Demonstration ‘Mutual Information between Boolean Net
Regions’.

www.manaraa.com

Single-Step and Asymptotic Mutual Information in Bipartite Boolean Nets 529

The outputs are shown in the lower part of the panel. They include the bool
net graph on the left and the global state graph GG on the right, with attrac-
tors highlighted in red. The lower-right field contains the value of approximate
asymptotic mutual information, denoted M(y∗

P , y∗
Q) in this paper.

6 Conclusions

We have investigated the degree of coupling that arises between the intercon-
nected parts P and Q of a simple state transition model – boolean nets – as
measured by the mutual information M(yP , yQ) between their states, both after
one step and after a large number of steps. This type of analysis requires one
to view states as random variables, and transitions as relations between prob-
abilistic distributions rather than definite states. With the ‘one-step’ analysis,
we have elucidated the dependency between M(yP , yQ) and the structural (syn-
tactic) coupling between P and Q, as measured by the number α of bridge-
edges between them. For the ‘multi-step’ analysis we have illustrated an accu-
rate approximation technique that enables us to compute M(y∗

P , y∗
Q) by simply

exploiting the weakly connected components and the attractors of the deter-
ministic, directed global state transition graph of the net. These features of the
graph are readily computed by primitive functions of the Mathematica language.

This work can be seen as a preliminary step towards a more elaborate analysis
of communication mechanisms within partitioned transition systems. We are not
suggesting that information-theoretic measures such as entropy, mutual informa-
tion, integrated information, and their variants, can directly support the design
of communicating systems, at least as carried out in the area of Formal Meth-
ods for Software Engineering to which most contributions in the present volume
refer. We do believe, however, that these measures, with their ability to treat
information as a precisely measurable quantity, and to track information flows
across space and time – from one process to another, from one partial or global
state to the next – can provide a useful method (possibly, the only method) for
assessing and comparing different communication paradigms on mathematically
rigorous grounds.

Some of the possible developments are listed below.

– Beside the shared-variable communication mechanism, expressed here by
notation P<α>Q, one could study the process-algebraic, shared-labelled-
transition mechanism, as expressed, e.g., by the LOTOS parallel composition
operator P |β|Q [4], where β is the set of communication labels, and compare
the communication performance of the two paradigms in terms of quanti-
ties such as mutual information. (The idea to compose boolean networks by
process-algebraic parallel composition is already explored, to a limited extent,
in [2].).

– Beside the traditional, synchronous execution mode of boolean nets, one could
consider an asynchronous mode in which at each step a single, randomly
chosen node of the net fires, as it happens, for example, in traditional Petri
nets. This mode of operation appears particularly appropriate when time

www.manaraa.com

530 T. Bolognesi

is assumed to be continuous, as opposed to discrete. The nondeterministic
behaviours obtained in this way may enable further interesting comparisons
with process algebraic systems.

– Beyond mutual information, one could characterise the degree of interaction/
integration between system parts by means of other, more sophisticated mea-
sures, as those adopted in IIT [1,7] – most notably integrated information ‘Φ’.

References

1. Balduzzi, D., Tononi, G.: Integrated information in discrete dynamical systems:
motivation and theoretical framework. PLoS Comput. Biol. 4(6), e1000091 (2008)

2. Bolognesi, T.: LOTOS-like composition of Boolean nets and causal set construction.
In: Katoen, J.-P., Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd -
Essays Dedicated to Ed Brinksma on the Occasion of His 60th Birthday. LNCS,
vol. 10500, pp. 27–47. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68270-9 2

3. Bolognesi, T.: Mutual information between Boolean net regions. The Wol-
fram Demonstrations Project (2018). https://demonstrations.wolfram.com/
MutualInformationBetweenBooleanNetRegions/

4. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS.
Comput. Netw. ISDN Syst. 14, 25–59 (1987)

5. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley (2006)
6. Kauffman, S.A.: Homeostasis and differentiation in random genetic control net-

works. Nature 224, 177–178 (1969)
7. Oizumi, M., Albantakis, L., Tononi, G.: From the Phenomenology to the mechanisms

of consciousness: integrated information theory 3.0. PLoS Comput. Biol. 10(5),
e1003588 (2014)

8. Pearl, J.: Causality: Models, Reasoning and Inference, vol. 29. Cambridge University
Press, Cambridge (2000)

https://doi.org/10.1007/978-3-319-68270-9_2
https://doi.org/10.1007/978-3-319-68270-9_2
https://demonstrations.wolfram.com/MutualInformationBetweenBooleanNetRegions/
https://demonstrations.wolfram.com/MutualInformationBetweenBooleanNetRegions/

www.manaraa.com

Application of Model Checking to Fault
Tolerance Analysis

Cinzia Bernardeschi(B) and Andrea Domenici

Department of Information Engineering, University of Pisa, Pisa, Italy
{cinzia.bernardeschi,andrea.domenici}@ing.unipi.it

Abstract. A basic concept in modeling fault tolerant systems is that
anticipated faults, being obviously outside of our control, may or may not
occur. A fault tolerant system design can be proved to correctly behave
under a given fault hypothesis, by proving the observational equivalence
between the system design specification and the fault-free system speci-
fication. Additionally, model checking of a temporal logic formula which
gives an abstract notion of correct behavior can be applied to verify the
correctness of the design. Another activity that must be considered in
fault tolerance is the issue of fault detection, since the existence of unde-
tectable faults makes the system more vulnerable. The usage of model
checking and temporal logic gives opportunities to better analyze the
system behavior in presence of faults and to identify undetectable faults.

Keywords: Formal methods · Fault modeling · Fault tolerance

1 Introduction

Process algebras are a standard tool for the specification of concurrent systems.
In order to specify a process and to prove its correctness, it is useful to decide
which properties of the model are relevant and which ones can be ignored. Fol-
lowing [24], the semantics of processes is given in terms of labeled transition
systems, which can describe their behavior in details, including their internal
computations. It is common to define equivalences over labeled transition sys-
tems to verify if a process is a correct implementation of a specification process.

A widely used equivalence is weak bisimulation, or observational equivalence,
first introduced by Milner [24], based on the idea that only the externally observ-
able actions of a system are relevant in its interaction with the environment: Two
systems are then observationally equivalent whenever no observation can distin-
guish them.

Model checking [12] is an alternative verification technique, in which the
system is modeled using a process algebra or an automaton-based formalism
and its correctness properties are expressed as temporal logic formulae [23].

Work partially supported by the Italian Ministry of Education and Research (MIUR)
in the framework of the CrossLab project (Departments of Excellence).

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 531–547, 2019.
https://doi.org/10.1007/978-3-030-30985-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_31&domain=pdf
http://orcid.org/0000-0003-1604-4465
http://orcid.org/0000-0003-0685-2864
https://doi.org/10.1007/978-3-030-30985-5_31

www.manaraa.com

532 C. Bernardeschi and A. Domenici

Then these formulae are automatically checked on the specification of the system.
Proofs are carried out by exhaustive search of the transition system of the model.

In fault-tolerance analysis, the main goal is verifying that a system works
correctly in the presence of a given set of anticipated faults. In absence of imple-
mentation techniques to detect, confine and recover from erroneous states, a
system exhibits failing behaviors that deviate from the specified normal, or cor-
rect, behaviors. Different kinds of faults cause different kinds of failing behaviors,
or failure modes, and the constraints on how faults are expected to occur in the
system are expressed in the fault hypothesis. Given a set of anticipated faults,
under a particular failure mode, a system is fault-tolerant with respect to the
occurrence of faults as stated by the fault hypothesis if and only if the occur-
rence of such faults does not inhibit the system’s ability to correctly satisfy its
specification.

With the process-algebraic approach, checking for fault-tolerance is accom-
plished by defining a specification process that models the normal, or correct,
behaviors, and an implementation process that models the possible behaviors in
the presence of faults. The system is considered fault-tolerant with respect to
the anticipated faults if the two processes are observationally equivalent.

This paper first discusses an issue related to the application of observational
equivalence to fault-tolerance verification, then it reports results on the applica-
tion of model-checking to the challenging problem of fault untestability in Field
Programmable Gate Array (FPGA) devices.

As reported in [20], one problem of using bisimulation equivalence for fault
tolerance is that proving fault tolerance towards a given set of faults does not
imply fault tolerance towards a subset of those faults. A typical example is that
of compensating faults such as the loss and creation of messages in a communi-
cation channel. Fault actions are modeled as alternatives to the correct ones, but
according to the standard process algebra semantics, when the correct actions
are not enabled the system is forced to execute the fault actions. In these sit-
uations, faults are no longer random events independent of the system logic.
Moreover, one fault may compensate the effects of another fault. We may note,
however, that the equivalence-based analysis in [20] is not sufficient to reveal
some useful information in case of occurrence of faults, such as infinite loops. In
this paper we use model checking to verify the system liveness under different
conditions.

Single Event Upsets (SEU) faults are a main concern in the development
of aerospace applications based on FPGAs [17]. Such applications operate in
an environment exposed to cosmic radiations that increase the likelihood of
hardware faults. Radiation-hardened devices are expensive, so it is convenient to
use on-line testing and on-the-fly reconfiguration to cope with radiation-induced
faults. Given the large number of possible faults, it is important to identify
undetectable faults and to optimize the test set in order to reduce execution time
and energy consumption for on-line testing. Finding untestable faults is therefore
an important contribution to this purpose. The problem of fault untestability
has been dealt with by modeling FPGA applications as state machines and

www.manaraa.com

Application of Model Checking to Fault Tolerance Analysis 533

using model checking to prove if the fault is untestable or not. In this paper,
our previous work on FPGAs fault untestability is presented and related to the
concept of system’s fault tolerance.

The paper is structured as follows: Sect. 2 reports related work, Sect. 3 dis-
cusses the use of process algebras, observational equivalence, and model check-
ing in the analysis of the alternating bit protocol with multiple faults, Sect. 4
describes the application of model checking to the problem of fault untestability
of FPGAs, and Sect. 5 concludes the paper.

2 Related Work

A growing corpus of works on formal modeling and verification of fault tolerant
systems has been produced, in particular concerning the application of pro-
cess algebras and model checking. This section presents a small sample of the
literature.

Partial model checking and μ-calculus are advocated by Gnesi et al. [16]
to frame the problem of fault-tolerance verification within a general μ-calculus
validation problem.

Francalanza and Hennessy [15] extend the Dπ language [18] to develop a
behavioral theory of distributed programs in the presence of failures, using bisim-
ulation equivalence to compare systems.

A formal framework for the specification and verification of fault tolerant
system designs was presented in [9]. The work was focused on the possibility
of using automatic verification tools, exemplifying the use of tools working on
a particular process algebra and automata-based semantics (CCS/MEIJE and
networks of automata [11]) and the temporal logic ACTL [13].

The specification and verification of the GUARDS Inter-consistency mecha-
nism is reported in [7,8]. This fault-tolerance mechanism was developed within
the European project GUARDS (Generic Upgradable Architecture for Real-
time Dependable Systems [26]) as a component of an architecture for embed-
ded safety-critical systems. The validation approach is based on model checking
technique and exploits the verification methodology supported by the JACK
environment [10].

A method for the verification of fault-tolerant distributed systems was pre-
sented by Jones and Pike [22], based on calendar automata [14] to model systems,
and introducing the technique of symbolic fault injection. The SAL (Symbolic
Analysis Laboratory) model checker [25] is used for verification.

The Promela modeling language and the SPIN model checker [19] are used
by John et al. [21] to present an approach to model threshold-guarded distributed
algorithms.

The present work is positioned on a line of research aiming at the application
of automatic tools to fault analysis and assessment of fault tolerance. More
specifically, Sect. 3 deals on the difficulty of correctly modeling the behavior
of systems affected by multiple types of faults, while Sect. 4 shows how model
checking can be used successfully to refine the search for faults in hardware
devices.

www.manaraa.com

534 C. Bernardeschi and A. Domenici

3 Fault Tolerance for Systems with Multiple Faults

Assume specifications given using process algebras [24]. A system consists of a
set of communicating processes; each process executes input and output actions,
and synchronizes with other processes. Moreover, a special action τ denotes an
unobservable action and model internal process actions or internal communica-
tions. The semantics of process algebras are Labeled Transition Systems (LTSs)
which describe the behavior of a process in terms of states, and labeled transi-
tions, which relate states.

To abstract unobservable moves during observation, the weak transition rela-
tion a⇒ is used. We have: ∀a ∈ Act,

a⇒ = (τ→)� a→ (τ→)�, where � means zero or
any number of times.

Observational equivalence (≈ in the following) is then defined upon the a⇒
relation.

Definition 1. Given an LTS A = (X,x0, Act ∪ {τ},→), a weak bisimulation
equivalence over X is a maximal binary symmetric relation S such that, for any
x, y ∈ X, we have xSy if and only if: ∀a ∈ Act ∪ {τ},
1. x

a⇒ x′ → (∃y′, y a⇒ y′ ∧ x′Sy′)
2. y

a⇒ y′ → (∃x′, x a⇒ x′ ∧ x′Sy′)

Two states x and y are considered as observational equivalent if and only if
x and y must be able to perform equal sequences of actions evolving to equal
(up to S) states. The relation between states of a transition system can be easily
extended to a relation between two distinct transition systems.

Definition 2. Given two processes R and Q, they are called observational equiv-
alent if and only if a weak bisimulation S exists which relates the initial states
of the LTSs which describe their behavior and we write R ≈ Q.

When observational equivalence is used to assess fault tolerance of a system
with respect to a given set of anticipated faults, the issue of fault monotonicity
must be considered. Simply stated, an equivalence criterion is fault monotonic
if and only if fault tolerance of an implementation with respect to a set Φ of
anticipated faults implies fault tolerance with respect to any subset Φ′ of Φ.

Janowski [20] has shown that bisimulation is in general not fault-monotonic,
using the alternating bit protocol as an example.

The purpose of the protocol is ensuring reliable communication over a
medium which may loose messages. A possible implementation of the proto-
col (Fig. 2), similar to the one discussed in [20], consists of four processes: the
Sender, the Receiver, and two communication channels: one for the delivery of
the message, and another for the acknowledgment of message reception.

Sender and Receiver use the value of one bit to identify a message, so that
the identifier bit of each message is the complement of the preceding message’s

www.manaraa.com

Application of Model Checking to Fault Tolerance Analysis 535

bit; a new message is not sent until the sender receives acknowledgment of the
current message. Since the channels can loose messages, both the Sender and the
Receiver resend the same message or, respectively, acknowledgment repeatedly
until the acknowledgment is received.

In the rest of this section, we show that the protocol tolerates a set of faults
consisting in creation or omission of messages. The protocol tolerates also the
subset consisting only in omission faults, but it does not tolerate the subset
consisting only in creation faults.

We first consider an implementation Sysoc of the protocol affected by the
set Φoc = {omission, creation} of anticipated faults, i.e., we assume that the
channels may drop messages or acknowledgments and also emit spurious ones,
represented in CCS as in the following, where S0 and R1 are the Sender and
Receiver, respectively, Aoc is the delivery channel, and Boc the acknowledgment
one:

S0 = in.S′
0

S′
0 = a0.S

′
0 + d1.S

′
0 + d0.S1

S1 = in.S′
1

S′
1 = a1.S

′
1 + d0.S

′
1 + d1.S0

Aoc = a0.A
′
oc0 + a1.A

′
oc1 + b0.Aoc + b1.Aoc

A′
oc0 = b0.Aoc + τ.Aoc

A′
oc1 = b1.Aoc + τ.Aoc

Boc = c0.B
′
oc0 + c1.B

′
oc1 + d0.Boc + d1.Boc

B′
oc0 = d0.Boc + τ.Boc

B′
oc1 = d1.Boc + τ.Boc

R1 = b0.R
′
0 + b1.R1 + c1.R1

R′
0 = out .R0

R0 = b1.R
′
1 + b0.R0 + c0.R0

R′
1 = out .R1

L = {a0, a1, b0, b1, c0, c1, d0, d1}

Sys = (S0|Aoc|Boc|R1)\L.

The above system is represented in Fig. 1 as a network of communicating
automata. Upon an in action at the system’s external interface, the Sender
sends the message to the Receiver through channel Aoc (A in the figure) by

www.manaraa.com

536 C. Bernardeschi and A. Domenici

synchronizing on action a0 or a1 depending on the current value of the alternating
bit (the first message is identified as 0). Upon receiving the message, the Receiver
executes out , meaning that the message is available at the interface. Next, the
Receiver sends the acknowledgment by synchronizing with channel Boc (B in
the figure) on action c0 or c1 according to the value of the identifier bit of the
received message.

Omission of messages or acknowledgments is represented by the τ actions in
the processes for the channels, which can take a channel from state A′

oc0 or A′
oc1

(B′
oc0 or B′

oc1) to Aoc (Boc) without executing the corresponding synchronization
action.

Fig. 1. Alternating bit protocol with omission or creation of messages or acknowledg-
ments.

Creation is modeled by the additional transitions in state Aoc (Boc), which
execute a synchronization without changing state.

Fault tolerance of Sysoc can be proved by checking that it is observation-
ally equivalent to a process P (defined below) specifying the intended behavior,
namely, the alternation of in and out actions:

Sysoc = (S0|Aoc|Boc|R1)\L

P = in.out .P
P ≈ Sysoc

The example shows tolerance to the creation and omission of messages of the
protocol, in a context in which faults can freely occur.

Let us now consider a system Syso affected only by omission faults, i.e.,
Φo = {omission} is the set of anticipated faults. The CCS description of this

www.manaraa.com

Application of Model Checking to Fault Tolerance Analysis 537

system differs from the previous one in the channel processes, as shown in Fig. 2
and in the following code:

A = a0.A
′
0 + a1.A

′
1

A′
0 = b0.A + τ.A

A′
1 = b1.A + τ.A

B = c0.B
′
0 + c1.B

′
1

B′
0 = d0.B + τ.B

B′
1 = d1.B + τ.B

Fig. 2. Alternating bit protocol with omission.

The system can be proved to be observationally equivalent to process P .

Syso = (S0|Ao|Bo|R1)\L

P = in.out .P
P ≈ Syso

If instead we consider a system Sysc with channels that can misbehave only
by creating messages or acknowledgments and not by dropping them, we would

www.manaraa.com

538 C. Bernardeschi and A. Domenici

expect the implementation to be still fault tolerant, given that in this case the
set Φc = {creation} of anticipated faults is a proper subset of Φoc. In this case,
we have:

Ac = a0.A
′
c0 + a1.A

′
1 + b1.Ac + b0.Ac

A′
c0 = b0.Ac

A′
c1 = b1.Ac

Bc = c0.B
′
c0 + c1.B

′
c1 + d1.Bc + d0.Bc

B′
c0 = d0.Bc

B′
c1 = d1.Bc

Sysc = (S0|Ac|Bc|R1)\L.

It is immediate to show that Sysc is not observationally equivalent to P , thus
proving that bisimulation is in general not fault-monotonic. Therefore, proving
that a system with more faults is observationally equivalent to the fault-free
system does not guarantee that observational equivalence holds for any subset
of faults.

However, we may observe that in this case creation faults are modeled as
observable actions on the same footing as the correct behavior. It may be more
natural to model them as internal actions as shown below for Φc:

AAc = a0.AA′
0 + a1.AA′

1 + τ.b1.AAc + τ.b0.AAc

AA′
0 = b0.AAc

AA′
1 = b1.AAc

BBc = c0.BB ′
c0 + c1.BB ′

c1 + τ.d1.BBc + τ.d0.BBc

BB ′
c0 = d0.BBc

BB ′
c1 = d1.BBc.

The case for Φoc is handled similarly.
In this case, observational equivalence is not satisfied in either case: creation

faults only, and omission and creation faults.
In addition, observational equivalence between the behavior of the fault free

system and that of the system affected by faults does not reveal some use-
ful information in case of occurrence of faults. For example, infinite loops of τ
actions could not be detected. It is then advisable to introduce model checking
of temporal logic formulae to complement the techniques based on bi-simulation.

First, checking temporal logic properties of a specification by model checking
allows the specification to be validated. For example, we can use μ-calculus to

www.manaraa.com

Application of Model Checking to Fault Tolerance Analysis 539

express the property that action out will eventually be executed (a minimal
sanity check), with the formula

α � μ.Z(<−> tt ∧ [−out]Z).

Model checking shows that α holds unsurprisingly for P , but it does not hold
for any of the implementations considered above. This is caused by the fact that
channels may drop messages or acknowledgments indefinitely by executing τ
actions.

The failure to prove property α shows that there exists a path in which out
is not executed. This is caused by cycles in which messages can be created and
lost. And what we can see is that such property is false also on the original
version of the protocol, with omission only. This because the specification of the
protocol allows the Sender (Receiver) to re-send or loose the same message an
unbounded number of times.

Other properties of the fault tolerant system can be proved by model checking
if actions modeling faults are made explicit. In this case we can prove for example,
that the system satisfies property α in case of one omission fault. What can be
done is to state an assumption on fault occurrences, and prove tolerance in that
specific case.

In real system modeling, this approach reduces the state space explosion
problem. From the specification point of view, explicit actions modeling faults
and a new process, the fault hypothesis process, which synchronizes with the
system and states the possible occurrences of faults, are introduced in the spec-
ification.

4 Untestability of Faults: SEUs in SRAM-Based FPGAs

Fault tolerance relies both on fault masking and fault detection. In the latter
activity, also the issue of fault detectability must be considered, since the exis-
tence of undetectable faults makes the system more vulnerable.

SRAM-based FPGAs are programmable devices made of logic blocks inter-
connected by switch elements called switch boxes, in a structure shown in a very
simplified and scaled-down way by Fig. 3. A logic block contains a small number
of memory elements and combinatorial logic. The latter is implemented with
configurable look-up tables (LUT), which behave logically as associative memo-
ries mapping each combination of inputs to the corresponding value of a given
Boolean function. Figure 4(a) is a logical representation, as a Karnaugh map, of
a LUT configured to implement the disjunction of its four inputs.

A switch box is a matrix of switches called Programmable Interconnect Points
(PIPs) [27], which route signals by connecting pairs of wires. An example of
switch-box is shown in Fig. 5(a), where Pi and Pj are PIPs; Pi is programmed
to connect the input wire A to the output wire B. Similarly, Pj is programmed
to connect the input wire C to the output wire D. The connection between two
wires, such as A to B, is called a routing segment.

www.manaraa.com

540 C. Bernardeschi and A. Domenici

Fig. 3. Structure of an FPGA.

Programming an SRAM-FPGA device consists in downloading a configu-
ration code, called a bitstream, into its configuration memory. The bitstream
determines the functionality of each LUT and the configuration of the PIPs.
The bitstream is generated by a tool from a high-level hardware design language
(e.g., Verilog or VHDL). As an intermediate step, the Verilog/VHDL description
is synthesized into a logic netlist showing the logical interconnections of FPGA
components, such as LUTs and memory elements. Figure 6 shows a simplified
logic netlist for a system composed of three 2-input LUTs, one D flip-flop, a
clock generator, two input buffers (i.e., signal amplifiers), and one output buffer.
The LUTs implement two AND and one OR gate.

In a further step, the logic netlist is transformed into a place-and-routed
netlist including information on the physical placement of the components and
on the configuration of the switch boxes.

Both LUTs and switch boxes are affected by various types of faults, includ-
ing Single Event Upsets (SEU), caused by radiations, especially in aerospace
applications [2]. SEUs affecting a LUT change its logic function, whereas those
affecting a switch box modify the interconnection topology among logic blocks.

An example of a faulty LUT is shown in Fig. 4(b), where the dashed box
represents a SEU that flips a bit from 1 to 0, so that the LUT maps the input
vector (1111) to the output 0. However, the output of the faulty LUT differs
from the one of the fault-free LUT only for that specific input. That fault is
activated only when the input associated with the faulty configuration bit is
applied to the LUT.

www.manaraa.com

Application of Model Checking to Fault Tolerance Analysis 541

Fig. 4. A LUT and the effect of a SEU.

Fig. 5. (a) A switch-box; (b) effect of bridge fault.

A SEU in the configuration memory of PIPs may cause several types of
topological modifications [28] that manifest themselves as logical faults on the
output wires of the affected switch box [1], namely: stuck-at-0 (stuck-at-1), when
a wire is stuck at the 0 (1) logic value; bridge, when the values of two wires are
exchanged; wired-AND (wired-OR), when the value of an output wire is the
AND (OR) of the values of two input wires; and wired-MIX, when the values
of two output wires B and D are mixed so that they keep their correct values
if the values of the respective input wires are equal, otherwise they take the
complementary values. Figure 5(b) shows the effects of a logical bridge fault.

When FPGAs are used in safety-critical applications, on-line testing is one
of the methods that can be applied at run-time to detect SEUs, and possibly
reconfigure the FPGA. Testing relies on a pre-computed set of test patterns,
and it is important to optimize this set with respect to the contrasting goals of
maximum fault coverage and minimum execution time and resource usage. One
way of optimizing the test set is finding offline the faults that can be excluded
from the set because they are undetectable, i.e., they are either unexcitable or
masked. A fault is unexcitable if the combination of input values that could
activate it will never be fed to the affected component. A fault is masked if it
cannot propagate wrong values to the external pins of the device.

www.manaraa.com

542 C. Bernardeschi and A. Domenici

Fig. 6. SEU unexcitability.

In [6], model checking has been applied to prove unexcitability of SEUs and
the counter-example facility of the model checker has been used to generate test
patterns. The logic netlist was used to model faults in the LUTs and the route-
and-placed netlist to model faults in the switch boxes. For faults in a LUT, the
logic function of the faulty LUT was generated; for faults in the interconnect,
their logical effects were modeled. The routing faults and their effects were com-
puted using an external tool, E2STAR [6], that operates on the place-and-routed
netlist.

The behavioral model of the FPGA application is built in the Symbolic
Analysis Laboratory (SAL) framework [25], and the unexcitability property is
expressed as an LTL logic formula that checks whether the configuration acti-
vating the fault can be generated, starting from any possible input sequence of
the FPGA.

The SAL input language describes a system (context) as the parallel compo-
sition of modules, each representing a state machine defined by its input, local,
and output variables, by definitions equating variable values to functions of other
variables, and by transitions equating the next values of variables (denoted by
primes) to functions of the current state.

The SAL code for the netlist shown in Fig. 6 is reported in Fig. 7. In this case,
only one module is sufficient. The behavior of LUTs and buffers is described by
definitions:

– the behavior of LUTs is described by the corresponding logic functions;
– the behavior of an input buffer is described as an assignment between a local

variable, modeling the buffer, and an input variable, modeling the associated
input pin;

– similarly, two local variables are used for output buffers, one modeling the
buffer and the other modeling the output pin.

www.manaraa.com

Application of Model Checking to Fault Tolerance Analysis 543

Fig. 7. SAL specification.

Flip-flops are described by transitions, that are executed at each clock cycle.
If a fault f in an n-input LUT affects a location corresponding to the input

vector if = (v0, v1, . . . vn−1) (e.g., if = (10) in LUT 2 of Fig. 6), fault f is
unexcitable if the configuration if can never occur in the context C modeling
the whole system [4], therefore the property of unexcitability in LTL has the
general form

C
 G(¬(x0 = v0 ∧ x1 = v1 ∧ · · · ∧ xn = vn−1)).

The unexcitability property for the SEU in the configuration bit of LUT 2
associated with input (10) is then

unex_LUT_2_10: THEOREM
circuit |- G(NOT(LUT_0 = TRUE AND LUT_1 = FALSE));

The theorem holds, since this fault can never be excited, because it is not
possible that the output of LUT 1 is 0 while the output of LUT 0 is 1 (Fig. 6),
because LUT 1 implements the OR function, and LUT 0 implements the AND
of the same input signals. Similarly, the formula for the SEU in the configuration
bit of LUT 0 associated with input 11 is the following:

unex_LUT_0_11: THEOREM
circuit |- G(NOT(i_buff_0 = TRUE AND i_buff_1 = TRUE));

www.manaraa.com

544 C. Bernardeschi and A. Domenici

Table 1. Unexcitability formulae for routing faults.

s-a-0 on Pi C � G(¬(Â))
s-a-1 on Pi C � G(¬(¬Â))
bridge between Pi and Pj C � G(¬(Â �= Ĉ))
Wired-AND between Pi and Pj C � G(¬((Â �= (Â ∧ Ĉ)) ∨ (Ĉ �= (Â ∧ Ĉ))))
Wired-OR between Pi and Pj C � G(¬((Â �= (Â ∨ Ĉ)) ∨ (Ĉ �= (Â ∨ Ĉ))))
Wired-MIX between Pi and Pj C � G(¬((Â �= Ĉ) ∧ (¬Â ∨ Ĉ)))

This theorem does not hold, and a trivial counter-example is shown:

Counter_example: (i_pin_0 = true, i_pin_1 =true)

The formulae for routing faults in the switch box of Fig. 6, referring to the
logical netlist, are shown in Table 1, where Â and Ĉ are the values of A and C
(true if equals to 1, false otherwise) [5]. A Stuck-at 0 (1) on Pi is unexcitable if
the signal on A is always 0 (1). A Bridge between Pi and Pj is unexcitable if the
value of A always equals the value of C. A Wired-AND between Pi and Pj is
unexcitable if the value of A always equals A∧C and the value of C always equals
A ∧ C. A Wired-OR between Pi and Pj is unexcitable if the value of A always
equals A ∨ C and the value of C always equals A ∨ C. A Wired-MIX between
Pi and Pj is unexcitable if (i) the value of A always equals the output of C or
(ii) the value of A is 1 and the value of C is 0, or vice versa. The unexcitability
theorem associated with the Bridge fault in Fig. 5 is:

unex: THEOREM circuit |- G(NOT(B=D));

Experimental results [6] show that a substantial number of SEU faults are
not excitable. Knowing which faults are unexcitable reduces significantly the
time needed for test pattern generation and testing. In the same framework,
untestability of faults, that includes both unexcitability and fault masking, is
analyzed. Masked faults are found by comparing the values at the output pins
of the fault-free system to the values at the output pins of the faulty system at
each clock cycle, considering the full end-to-end paths from input to output. The
counter-example gives information on the test vector that must be applied at
every input to test the fault. The ability of model checkers to produce counter-
examples has been used in our framework to generate test patterns for testable
faults, optimized with a genetic algorithm [3].

5 Conclusions

This work reports on applications of model checking to different issues related
to fault tolerance. In particular, the problem of assessing fault tolerance in sys-
tems with multiple faults modeled with process algebras has been discussed,

www.manaraa.com

Application of Model Checking to Fault Tolerance Analysis 545

and a method to analyze untestability of hardware faults has been presented.
Model checking has been shown as useful complement to methods based on
weak-bisimulation equivalence. Model checking on state-machine based models
has been shown experimentally to be an effective tool to improve the perfor-
mance of on-line testing for systems affected by radiation faults.

During the development of this work, the issue has arisen of expressing faults
and failure modes in a state-based formalism instead of an action-based one. This
issue opens interesting perspectives for future work.

Acknowledgments. Working with Stefania has been both a challenge and a pleasure.
Her rigorous approach, knowledge, experience and insight, together with her collabora-
tive attitude and general friendliness have been a source of inspiration and motivation
not only behind the work done together, but also in other research fields.

References

1. Battezzati, N., Sterpone, L., Violante, M.: Reconfigurable Field Programmable
Gate Arrays for Mission-Critical Application. Springer, New York (2011). https://
doi.org/10.1007/978-1-4419-7595-9

2. Baumann, R.C.: Radiation-induced soft errors in advanced semiconductor tech-
nologies. IEEE Trans. Device Mater. Reliab. 5(3), 305–316 (2005). https://doi.
org/10.1109/TDMR.2005.853449

3. Bernardeschi, C., Cassano, L., Cimino, M.G., Domenici, A.: GABES: a genetic
algorithm based environment for SEU testing in SRAM-FPGAs. J. Syst. Architect.
59(10, Part D), 1383–1254 (2013). https://doi.org/10.1016/j.sysarc.2013.10.006,
http://www.sciencedirect.com/science/article/pii/S1383762113001975

4. Bernardeschi, C., Cassano, L., Domenici, A.: SEU-X: a SEU un-excitability prover
for SRAM-FPGAs. In: 18th IEEE International On-Line Testing Symposium,
IOLTS 2012, pp. 25–30 (2012)

5. Bernardeschi, C., Cassano, L., Domenici, A., Sterpone, L.: Unexcitability analysis
of SEus affecting the routing structure of SRAM-based FPGAs. In: Great Lakes
Symposium on VLSI 2013 (part of ECRC), GLSVLSI 2013, Paris, 2–4 May 2013,
pp. 7–12 (2013)

6. Bernardeschi, C., Cassano, L., Domenici, A., Sterpone, L.: UA2TPG: an untesta-
bility analyzer and test pattern generator for SEUs in the configuration memory
of SRAM-based FPGAs. Integration 55, 85–97 (2016). https://doi.org/10.1016/j.
vlsi.2016.03.004

7. Bernardeschi, C., Fantechi, A., Gnesi, S.: Formal validation of the GUARDS inter-
consistency mechanism. In: Felici, M., Kanoun, K. (eds.) SAFECOMP 1999. LNCS,
vol. 1698, pp. 420–430. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48249-0 36

8. Bernardeschi, C., Fantechi, A., Gnesi, S.: Formal validation of fault-tolerance mech-
anisms inside GUARDS. Reliab. Eng. Syst. Saf. 71(3), 261–270 (2001). https://
doi.org/10.1016/S0951-8320(00)00078-8

9. Bernardeschi, C., Fantechi, A., Simoncini, L.: Formally verifying fault tolerant sys-
tem designs. Comput. J. 43(3), 191–205 (2000). https://doi.org/10.1093/comjnl/
43.3.191

https://doi.org/10.1007/978-1-4419-7595-9
https://doi.org/10.1007/978-1-4419-7595-9
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1016/j.sysarc.2013.10.006
http://www.sciencedirect.com/science/article/pii/S1383762113001975
https://doi.org/10.1016/j.vlsi.2016.03.004
https://doi.org/10.1016/j.vlsi.2016.03.004
https://doi.org/10.1007/3-540-48249-0_36
https://doi.org/10.1007/3-540-48249-0_36
https://doi.org/10.1016/S0951-8320(00)00078-8
https://doi.org/10.1016/S0951-8320(00)00078-8
https://doi.org/10.1093/comjnl/43.3.191
https://doi.org/10.1093/comjnl/43.3.191

www.manaraa.com

546 C. Bernardeschi and A. Domenici

10. Bouali, A., Gnesi, S., Larosa, S.: The integration project for the JACK environ-
ment. Technical report CS-R9443, Centrum voor Wiskunde en Informatica, Ams-
terdam, The Netherlands (1994)

11. Boudol, G.: Notes on algebraic calculi of processes. In: Apt, K. (ed.) Logics and
Models of Concurrent Systems. NATO ASI Series (Series F: Computer and Systems
Sciences), vol. 13, pp. 261–303. Springer, Heidelberg (1985). https://doi.org/10.
1007/978-3-642-82453-1 9

12. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986). https://doi.org/10.1145/5397.5399

13. De Nicola, R., Fantechi, A., Gnesi, S., Ristori, G.: An action based framework
for verifying logical and behavioural properties of concurrent systems. In: Larsen,
K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 37–47. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55179-4 5

14. Dutertre, B., Sorea, M.: Modeling and verification of a fault-tolerant real-time
startup protocol using calendar automata. In: Lakhnech, Y., Yovine, S. (eds.)
FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 199–214. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30206-3 15

15. Francalanza, A., Hennessy, M.: A theory of system behaviour in the presence
of node and link failures. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 368–382. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452 29

16. Gnesi, S., Lenzini, G., Martinelli, F.: Logical specification and analysis of fault
tolerant systems through partial model checking. Electron. Notes Theor. Comput.
Sci. 118, 57–70 (2005). https://doi.org/10.1016/j.entcs.2004.09.032

17. Graham, P., Caffrey, M., Zimmerman, J., Sundararajan, P., Johnson, E.: Conse-
quences and categories of SRAM FPGA configuration SEUs. In: In Proceedings
of the International Conference on Military and Aerospace Programmable Logic
Devices (MAPLD 2003 (2003)

18. Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Inf.
Comput. 173(1), 82–120 (2002). https://doi.org/10.1006/inco.2001.3089

19. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997). https://doi.org/10.1109/32.588521

20. Janowski, T.: On bisimulation, fault-monotonicity and provable fault-tolerance. In:
Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 292–306. Springer, Heidel-
berg (1997). https://doi.org/10.1007/BFb0000478

21. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Towards modeling and
model checking fault-tolerant distributed algorithms. In: Bartocci, E., Ramakrish-
nan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 209–226. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39176-7 14

22. Jones, B.F., Pike, L.: Modular model-checking of a byzantine fault-tolerant proto-
col. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp.
163–177. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 12

23. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems
- Specification. Springer, Heidelberg (1992). https://doi.org/10.1007/978-1-4612-
0931-7

24. Milner, R.: Communication and Concurrency. Prentice-Hall Inc, Upper Saddle
River (1989)

25. de Moura, L., et al.: SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS,
vol. 3114, pp. 496–500. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-27813-9 45

https://doi.org/10.1007/978-3-642-82453-1_9
https://doi.org/10.1007/978-3-642-82453-1_9
https://doi.org/10.1145/5397.5399
https://doi.org/10.1007/3-540-55179-4_5
https://doi.org/10.1007/978-3-540-30206-3_15
https://doi.org/10.1007/11539452_29
https://doi.org/10.1007/11539452_29
https://doi.org/10.1016/j.entcs.2004.09.032
https://doi.org/10.1006/inco.2001.3089
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/BFb0000478
https://doi.org/10.1007/978-3-642-39176-7_14
https://doi.org/10.1007/978-3-319-57288-8_12
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-3-540-27813-9_45
https://doi.org/10.1007/978-3-540-27813-9_45

www.manaraa.com

Application of Model Checking to Fault Tolerance Analysis 547

26. Powell, D., et al.: GUARDS: a generic upgradable architecture for real-time
dependable systems. IEEE Trans. Parallel Distrib. Syst. 10(6), 580–599 (1999).
https://doi.org/10.1109/71.774908

27. Rodriguez-Andina, J., Moure, M., Valdes, M.: Features, design tools, and applica-
tion domains of FPGAs. IEEE Trans. Industr. Electron. 54(4), 1810–1823 (2007).
https://doi.org/10.1109/TIE.2007.898279

28. Sterpone, L., et al.: Experimental validation of a tool for predicting the effects
of soft errors in SRAM-based FPGAs. IEEE Trans. Nucl. Sci. 54(6), 2576–2583
(2007). https://doi.org/10.1109/TNS.2007.910122

https://doi.org/10.1109/71.774908
https://doi.org/10.1109/TIE.2007.898279
https://doi.org/10.1109/TNS.2007.910122

www.manaraa.com

How Formal Methods Can Contribute
to 5G Networks

Maŕıa-del-Mar Gallardo, Francisco Luque-Schempp, Pedro Merino-Gómez(B),
and Laura Panizo

Universidad de Málaga, Andalucia Tech, Málaga, Spain
{gallardo,fls,pedro,laurapanizo}@lcc.uma.es

Abstract. Communication networks have been one of the main drivers
of formal methods since the 70’s. The dominant role of software in the
new 5G mobile communication networks will once again foster a rele-
vant application area for formal models and techniques like model check-
ing, model-based testing or runtime verification. This chapter introduces
some of these novel application areas, specifically for Software Defined
Networks (SDN) and Network Function Virtualization (NFV). Our pro-
posals focus on automated methods to create formal models that satisfy
a given set of requirements for SDN and NFV.

Keywords: 5G networks · Software Defined Networks ·
Network Function Virtualization · New Internet Protocols ·
Model checking · Model-based testing

1 Introduction

Formal method techniques and tools have been very close to protocol engineering
since the 70’s, when the first errors in communication protocols were detected
with reachability analysis over their models in finite state machines [31]. In the
80’s and 90’s, standardization bodies in information and communication tech-
nologies, like ISO and ITU, recognized the benefits of formal modelling and auto-
matic verification with languages like LOTOS, ESTELLE, SDL and, later, the
sequence charts in UML. The paper by Bochmann et al. [3] is a good summary of
the history of Protocol Engineering in those decades. Another relevant milestone
at the beginning of the 21st century is the ACM System Award to SPIN, a tool
originally designed to support protocol design and validation [14,15]. However,
in recent years, the applications of formal methods for communication networks
seem to be less significant. In this position paper, we argue that 5G mobile
communication networks could once again reinforce the role of communication
networks and protocols as a relevant application domain for formal methods.

This work is partially supported by the projects EuWireless and 5GENESIS. These
projects have received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreements No. 777517 and No. 815178, respec-
tively.

c© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): Gnesi Festschrift, LNCS 11865, pp. 548–571, 2019.
https://doi.org/10.1007/978-3-030-30985-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30985-5_32&domain=pdf
https://doi.org/10.1007/978-3-030-30985-5_32

www.manaraa.com

How Formal Methods Can Contribute to 5G Networks 549

Mobile communication networks are evolving towards new paradigms in
which softwarization is one of the key aspects. In particular, one of the most
important features of 5G networks is the shift of vendor-locked networks to
cloud-based systems to dynamically adapt the network to the changing user
needs. To achieve these objectives, 5G networks implement the so-called net-
work slice, which is similar to a private network tailored to run a service with
specific Key Performance Indicators (KPI). For instance, a critical service, such
as telesurgery, imposes hard constraints on packet latency (under 5 ms) in order
to control a surgeon robot over a cellular network. Other services, such as high-
resolution content delivery, require high downlink or uplink speed. In 5G net-
works, each kind of service will run on a different network slice that satisfies its
performance and quality of service requirements, but all these network slices will
be deployed over the same underlying infrastructure.

The implementation of the network slices will be feasible mainly thanks to
two technologies: Software-Defined Networks (SDN) and Network Function Vir-
tualization (NFV). SDN makes the key components in the network, the switches
and routers, programmable and that way a single program can control aspects
like traffic priorities, firewall capabilities or forwarding rules from a single point.
NFV removes the vendor-locked network elements and provides a cloud-like
method to deploy software versions of these components on demand.

The increasing presence and complexity of software in 5G networks will intro-
duce new risks related to reliability and security, and will make it more difficult
to predict the behavior of the whole system in case of an accident or on-purpose
malfunctioning of some parts of the network. Continuous monitoring and other
techniques from network operators will be more complex, but they will be useful
at production time. Like in other application domains, formal methods could
provide tremendous benefits by helping to design, deploy and operate such a
complex system with analysis before the deployment of the network. Recently,
some authors have been using different formal methods to ensure the correct
deployment and configuration of SDNs [1,2,4,5,17,18,20,21]. One of the first
works is the NICE [4] tool, that combines symbolic model checking and different
search strategies to find errors, for instance, host reachability problems or unde-
sirable packet lost. Compared to a general purpose model checking tool, NICE
can directly analyze the code of the software governing the network. Although
NFV technology is more recent, there are also proposals [22,28,34] to integrate
Verification and Validation processes in the NFV deployment cycle, as well as not
only to find functional bugs in the network but also to ensure the performance
requirements [29,30], which is a very important issue in 5G networks. Most of
these works are not connected to testbeds where some realistic experimentation
can be combined with the models and the automatic analysis.

In the chapter, we propose the use of formal methods focusing on two aspects.
First, modelling the SDN component of the network and checking that there are
model instances satisfying a set of requirements, and second, the use of model-
based testing and runtime verification to help in the placement and reconfigura-
tion of Virtual Network Functions (VNFs) deployments. Both applications can

www.manaraa.com

550 M.-del-M. Gallardo et al.

be allocated in the area of automated synthesis of formal models, and in the
wider context of Formal Methods for Industrial Critical Systems (FMICS). The
term FMICS and the FMICS Working Group1 is the main link between the first
authors of the paper and Stefania Gnesi. Stefania was one of the founders and
chair of FMICS WG and we have collaborated with her in the organization of
the annual FMICS workshops and special publications. A relevant collaborative
work co-led by Stefania is the book Formal Methods for Industrial Critical Sys-
tems: A Survey of Applications [11]. Actually, the SDN and VFV technologies
addressed in this chapter are the evolution of the active networks paradigm that
we presented as a chapter in Stefania’s book in 2013 [10].

The paper is organized as follows. Section 2 introduces the 5G architecture
and the relevant concept of network slicing. Section 3 provides a description of
the SDN technology and our proposal to use the formal language Alloy [16] as the
modelling language to support the synthesis of valid models from a given set of
requirements. In Sect. 4, we present Network Function Virtualization as support
technology of network slicing, and we propose combining model-based testing
and runtime verification to solve the problem of placement and reconfiguration
of VNFs in the network. Finally, in Sects. 5 and 6 we review the related work
and provide some conclusions.

2 Background on 5G Networks

2.1 Architecture of the Network

One of the objectives of 5G networks is to support network operators to rapidly
and flexibly deploy new services in order to meet customers’ and verticals’ needs.
In this context, verticals refers to industrial sectors such as transport, media or
manufacturing, whose digitalization and innovation relies on services with spe-
cific and different requirements. The 5G network architecture [9] aims to address
these challenges using SDN and NFV as technical enablers. Figure 1 shows an
overview of the network architecture. As can be seen, it is built on the three
main domains that are also present in the previous 4G technology: radio access
network (composed of the user equipment and the gNB access nodes), the trans-
port network (a logical connection thanks to switches, aggregation points and
communication links) and the core network. The main differences with respect
to 4G networks are the technologies in each domain and the deployment of the
services as part of the network (AF component in the figure). In the radio part,
the new standard is called 5G NR (5G new radio) and offers features like lower
latency and higher capacity than 4G networks. In the core network, the function-
ality is implemented with a number of software modules and interfaces following
the standards to create a 5G core. It is expected that these 5G core VNFs will
be deployed as VNFs in a central cloud. In the transport network, the switches
are replaced with programmable OpenFlow switches, and the whole network is
defined with apps running on top of the SDN controller.

1 http://fmics.inria.fr/.

http://fmics.inria.fr/

www.manaraa.com

How Formal Methods Can Contribute to 5G Networks 551

Fig. 1. 5G architecture

From the service provider perspective, the main novelty is the integration
of the software to implement the service as part of the network thanks to the
deployment of their own VNFs jointly with the 5G core VNFs and other network-
oriented VNFs (e.g. caches and firewalls) in the same cloud. Multi-access Edge
Computing (MEC) technology appears in order to have a computing platform
within the RAN and in close proximity of users. MEC provides features like
low latency, high bandwidth and proximity; sometimes MEC are called Point of
Presence (PoP), which resources are shared by multiple VNFs (virtual machines
installed on top). Thanks to the MEC location at the mobile edge, routing data
that previously had to be sent to the core of the network can be eliminated and
achieve a very low latency.

2.2 Slices for Verticals

Network slicing allows Mobile Network Operators (MNOs) to manage multiple
virtual networks using a common shared physical infrastructure. These virtual
networks enable a virtual partition of the RAN (Radio Access Network), the core
network and the switching and aggregation network. Roughly speaking, Fig. 1
represents one slice, and a second slice could be created by assigning part of
the RAN resources and adding more VNFs in the Edge cloud and the Central
cloud to provide functionalities of 5G core and services. Each virtual network is
created to provide a specific service with specific requirements that usually fit
three profiles:

– enhanced Mobile Broadband (eMBB). It has the purpose of addressing
the traffic demand that increases on a daily basis due to the number of users
and new applications with increasingly demanding traffic requirements. Use
cases related to multi-media content and data that are a very high throughput
requirement (e.g. augmented reality or 4k video streaming).

www.manaraa.com

552 M.-del-M. Gallardo et al.

Fig. 2. 5G usage scenarios

– Ultra Reliable Low Latency Communications (URLLC). It is oriented
to low latency and high reliability transmissions, usually with low packet size.
Use cases related to critical applications (e.g. remote surgery or connected
cars).

– massive Machine Type Communications (mMTC). It is oriented to a
very large number of connected devices, usually with a low data transmission
and non-delay sensitive data. Use cases related to the Internet of Things,
where devices are required to have a long battery life (e.g. smart meters or
sensor networks).

Figure 2 shows some usage scenarios where virtual networks mentioned above,
known as Network Slices, help to provide a service that depends on use case
requirements.

In the next sections, we present more details of the SDN and NFV technolo-
gies before describing the use of formal methods for both topics.

3 Software Defined Networks

3.1 The Technology

Software Defined Network [26,32] (SDN) is a new paradigm for deploying highly
programmable and flexible communication networks. To this end, the control and
data planes of the network are clearly separated. In addition, from the logical
point of view, the control plane is a single entity that has a global view of the
network at each time instant and can modify the data plane to achieve specific
goals. Figure 3 shows the high-level architecture of a SDN:

www.manaraa.com

How Formal Methods Can Contribute to 5G Networks 553

Fig. 3. Basic SDN architecture

– The data plane includes simple and programmable forwarding devices
(switches) that route the traffic. To do this, each switch has a routing table
with complex rules that specify the outgoing path for each input packet.

– The control plane comprises the controllers that carry out the configuration
and management of the network. From the logical point of view, the control
is centralized in an entity that has a global view of the network. However,
the control plane can be implemented as a distributed set of controllers that
communicate with each other using the east/westbound interfaces. The con-
trol plane offers interfaces to communicate with the other two layers. The
southbound is used to control the data plane devices; for instance, to install
the rules in the routing tables. There are different protocols that can be used
in the southbound; currently the most popular is OpenFlow [23]. The north-
bound is used to communicate the controller with the applications. Usually,
the controller provides its own API for applications. NOX [12] and POX [27]
are two of the most used OpenFlow controllers.

– The application plane consists of a pool of applications that specify high-
level management policies, such as routing, security or monitoring. SDN appli-
cations are dynamic in the sense that they can command the installation of
new rules based on the state of the network

Thus, an SDN is a complex concurrent event-driven distributed system whose
behavior is dynamically defined by the network applications. The separation
of planes and the dependency on software introduces new challenges from the
reliability point of view, such as the interaction of distributed controllers that
must act as a single entity, or the dynamic update of the routing tables that
lead to changes in the data plane topology. In addition, the adoption of SDN
as an enabling technology of 5G networks introduces more challenging issues.
For instance, 5G networks are characterized by the deployment of network slices
for specific services or verticals. In this case, it is important to ensure not only
the isolation of the slices but also to verify that these slices can support specific
services with a predefined Quality of Service (QoS) and Quality of Experience
(QoE). In the recent years, formal methods have used different approaches to

www.manaraa.com

554 M.-del-M. Gallardo et al.

model and analyze SDNs [2,4,17,21]. Most of these works focus on verifying
network invariants, such as the absence of loops or host reachability. Section 5
summarizes these related works. Below, we propose a novel application of formal
methods for SDN.

3.2 Formal Models of SDN Systems for Reachability Analysis

In this section, we propose an approach to generate valid network topologies
(including the data and control plane) whose evolution over time fulfills some
desired properties. To this end, we generate a meta-model of an SDN that
includes the switches and the controller but also the hosts, the packets flow-
ing through the data and control planes, and the logic behind the controller,
that is, the SDN application.

To this end, we use Alloy [16,24], a modelling and specification language
and also a tool that generates model instances satisfying a set of requirements.
Alloy is a declarative language based on sets and set relations. In addition,
it uses first order relational logic to describe properties and refine the models.
Although, internally, the core of Alloy tool uses a theorem prover, from the user
perspective it is a completely automatic tool (similar to a model checker) that
generates models that are correct w.r.t. the specification. All these characteristics
make Alloy suitable for modelling and analyzing structurally complex systems
such as SDN, which can present complex and varying relations between the
different network elements. The price to pay is that Alloy models are bounded
in size, i.e., it is not possible to analyze models of arbitrarily large size. Even
though this is an important restriction, in practice, small models are usually
sufficient to detect errors in the system design. In order to achieve our goal,
we have to follow three steps. First, we have to implement the model of the
static structure of a SDN; then, we have to define the dynamic behavior of the
network elements; and finally, we must define the requirements and configuration
of interest and run the Alloy tool to generate valid SDN topologies. The rest
of the section describes these steps in detail.

Modelling the Static Structure of an SDN
The static model of an SDN defines the elements of an SDN and the (static) rela-
tions between them. The model must abstract low-level details of an SDN so that
Alloy can run the analysis and return different topologies or configurations of
the network. The set of actors constitutes the Alloy metal-model, Fig. 4 shows
a graphical description, and Fig. 5 shows the corresponding Alloy code. The
main actors are hosts and switches in the data plane, and the controllers in the
control plane. These three elements are abstracted as network nodes that contain
ports to connect them with other nodes using port-to-port (bidirectional) links.
Although it is not explicitly reflected in the meta-model, each switch always has
a specific link and a port that connects it with the controller. This connection is
mainly used to configure the switches. The data transmitted between nodes are
called packets. We define two types of packets: control packets include control
plane information, such as new rules that must be installed in a specific switch,

www.manaraa.com

How Formal Methods Can Contribute to 5G Networks 555

Node

Controller

extends

Host

extends

Switch

extends

Link

ControlLink

extends

DataLink

extends

Packet

ControlPacket

extends

DataPacket
type: DataPacketType

extends

Action

Discard

extends

Forward

extends

DataPacketType

HTTP

extends

TCP

extends

Rule
action: Action

packetType: DataPacketType
Port

Fig. 4. Meta-model of the SDN model

or a request to know how to process a data packet. Data packets encapsulate
information that must be transmitted from one host to another. Data pack-
ets also contain the source and destination hosts, their type, and their current
position in the network.

Switches contain forwarding tables with rules that specify how to route data
packets. In order to simplify the model, a rule includes the type of data packet
(e.g. HTTP or FTP) and the input and output ports. The meaning of each rule
is as follows: if a data packet of a particular type arrives at port iPort, it must
be forwarded through port oPort. In addition, it is also possible to define rules
that discard incoming data packets. When a switch has no rule to deal with a
data packet, it sends a request to the controller in order to know how to process
the packet. Finally, the controller can also send new rules to switches to update
the routing tables.

Figure 5 shows how all these elements are defined using basic Alloy con-
structors: abstract signatures, signatures, and relations. Signatures are sets whose
elements are called atoms. Abstract signatures cannot have their own elements;
they can only have them through their extensions. Relations are sets of tuples of
the same arity. They are always defined in the context of a signature, which is
the type of the first element of the tuples. For instance, the signature Rule has a
relation iPort that relates each rule with the input port of the data packet. By
default, the multiplicity of relations is one. In the example, each rule only has
one iPort, but Alloy’s relations support other multiplicities such as lone (e.g.
a Rule has at most one oPort), some (a Node is connected at least to another
Node) and set (e.g. a Switch has zero or more Rule in its forwarding table).

Alloy allows us to define both the static and dynamic behavior of an SDN.
To this end, we include a special signature, called Time, whose atoms explic-
itly represent time instants. For example, we can specify that the iBuffer and
oBuffer of a Host have zero or more DataPackets in each time instant.

At this point, Alloy can generate model instances that are still far from
been structurally correct. We need to add some constraints to the model, called

www.manaraa.com

556 M.-del-M. Gallardo et al.

open util/ordering[Time]
sig Time{}
sig Port{}

abstract sig Link{
p1,p2: Port

}
sig CtrLink extends Link{}
sig DataLink extends Link{}

abstract sig DataPacketT {}
one sig TCP extends DataPacketT {}
one sig HTTP extends DataPacketT {}

abstract sig Action {}
one sig Forward extends Action {}
one sig Discard extends Action {}

sig Rule{
packetType:DataPacketT ,
iPort: Port ,
action: Action ,
oPort : lone Port

}

abstract sig Packet{
position: Port lone -> Time

}
sig DataPacket extends Packet{

type: DataPacketT ,
src ,dest:Host

}
sig CtrPacket extends Packet{

newRule: lone Rule ,
request: lone DataPacket

}

abstract sig Node{
ports: some Port ,
connected: some Node

}
one sig Controller extends Node{}
sig Host extends Node{

iBuffer: DataPacket set -> Time ,
oBuffer: DataPacket set -> Time

}
sig Switch extends Node{

table: Rule set -> Time
}

Fig. 5. SDN signatures and relations in Alloy

facts in Alloy, to define, for instance, how the relations are constructed. In
total, we have added 32 facts to the SDN model. Figure 6 shows some that
define how links, ports and nodes are related.

Modelling the Dynamic Behavior of an SDN
The second step is to describe how the SDN evolves over time; for instance, how
a DataPacket can be transmitted from the source to the destination Host, or how
the forwarding table of a Switch is modified by the Controller. These actions,
or system transitions, are specified in Alloy with predicates. Each predicate
has two input parameters t and t’ that denote the time instant before and
after executing the predicate, which are used to clearly state the pre- and post-
conditions needed to execute the predicate, and the so-called frame conditions
that establish the parts of the model that remain unchanged during the predicate
execution. Figure 7 shows two predicates that define, respectively, how a Host
sends and receives a DataPacket, and the definition of the frame conditions.

We can similarly specify the actions associated to the switches and the con-
troller. For instance, we have defined predicates to describe how a switch forwards
a data packet applying a rule installed in its forwarding table, or how a new rule
is installed or updated when the controller sends a command to a switch. In
addition, the actions of the controller can be more elaborate. We can describe
not only how the controller receives a request from a switch but also the logic
or decision making process associated to an SDN application.

Generating Valid Model Instances
The final step consists of using Alloy analysis to generate correct model
instances. These instances will differ in the network topology; that is, how the

www.manaraa.com

How Formal Methods Can Contribute to 5G Networks 557

fact {
//1-the ending ports of any link are different
all l:Link| l.p1!=l.p2

//2- each port belongs to a node
all p:Port| one node[p]

//3-each port belongs at most to a link
all p:Port| lone link[p]

// 4- The ports of each link belong to different nodes
all l:Link| node[l.p1]!= node[l.p2]

//5- connected is well defined
all n:Node| n.connected = {m:Node -Controller| some l:Link|

node[l.(p1+p2)] = n+m}
//6-Control links connect switches and Controller
all l:Link| l in CtrLink implies one node[l.(p1+p2)] & Controller and

one node[l.(p1+p2)] & Switch
//7-Data links connect two switches or a switch and a host
all l:Link| l in DataLink implies some node[l.(p1+p2)] & Switch and

Controller not in node[l.(p1+p2)]
//8-all controller links are control links
nodeLinks[Controller] in CtrLink

//9-the controller has exactly a link to each switch
all s:Switch| one nodeLinks[Controller] & nodeLinks[s]

}

Fig. 6. Examples of facts

pred sendPacket(t,t’:Time , h:Host , pack:DataPacket){
// pre
some pack & h.oBuffer.t
// post
some p’: remotePort[h.ports] | pack.position.t’=p’
h.oBuffer.t’ = h.oBuffer.t - pack
// frame
tablesUnmodifiedExc[none ,t,t’] and packetsUnmodifiedExc[pack ,t,t’]
oBuffersUnmodifiedExc[h,t,t’] and iBuffersUnmodifiedExc[none ,t,t’]

}
pred receivePacket(t,t’:Time ,h:Host ,pack:DataPacket){

// pre
some (pack.position.t & h.ports)
// post
h.iBuffer.t’ = h.iBuffer.t + pack
pack.position.t’ = none
// frame
tablesUnmodifiedExc[none ,t,t’] and packetsUnmodifiedExc[pack ,t,t’]
oBuffersUnmodifiedExc[none ,t,t’] and iBuffersUnmodifiedExc[h,t,t’]

}
pred packetsUnmodifiedExc(pp:set Packet , t,t’:Time){

all pk:Packet -pp | pk.position.t = pk.position.t’
}
pred oBuffersUnmodifiedExc(hh:set Host , t,t’:Time){

all h:Host -hh | h.oBuffer.t = h.oBuffer.t’
}
pred iBuffersUnmodifiedExc(hh:set Host , t,t’:Time){

all h:Host -hh | h.iBuffer.t = h.iBuffer.t’
}
pred TablesUnmodifiedExc(ss: set Switch , t,t’:Time){

all s:Switch - ss | s.table.t = s.table.t’
}

Fig. 7. Predicates to send and receive data packets on hosts

www.manaraa.com

558 M.-del-M. Gallardo et al.

network nodes are interconnected, and in their dynamic behaviors, for instance
how packets flow through the network or how the switches’ forwarding tables
are updated. The Alloy tool can run predicates and check assertions. In the
first case, if the predicate is consistent, the tool generates model instances that
satisfy the constraints (facts) and the predicate. In the second case, Alloy looks
for counterexamples that satisfy the model specification but not the assertion.
In both cases, the Alloy model is transformed into a set of boolean formulae
that are analyzed using a SAT solver. Our objective is to produce valid SDN
network topologies that can evolve over time taking into account the applications
governing the SDN controller. The automatically generated network topologies
and configurations can be used to test the SDN applications in real or simulated
environments. To this end, we define a predicate that specifies the initial con-
figuration of the SDN network, and the possible system transitions, which are
given as non-deterministic calls to the predicates defining the dynamic behavior
of the SDN. The non-deterministic choice is implemented using the disjunction
logic and thus, for each time instant, only one system transition can be exe-
cuted. Figure 8 shows a snapshot of a valid model instance in two different time
instants (Time$0 and Time$5). To simplify the representation, we only show the
data plane. Observe that in both time instants, the network topology is the same;
that is, the interconnection of switches and host is the same, with the same links
and ports. However, we observe changes in the relations that can evolve over
time. For example, at Time$0 both data packets are in the oBuffer of Host1,
while in Time$5 DataPacket1 has reached its destination and DataPacket0 is in
an intermediate switch. At this point, the Switch1 does not have a rule in its
table that can make the system evolve. In consequence, it has to send a request
to the controller to ask how to forward the packet. The subsequent actions will
depend on the SDN applications modelled.

Assertion checking in Alloy is also useful to determine if the SDN applica-
tions are correct. For instance, if the SDN application has to discard all FTP
packets transmitted from a specific host, we can check if all model instances
satisfy this requirement. Otherwise, Alloy will return a counterexample that
will show why some packets are not correctly discarded.

4 Network Function Virtualization

4.1 The Technology

In 5G networks, the concept of NFV is especially important since it can entail a
significant transformation for this network, reducing cost or increasing flexibil-
ity, although the most important change that NFV introduces is the possibility
of providing different kinds of services and requirements on a common shared
physical network through network slicing (see Sect. 2.2).

The reference architecture for NFV, represented in Fig. 9, has been proposed
by ETSI in [6]. The deployment and reconfiguration of the VNFs in a cloud envi-
ronment is an open challenge. This task is carried out by the Management and

www.manaraa.com

How Formal Methods Can Contribute to 5G Networks 559

Fig. 8. Evolution over time of data packets

Orchestration entity (MANO). The left part of the figure is composed of Opera-
tions Support System (OSS)/Business Support System (BSS), Element Manager
(EM) + VNF and by finally, NFV Infrastructure (NFVI) is composed of virtu-
al/hardware computing, storage and network (the hardware supporting the Edge
and Central clouds in Fig. 9). OSS/BSS are components that allow monitoring,
controlling and managing different kinds of network services. EM provides net-
work management of the virtualized and physical network elements. The VNF
is an implementation of a network function that can be deployed on NFVI. The
right part is composed of Management and Orchestration (MANO) layer, differ-
entiating between NFV Orchestration (NFVO) + VNF Manager (VNFM) and
Virtualized Infrastructure Manager (VIM). NFVO is responsible for orchestra-
tion and management of NFVI, software resources and realizing network services
on NFVI. VNFM is responsible for control, management and monitorization of
the VNF life cycle. It also controls EM. The VIM is the Virtualized Infras-
tructure Manager that, in most real deployments, is the well-known OpenStack
software.

An Example. We illustrate the NFV architecture with an example. Figure 10
shows how a service is deployed in a network slice. We assume that the MNO
offers a simple slice to deploy a video on demand service for mobile users. The
slice includes network components, such as an instance of a 5G core, and some
service-oriented VNFs, such as a video server and the cache function. The orches-
trator (the MANO) addresses the following four phases to properly configure,
deploy and terminate the service.

Phase 1: Network Service Descriptor Processing. The MANO “orches-
trator” processes the information necessary to deploy a network slice oriented
to a specific service (Netflix, in this case). This information includes the exe-
cutable code of VNF (virtualized like a container, virtual machine, etc.) and the

www.manaraa.com

560 M.-del-M. Gallardo et al.

Fig. 9. ETSI MANO

descriptors of the different VNFs (VNFDs), which are defined by ETSI [7] as
follows: “A VNFD is a deployment template which describes a VNF in terms
of deployment and operational behavior requirements. It also contains connec-
tivity, interface and virtualized resource requirements”. Additionally, the VNF
descriptor can include information about the quality of service expected by user
(requirements) like the value of parameters such as delay, bandwidth, number of
simultaneous users, etc. and auto-scaling properties. In cloud computing termi-
nology, these requirements are called Service Level Agreement (SLAs) [6]. The
fulfillment of SLAs is translated into the fulfillment of the expected quality by
users (e.g. max delay between video frames and max response delay). In 5G
network terminology, these quality indicators are usually referred to as Key Per-
formance Indicators (KPIs) and, with less frequently, as Quality Performance
Indicators (QPIs). The MANO also processes the Network Service Descriptor
(NSD) [8] that consists of information used by the NFV Orchestrator to instan-
tiate a Network Service constituted by one or more VNFs. Finally, Network Slice
Template (NST) represents logical network function(s), resources linked to the
services, and most importantly, the network capabilities that are required by
services which, in fact, are closely related to Service Level Agreement (SLA),
previously mentioned. In practice, all the descriptors are specified using descrip-
tion languages like TOSCA or YAML, which are widely used in cloud computing.
All the information is processed to generate internal models of objects described
in VNFD, NSD and NST which will be managed by the orchestrator in the next
phase. Listings 1.1 and 1.2 show the code of the VNFD of a Video on Demand
(VoD) VNF and the definition of the service type, respectively.

www.manaraa.com

How Formal Methods Can Contribute to 5G Networks 561

Fig. 10. Example of a slice for video on demand

vnfd -catalog:
vnfd:
- connection -point:

- name: eth0
type: VPORT

...
description: ...
mgmt -interface: ...
name: slice_VoD_vnfd
vdu:
- count: 1

id: vdu1
image: UbuntuVoD
interface:
- external -connection -point -ref: eth0

...
virtual -interface:
...

monitoring -param:
- id: metric_vdu1_cpu

nfvi -metric: cpu_utilization
name: slice_VoD_vnfd -VM
vm-flavor:

memory -mb: 2048
storage -gb: 100
vcpu -count: 2

monitoring -param:
- id: metric_vim_vnf1_cpu

name: metric_vim_vnf1_cpu
aggregation -type: AVERAGE
vdu -monitoring -param:

vdu -ref: vdu1
vdu -monitoring -param -ref: metric_vdu1_cpu

...

Listing 1.1. Excerpt of a VNFD

www.manaraa.com

562 M.-del-M. Gallardo et al.

- SNSSAI -identifier:
slice -service -type: eMBB/URLLC/mMTC

Listing 1.2. Definition of the slice service type

Phase 2: Network Service Deployment. The MANO performs the deploy-
ment, inter-connection and configuration of the chain of VNFs interacting with
the points of presence of the operator computational infrastructure, commonly
known as Network Functions Virtualization Infrastructure (NFVI). The deploy-
ment consists of locating each VNF at a suitable point of presence. The con-
figuration implies the allocation of resources (CPU, RAM, disk) and the inter-
connection with other VNFs and/or physical elements. Then, the MANO must
apply some optimization algorithm to identify how many resources should be
allocated to achieve the performance and quality of service given by the SLA.

Phase 3: Network Service Execution and Re-configuration. In this phase,
the VNFs implementing the network and the service functionality are running,
and the final service users start using the service uninterruptedly for days, weeks
or months. Some examples of services are the distribution of high-resolution
video (such as the popular service Netflix shown in Fig. 10), private commu-
nications for security forces, an augmented reality to offer sightseeing activi-
ties, remote control for critical infrastructures, etc. In this phase, the number of
users and their location may vary, producing a changing network environment.
Moreover, the network and computational resources can be modified due to the
deployment or elimination of other services. The orchestrator must monitor that
VNFs fulfill the SLAs so that users receive the expected quality (KPIs or QPIs).
In addition, the orchestrator must re-locate or re-configure VNFs, if necessary.

Fig. 11. Overall approach.

www.manaraa.com

How Formal Methods Can Contribute to 5G Networks 563

Currently, the algorithms that perform these tasks still admit a quite margin of
improvement.

Phase 4: Network Service Termination. This phase is not represented in
Fig. 10. It is devoted to the release of the resources previously allocated to the
service, as well as the elimination of VNFs images. These actions are carried out
when users are not expected to be connected for a long period of time, and thus,
the elimination and subsequent creation of resources is possible.

4.2 Model Based Testing and Runtime Verification to Support
Flexible Placement and Reconfiguration of VNFs

We now face the challenge of automatically generating useful information to help
the orchestrator decide about the deployment, configuration and re-configuration
of VNFs. To do this, it is necessary to use the description of the VNFs and the
service level agreements for each service (SLA) to predict the suitable deployment
that satisfies the SLA. This problem has been previously addressed with different
estimation tools [25,29,30,34]. However, in these previous approaches, the main
focus is the use of computational resources. They do not consider the impact of
a realistic 5G network on the final QoS perceived by the users.

Our goal is to develop a novel learning method to specialize the orchestrator
taking the whole end-to-end network into account; that is, considering the users
and the communication component. We propose using different formal methods
to generate and test the orchestrator decisions, making use of a realistic end-
to-end 5G network to run the VNFs. In particular, we combine formal meth-
ods model-based testing, model checking and runtime verification to carry out
a runtime analysis of extra-functional properties (related to time and resource
utilization) which will be evaluated over event sequences which correspond to
the executions of network service.

Figure 11 shows our approach to generate the so-called book of rules of a
MANO in order to manage a specific service according to the requirements
and performance specified in the SLA. The approach has two well differentiated
phases. The first one is devoted to the extraction of the MANO rules using model-
based testing and run-time verification techniques. The second phase focuses on
the validation of the rules over an emulated 5G environment. Both phases have
the VNF and service descriptors (VNFDs and VSFDs)as input, as well as the
SLA. Both phases can be iterated several times in order to gradually refine the
rules generated.

The first phase is shown on the left part of Fig. 11. The VNFDs and VSFDs
are transformed into a model of the service combined with a non-deterministic
model of the MANO that includes a wide variety of rules to be applied to each
network scenario. With this model, we automatically generate test cases that
show different management rules for different network scenarios. The VNFs pass
these test cases in a controlled environment, a testing platform for 5G, where they
can be monitored. We use runtime verification techniques to determine whether

www.manaraa.com

564 M.-del-M. Gallardo et al.

the service and the VNFs satisfy the SLA. To do this, SLAs are translated into a
set of extra-functional properties (the runtime monitors) that evaluate whether
the execution of each test case matches the desired SLA. The (non-)correct test
cases help us to obtain new management rules for the MANO satisfying the
extra-functional properties.

The objective of the second phase (shown on the right part of Fig. 11) is
to validate the synthesized rules in a production environment. To this end, the
rules are installed on a real MANO that manages and orchestrates the 5G testing
platform (and that can even handle a commercial 5G network). Again, using the
runtime verification engine, we can check the suitability of the synthesized rules
during a normal operation of the service.

We propose running multiple iterations of the approach. In each iteration, we
will refine the NFV and MANO models making use of the results of the previous
iteration. These refined models can be used to extract new test cases that produce
more precise rules. In the following section, we present some preliminary models
of the NFVs and MANO.

4.3 Modeling the MANO

We assume that the MANO model consists of a number of MANO (sub-)models
that execute concurrently. Each sub-model manages a unique service deployed on
different points of presence (PoPs) to which users are connected. In consequence,
in this section, we focus on the description of one of these sub-models. In the
following text, to simplify the presentation, we simply call it MANO model.

The MANO model is a state machine that responds to events, provided by the
infrastructure platform, executing functions to preserve the required SLA. Thus,
the MANO and the infrastructure intensively communicate with each other over
time. In addition, a complementary functionality of the MANO model is to
periodically inspect the state of the infrastructure to carry out reconfiguration
actions, if needed, even though no events are fired.

Figure 12 contains a prototype implementation of our proposal using Uppaal
timed automata. State s0 is the initial state of the monitor. At this state, the
automaton may receive events such as alarmCPU90 and newUser from the infras-
tructure through different synchronization channels. The first event occurs when
the platform detects that some instance is reaching the 90% in the CPU usage.
The second one is a notification that a new user has connected to the service.
The monitor responds to the first event by transiting to state s2. During the
transition, the identifier of the PoP which has provoked the alarm is recorded
in variable eid. The monitor also searches for a new PoP, with more resources,
that can hold a new instance of the service, if needed. From s2, the automaton
can go to states s3, s4, s6 and NO RESOURCES. This last state is an error which
should never be reached. The rest of the states represent non-exclusive alter-
natives for the monitor: to increment the CPU resources in the PoP where the
instance which fired the alarm is located, to deploy a new service instance and
balance the users, to migrate the instance to a different PoP with enough CPU
resources.

www.manaraa.com

How Formal Methods Can Contribute to 5G Networks 565

Fig. 12. Uppaal MANO model

Similarly, the monitor responds to the newUser event transiting to state s5
and finding an instance which can hold it. From s5, the automaton can jump to
the initial state through two different transitions: assigning the new user to an
existing service instance or deploying a new service instance for the user. As in
the previous case, if both transitions are enabled, the automaton may select any
of them in a non-deterministic way.

Finally, observe that the automaton has a clock variable tp that is used to
periodically check the state of the network and update it, if necessary. Currently,
we use a bi-dimensional array with the network parameters of interest that con-
tain the network state at three ordered previous time instants. This information
may be used, for instance, to discover when a user may have disconnected to
release its resources.

We have not included transitions that deal with alarms due to the RAM or
HDD usage in the model of Fig. 12 to simplify the automaton. In addition, it
is worth noting that the model is parametric w.r.t. a number of constants that
have to be calibrated such as the thresholds to fire alarms, the maximum number
of service instances and users (MAX INST, MAX INST USERS) and so on.

The concurrent execution of the MANO model and the infrastructure pro-
duces a set of traces (sequence of infrastructure states) that constitute the test

www.manaraa.com

566 M.-del-M. Gallardo et al.

cases to be analyzed against the SLA. Figure 13 contains an example of a pos-
sible infrastructure execution which can be synchronized with the monitor of
Fig. 12 to produce test cases.

Fig. 13. An infrastructure execution

The execution shows changes in the network at certain time instants. For
example, at time instant t=9 the platform is already initialized and the val-
ues of HDD and RAM usage are updated (the second and third parameter of
function updateInfo). At time instant t=99, a new user is connected and the
infrastructure sends event newUser to the monitor.

As previously described, the analysis of test cases may be used to iteratively
improve the monitor rules (the transitions in the automaton of Fig. 12).

The number of different traces generated this way is very large due to the non-
deterministic character of the monitor, and the range of values of the network
variables. A way of pruning these traces is to use properties (described, for
instance, in some temporal logic) to discard some non-interesting behaviors.
For instance, we could add the TCTL property “A[](not monitor.s3)” to the
monitor to generate test cases in which the monitor has carried out at least
an upscaling CPU task. The Uppaal model checker tries to check if no trace is
eventually at state s3. The counterexamples for this property are precisely the
test cases of interest wrt the property specified.

Table 1. Problems faced by SDN verification tools

Problems faced Related work

Networks with multiple protocols [17,20]

Networks with multiple SDN slices [1,17,20]

Networks with multiple OpenFlow controllers/domains [1]

Scalability [4]

Unbounded space of input packets and control messages [4,21]

Flow tables updating at runtime in switches [2,5,18,21]

Interleaved processing of packets/events [2,4,5,13,21]

Topology changes (robustness during an execution) [2]

www.manaraa.com

How Formal Methods Can Contribute to 5G Networks 567

5 Related Work

The formal analysis of SDNs is a challenging task as they are distributed and
open event-driven systems. Given the separation of data and control planes and
the existence of a new application plane that provides the control intelligence,
most works focus on analyzing SDN problems from the perspective of one of
these planes, without considering the relation between them. In [19], we reviewed
the state of the art of formal methods and tools to support SDN. Table 1 shows
a list of problems addressed and related works. These proposals differ not only
regarding the network plane and the problem faced, but they also use different
formal methods, such as model checking [1,4,17,21], theorem proving [2,5,20],
runtime analysis [18] or traditional network debugging [13].

The efficient management and orchestration of VNFs in the context of 5G
networks is an interesting and challenging problem that can be addressed from
different perspectives.

Currently, some proposals focus on predicting the performance behavior of
VNF chains (services deployed interconnecting VNFs) deployed in the cloud
without considering the role of the mobile network. However, the network and
the service users are an important part of the environment that stimulates and
interacts with the VNFs, and thus, they must be taken into account to predict
the service performance in terms of extra-functional properties, Service Level
Agreements (SLAs), Key Performance Indicators (KPIs) and Quality Perfor-
mance Indicators (QPIs).

Peuster and Karl [29] proposed a methodology to characterize the perfor-
mance of VNF and VNF chains prior to service deployment that can be part of
a DevOps methodology. To this end, the authors execute the VNFs in different
emulated network configurations and monitor how different performance param-
eters evolve. The paper includes an evaluation of a profiler prototype built on
the emulation platform MeDICINE, which is based on an extension of Mininet
that can execute production-ready VNFs (given as Dockers containers) in user-
defined network topologies. The prototype can emulate the effect of the network
and other services that compete for the resources. However, the emulation is
limited by the capacity of the host machine that runs Mininet, which is far from
emulating a real 5G network. The author states that the profile of the VNF
can be used to improve the decisions carried out by the MANO, but there is no
insight of how to transform the profile into MANO rules.

Gym [30] is other framework for VNF profiling. In this case, the VNF is tested
under different resource configurations of the infrastructure, which is mainly
composed of servers where the VNFs runs. However, the infrastructure lacks the
components of a mobile network. The authors’ objective is to use the framework
to build testbeds for NFVs and services extending the framework with new
components.

The characterization of VNFs performance has also been addressed from the
analytical point of view. For instance, the tool Probius [25] aims to detect abnor-
mal behaviors of NFVs due to performance uncertainties. Probius automatically
generates all possible service chains with the given VNFs, collects and analyzes

www.manaraa.com

568 M.-del-M. Gallardo et al.

performance-related features of each chain, and analyzes performance problems
through anomaly detection and graph-based behavior analysis, and is able to
point out the reasons of the VNFs performance issues.

The project 5GTANGO [34] proposed a testing approach for VNFs based
on TTCN-3 test cases that can be manually or automatically generated using
model-based testing techniques. However, the authors do not discuss which enti-
ties are included in the model, or what requirements guide the test generation
algorithms.

In [25,29,34], the VNFs, the services and the test cases run in an emulated
infrastructure that cannot properly represent a 5G network.

Formal methods have been also used to verify VNFs and VNF chains against
reachability and safety properties in order to determine whether services are
interfering, are isolated, or are accessed by unauthorized users. In [28] and [33],
the analysis of properties is based on SMT solvers, such as Z3, combined with
static analysis and symbolic model checking. These approaches accept a logic
formula as input and find the values (if any) that make the formula satisfiable.
The main limitation of these approaches is the transformation of the VNF code
into a model in the solver’s input language. This task is not trivial and is error
prone. To minimize this problem, in [22], a tool to automatically extract the VNF
model from its code is proposed. The approach is limited to VNFs implemented
using a set of Java libraries to facilitate the coding task.

6 Conclusions

The increasing presence of software in mobile communication networks, like 5G
networks, requires the use of rigorous methods to ensure the correct behavior.
The formal methods community can find here new challenges to demonstrate the
applicability of well-known techniques for modelling and automatic analysis. We
have introduced work in progress in the general topic of automated generation
and specialization of formal models that can help the deployment of the SDN and
NFV parts of the network. We use two different modelling languages because
the objectives for each domain are different. The use of Alloy to model SDN
overpasses the state space explosion problem of model checking when checking
for valid network configurations. The use of SAT solvers in this context has
been demonstrated with a middle size network; however we still need to confirm
the feasibility of the approach with more complex configurations. The use of
UPPAAL to model the NFV part is still a proof concept and more work will
be done to produce experimental results. One future work is to analyze whether
a single formal method could support the two domains considered in the 5G
network. We are currently working on implementing some of these methods to
be validated in realistic research networks in the context of the European H2020
research projects EuWireless and 5GENESIS.

www.manaraa.com

How Formal Methods Can Contribute to 5G Networks 569

References

1. Al-Shaer, E., Al-Haj, S.: FlowChecker: configuration analysis and verification of
federated OpenFlow infrastructures. In: Proceedings of the 3rd ACM Workshop on
Assurable and Usable Security Configuration, SafeConfig 2010, pp. 37–44. ACM,
New York, October 2010. https://doi.org/10.1145/1866898.1866905

2. Ball, T., et al.: VeriCon: towards verifying controller programs in software-
defined networks. SIGPLAN Not. 49(6), 282–293 (2014). https://doi.org/10.1145/
2666356.2594317

3. Bochmann, G., Rayner, D., West, C.H.: Some notes on the history of protocol
engineering. Comput. Netw. 54(18), 3197–3209 (2010). https://doi.org/10.1016/j.
comnet.2010.05.019

4. Canini, M., Venzano, D., Pereš́ıni, P., Kostić, D., Rexford, J.: A NICE way to
test OpenFlow applications. In: Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 2012), San Jose, CA, pp.
127–140. USENIX, April 2012

5. El-Hassany, A., Miserez, J., Bielik, P., Vanbever, L., Vechev, M.: SDNRacer: con-
currency analysis for software-defined networks. SIGPLAN Not. 51(6), 402–415
(2016). https://doi.org/10.1145/2980983.2908124

6. ETSI GS NFV: Network Functions Virtualization (NFV); Terminology for Main
Concepts in NFV. Technical report ETSI GS NFV 003, European Telecommuni-
cations Standards Institute (ETSI), August 2018. v1.4.1

7. ETSI GS NFV-IFA: Network Functions Virtualization (NFV); Management and
Orchestration; VNF Descriptor and Packaging Specification. Technical report ETSI
GS NFV-IFA 011, European Telecommunications Standards Institute (ETSI),
August 2018. v2.5.1

8. ETSI GS NFV-MAN: Network Functions Virtualization (NFV); Management and
Orchestration. Technical report ETSI GS NFV-MAN 001, European Telecommu-
nications Standards Institute (ETSI), December 2014. v1.1.1

9. ETSI TS 123 501: 5G; System Architecture for the 5G System. Technical report
ETSI TS 123 501, European Telecommunications Standards Institute (ETSI), June
2018. v15.2.0

10. Gallardo, M.M., Mart́ınez, J., Merino, P.: Applying formal methods to telecom-
munication services with active networks (2013)

11. Gnesi, S., Margaria, T.: Formal Methods for Industrial Critical Systems: A Survey
of Applications, 1st edn. IEEE, Washington, D.C. (2013)

12. Gude, N., et al.: NOX: towards an operating system for networks. SIGCOMM
Comput. Commun. Rev. 38(3), 105–110 (2008). https://doi.org/10.1145/1384609.
1384625. Tool https://github.com/noxrepo/nox

13. Handigol, N., Heller, B., Jeyakumar, V., Maziéres, D., McKeown, N.: Where is the
debugger for my software-defined network? In: Proceedings of the 1st Workshop
on Hot Topics in Software Defined Networks, HotSDN 2012, pp. 55–60. ACM, New
York, August 2012. https://doi.org/10.1145/2342441.2342453

14. Holzmann, G.: The Spin Model Checker: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional, Boston (2003)

15. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall Inc.,
Upper Saddle River (1991)

16. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press
(2006). http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928

https://doi.org/10.1145/1866898.1866905
https://doi.org/10.1145/2666356.2594317
https://doi.org/10.1145/2666356.2594317
https://doi.org/10.1016/j.comnet.2010.05.019
https://doi.org/10.1016/j.comnet.2010.05.019
https://doi.org/10.1145/2980983.2908124
https://doi.org/10.1145/1384609.1384625
https://doi.org/10.1145/1384609.1384625
https://github.com/noxrepo/nox
https://doi.org/10.1145/2342441.2342453
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928

www.manaraa.com

570 M.-del-M. Gallardo et al.

17. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: static check-
ing for networks. In: 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2012), Lombard, IL, pp. 113–126. USENIX, April 2012

18. Khurshid, A., Zhou, W., Caesar, M., Godfrey, P.B.: VeriFlow: verifying network-
wide invariants in real time. SIGCOMM Comput. Commun. Rev. 42(4), 467–472
(2012). https://doi.org/10.1145/2377677.2377766

19. Lavado, L., Panizo, L., Gallardo, M., Merino, P.: A characterisation of verifica-
tion tools for software defined networks. J. Reliable Intell. Environ. 3(3), 189–207
(2017). https://doi.org/10.1007/s40860-017-0045-y

20. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P.B., King, S.T.: Debug-
ging the data plane with anteater. SIGCOMM Comput. Commun. Rev. 41(4),
290–301 (2011). https://doi.org/10.1145/2043164.2018470

21. Majumdar, R., Tetali, S.D., Wang, Z.: Kuai: a model checker for software-defined
networks. In: Formal Methods in Computer-Aided Design (FMCAD), Lausanne,
Switzerland, pp. 163–170. IEEE, October 2014. https://doi.org/10.1109/FMCAD.
2014.6987609

22. Marchetto, G., Sisto, R., Virgilio, M., Yusupov, J.: A framework for user-friendly
verification-oriented VNF modeling. In: 2017 IEEE 41st Annual Computer Soft-
ware and Applications Conference (COMPSAC), vol. 1, pp. 517–522, July 2017.
https://doi.org/10.1109/COMPSAC.2017.16

23. McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. SIG-
COMM Comput. Commun. Rev. 38(2), 69–74 (2008). https://doi.org/10.1145/
1355734.1355746

24. Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: a general-purpose higher-
order relational constraint solver. Formal Methods Syst. Des. 1–32 (2017). https://
doi.org/10.1007/s10703-016-0267-2

25. Nam, J., Seo, J., Shin, S.: Probius: automated approach for VNF and service
chain analysis in software-defined NFV. In: Proceedings of the Symposium on
SDN Research, SOSR 2018, pp. 14:1–14:13. ACM (2018). https://doi.org/10.1145/
3185467.3185495

26. Nunes, B.A., Mendonca, M., Nguyen, X.N., Obraczka, K., Turletti, T.: A survey of
software-defined networking: past, present, and future of programmable networks.
IEEE Commun. Surv. Tutorials 16(3), 1617–1634 (2014). https://doi.org/10.1109/
SURV.2014.012214.00180

27. Open Networking Lab: POX (Python Network Controller) Wiki (2013). https://
openflow.stanford.edu/x/TYBr

28. Panda, A., Lahav, O., Argyraki, K.J., Sagiv, M., Shenker, S.: Verifying isolation
properties in the presence of middleboxes. CoRR abs/1409.7687 (2014)

29. Peuster, M., Karl, H.: Understand your chains: towards performance profile-based
network service management. In: 2016 Fifth European Workshop on Software-
Defined Networks (EWSDN), pp. 7–12. IEEE Computer Society (2016). https://
doi.org/10.1109/EWSDN.2016.9

30. Rosa, R.V., Bertoldo, C., Rothenberg, C.E.: Take your VNF to the gym: a testing
framework for automated NFV performance benchmarking. IEEE Commun. Mag.
55(9), 110–117 (2017). https://doi.org/10.1109/MCOM.2017.1700127

31. Rudin, H., West, C.H., Zafiropulo, P.: Automated protocol validation: one chain
of development. Comput. Netw. (1976) 2(4), 373–380 (1978)

32. Shenker, S., Casado, M., Koponen, T., McKeown, N., et al.: The future of net-
working, and the past of protocols. Open Netw. Summit 20 (2011)

https://doi.org/10.1145/2377677.2377766
https://doi.org/10.1007/s40860-017-0045-y
https://doi.org/10.1145/2043164.2018470
https://doi.org/10.1109/FMCAD.2014.6987609
https://doi.org/10.1109/FMCAD.2014.6987609
https://doi.org/10.1109/COMPSAC.2017.16
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1007/s10703-016-0267-2
https://doi.org/10.1007/s10703-016-0267-2
https://doi.org/10.1145/3185467.3185495
https://doi.org/10.1145/3185467.3185495
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1109/SURV.2014.012214.00180
https://openflow.stanford.edu/x/TYBr
https://openflow.stanford.edu/x/TYBr
https://doi.org/10.1109/EWSDN.2016.9
https://doi.org/10.1109/EWSDN.2016.9
https://doi.org/10.1109/MCOM.2017.1700127

www.manaraa.com

How Formal Methods Can Contribute to 5G Networks 571

33. Spinoso, S., Virgilio, M., John, W., Manzalini, A., Marchetto, G., Sisto, R.: For-
mal verification of virtual network function graphs in an SP-DevOps context. In:
Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS, vol. 9306, pp.
253–262. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24072-5 18

34. Zhao, M., et al.: Verification and validation framework for 5G network services and
apps. In: 2017 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), pp. 321–326, November 2017. https://doi.org/10.
1109/NFV-SDN.2017.8169878

https://doi.org/10.1007/978-3-319-24072-5_18
https://doi.org/10.1109/NFV-SDN.2017.8169878
https://doi.org/10.1109/NFV-SDN.2017.8169878

www.manaraa.com

Author Index

Askarpour, Mehrnoosh 110
Atlee, Joanne M. 220

Basile, Davide 131, 481
Beek, Maurice H. ter 1
Beidu, Sandy 220
Belmonte, Gina 85
Benavides, David 365
Bernardeschi, Cinzia 531
Bertolino, Antonia 56
Biscoglio, Isabella 239
Bolognesi, Tommaso 519
Breathnach, Ciara 338
Bucchiarone, Antonio 19

Chiaradonna, Silvano 481
Chiriţă, Claudia Elena 152
Ciancabilla, Attilio 239
Ciancia, Vincenzo 85
Clancy, Stuart 338
Classen, Andreas 285
Coen, Claudio Sacerdoti 397
Cordy, Maxime 285
Corradini, Flavio 467

De Nicola, Rocco 377
Degano, Pierpaolo 131
Devroey, Xavier 285
Di Giandomenico, Felicita 481
Domenici, Andrea 531
Duong, Tan 377

El-Sharkawy, Sascha 67

Fantechi, Alessandro 1
Ferrari, Alessio 191, 267
Ferrari, Gian-Luigi 131
Fiadeiro, José Luiz 152
Fiscella, Antonella 267
Fitzgerald, John 40
Frohme, Markus 313
Fusani, Mario 211, 239

Gallardo, María-del-Mar 548
Garigliano, Roberto 250
Gervasi, Vincenzo 191
Ghezzi, Carlo 110
Groote, Jan Friso 449

Haxthausen, Anne E. 433
Hede, Kristian 433
Hennicker, Rolf 172
Heymans, Patrick 285

Ibrahim, Najhan M. 338
Inverardi, Paola 56
Inverso, Omar 377

Jenn, Eric 416

Kröher, Christian 67

Lami, Giuseppe 211, 239
Laneve, Cosimo 397
Larsen, Peter Gorm 40
Latella, Diego 85
Legay, Axel 285
Lenzini, Gabriele 502
Lopes, Antónia 152
Luque-Schempp, Francisco 548

Mandrioli, Dino 110
Marcantoni, Fausto 467
Margaria, Tiziana 338
Masetti, Giulio 481
Massink, Mieke 85
Mateescu, Radu 416
Mazzanti, Franco 377
Merino-Gómez, Pedro 548
Mich, Luisa 250
Mongiello, Marina 19
Montanari, Ugo 12
Morichetta, Andrea 467
Murtovi, Alnis 313

www.manaraa.com

Nguyen, Viet-Anh 416

Panizo, Laura 548
Parente, Guido 267
Perrouin, Gilles 285
Petrocchi, Marinella 502
Pierce, Ken 40
Polini, Andrea 467
Pugliese, Rosario 131

Raskin, Jean-François 285
Re, Barbara 467
Rossi, Matteo 110

Sampaolo, Massimiliano 467
Schmid, Klaus 67
Schobbens, Pierre-Yves 285
Semini, Laura 1

Serwe, Wendelin 416
Spagnolo, Giorgio O. 267
Spoletini, Paola 191
Steffen, Bernhard 313

Tegeler, Tim 313
Tiezzi, Francesco 131
Trentanni, Gianluca 211, 239
Tsigkanos, Christos 110
Ţuţu, Ionuţ 152

Veschetti, Adele 397
Vink, Erik P. de 449

Wirsing, Martin 172

Zowghi, Didar 191

574 Author Index

	Preface
	Organization
	Contents
	The Legacy of Stefania Gnesi
	1 The Early Years
	2 Software Engineering
	3 Formal Methods and Tools
	4 Requirements Engineering/Natural Language Processing
	5 Software Product Lines
	6 Formal Verification and Applications
	7 Conclusions
	References

	From Dynamic Programming to Programming Science
	Software Engineering
	Ten Years of Self-adaptive Systems: From Dynamic Ensembles to Collective Adaptive Systems
	1 Introduction and Paper Positioning
	2 Dynamic Ensembles Using Typed Graph Grammars
	3 Ensemble Specialization and Reconfiguration
	4 Collective Adaptation in Ensembles
	5 Implementation
	6 Conclusion and Future Directions
	References

	Multi-modelling and Co-simulation in the Engineering of Cyber-Physical Systems: Towards the Digital Twin
	1 Introduction
	2 Challenges in Engineering Cyber-Physical Systems
	2.1 A Future CPS at Scale
	2.2 Multi-modelling and Co-simulation
	2.3 Digital Twins
	2.4 Machine Learning for CPSs
	2.5 Decision Support and Visualisation with Digital Twins

	3 Towards a Learning Digital Twin
	4 A Case Study: The Line-Following Robot
	4.1 Introduction
	4.2 Architectural Structure and Functional Mock-Up Units
	4.3 Matching the Descriptive Model to Deployed Components
	4.4 Operational Data Gathering
	4.5 Model and Data Processing
	4.6 Decision Enabling

	5 Looking Forward
	References

	Changing Software in a Changing World: How to Test in Presence of Variability, Adaptation and Evolution?
	1 Introduction
	2 Many Dimensions of Change
	2.1 Changing Software
	2.2 Changing World

	3 Testing Software that Changes
	3.1 Software Testing Foundations in Light of Change
	3.2 Testing Challenges Ahead
	3.3 Promising Testing Techniques

	4 Perspectives for Research
	References

	Improving Software Engineering Research Through Experimentation Workbenches
	1 Introduction
	2 Usage Scenario
	3 Concepts and Requirements
	4 An Experimentation Workbench for Static Product Line Analysis
	5 Challenges
	6 Experiences
	7 Conclusion
	References

	Formal Methods and Tools
	Innovating Medical Image Analysis via Spatial Logics
	1 Introduction
	2 The Spatial Logic Framework
	3 Spatial Logic for Image Analysis
	4 Illustration: Brain Segmentation
	5 Challenges in Spatial Model Checking for Medical Imaging
	6 Related Work
	7 Conclusions
	References

	Formal Methods in Designing Critical Cyber-Physical Systems
	1 Introduction
	2 Key Factors in the Design of CPSs
	2.1 Space and Time
	2.2 Human-Robot Interaction
	2.3 Managing Uncertainty at Runtime Through Self-adaptation

	3 Case Studies
	3.1 Case Study 1: Reasoning on Space-Intensive CPS
	3.2 Case Study 2: Reasoning on Temporal Modeling of CPS

	4 Conclusions
	References

	Automata-Based Behavioural Contracts with Action Correlation
	1 Introduction
	2 Motivating Scenario
	3 The Formalism
	3.1 Formal Definition and Semantics
	3.2 Composition

	4 Validity
	5 CMCA at Work on a Hotel Booking Scenario
	6 Related Work
	7 Conclusion and Future Work
	References

	Logical Support for Bike-Sharing System Design
	1 Introduction
	2 Actor Networks
	3 Network Configurations
	4 Network Dynamics
	5 On the Design of a Bike-Sharing System
	6 Information-Flow Properties
	7 Conclusions and Further Work
	References

	A Generic Dynamic Logic with Applications to Interaction-Based Systems
	1 Introduction
	2 Regular Propositional Dynamic Logic
	3 A Generic Dynamic Logic
	4 Specification of Interaction-Based Systems
	4.1 A Dynamic Logic for Global Types
	4.2 A Dynamic Logic Based on UML Sequence Diagrams

	5 Conclusion
	References

	Requirements Engineering
	Ambiguity in Requirements Engineering: Towards a Unifying Framework
	1 Introduction
	2 Ambiguity and Interpretation in Requirements Engineering
	3 Linguistic Sources of Ambiguity
	3.1 Levels of Ambiguity
	3.2 Ambiguity vs. Vagueness

	4 Ambiguity, Abstraction, Absence
	5 Ambiguity Cases in Requirements Documents
	6 Ambiguity Cases in Requirements Elicitation Interviews
	7 Related Work
	8 Conclusions
	References

	QuARS: A Pioneer Tool for NL Requirement Analysis
	1 Introduction
	2 QuARS: Genesis, Evolution and Functional Characteristics
	3 QuARS: A Launch Pad for Requirements Engineering Automation
	4 Conclusions
	References

	Detecting Feature Interactions in FORML Models
	1 Introduction
	2 Overview of FORML
	3 Composing Behaviour Models
	4 Translation of FORML to SMV
	4.1 World State (WS) Module
	4.2 Snapshot Module
	4.3 State Module
	4.4 Main Module

	5 Detecting Feature Interactions in FORML
	5.1 Running Example
	5.2 CTL Property Language
	5.3 Generating Feature-Interaction Detection Properties

	6 Conclusion
	References

	Natural Language Processing
	Comparing Results of Natural Language Disambiguation Tools with Reports of Manual Reviews of Safety-Related Standards
	1 Introduction
	2 Why Safety-Related Standards?
	3 Documenting a CENELEC Standard Definition Process
	3.1 CENELEC Standard Regulations and Activity
	3.2 Our Reference CELELEC Corpus

	4 Related Work: A Short Overview of NLP Applied to Requirements
	5 Example
	6 Working with Our Research Questions
	6.1 Planning the Work
	6.2 Concluding Remarks

	References

	Looking Inside the Black Box: Core Semantics Towards Accountability of Artificial Intelligence
	Abstract
	1 Introduction
	2 Accountability for Artificial Intelligence
	3 Natural Language Processing and Accountability
	3.1 Representing Meaning in a Text
	3.2 Core Semantic Representation

	4 CoreSystem
	5 Core Semantics and Accountability
	6 Conclusions
	Acknowledgments
	Appendix A
	References

	QuOD: An NLP Tool to Improve the Quality of Business Process Descriptions
	1 Introduction
	2 The Learn PAd Quality Model
	3 Quality Attribute: Non-ambiguity
	3.1 Indicator: Lexical Ambiguity
	3.2 Indicator: Syntactic Ambiguity

	4 Quality Attribute: Simplicity
	4.1 Indicator: Excessive Length
	4.2 Indicator: Juridical Jargon
	4.3 Indicator: Difficult Jargon

	5 Quality Attribute: Clarity
	5.1 Indicator: Actor Unclear
	5.2 Indicator: Unclear Acronym

	6 Quality Attribute: Correctness
	7 The QuOD Tool
	8 Conclusion
	References

	Software Product Lines
	A Decade of Featured Transition Systems
	1 Introduction
	2 Grazie Mille
	3 Verifying Variability-Intensive Systems with FTS
	3.1 A Formalism to Model VIS Behaviour
	3.2 FTS Model Checking
	3.3 Algorithms
	3.4 Related FTS-Based Verfication Work

	4 Testing Variability-Intensive Systems with FTSs
	4.1 Test Concepts for FTSs
	4.2 Selection Criteria
	4.3 Test Case and Test Suite Minimality
	4.4 Related Work

	5 Perspectives
	5.1 Optimisation of Quality Requirements
	5.2 Grand Verification Challenges: Cyber-Physical and Learning Systems
	5.3 Extended FTS for Cyber-Physical and AI-Ready Systems

	6 Conclusion
	References

	Product Line Verification via Modal Meta Model Checking
	1 Introduction
	2 Preliminaries
	2.1 Context-Free Modal Transition Systems
	2.2 The Alternation-Free Modal -Calculus

	3 Model Checking Context-Free Modal Transition System
	3.1 Hierarchical Equational Systems
	3.2 The Second-Order Model Checking Algorithm

	4 Verifying Software Product Lines Using M3C
	4.1 Document-Driven Process Verification
	4.2 Example

	5 Conclusion
	References

	Towards Model Checking Product Lines in the Digital Humanities: An Application to Historical Data
	Abstract
	1 Introduction
	2 Background
	3 Big Data Analysis
	4 The Proposed Big Data Interoperability Framework for DBDIrl
	4.1 Heterogeneous Datasets
	4.2 The Models: From LTS to MTS and CFMTS

	5 Current Data Representations in the hDB
	5.1 The Original CR Data Set and the GRO Data
	5.2 Initial Ontology and Initial Models
	5.3 The Product Models for the CSV and CR Representations

	6 Subject Domain Refinement: The Fine Grained Data Representation
	7 May/Must Refinements, Minimum Specifications and Roles
	7.1 Minimum Specification and Roles
	7.2 Hierarchy: Introducing Procedures
	7.3 Refinements Including May Categories
	7.4 Including Administrative Data in the Registrar Role
	7.5 Multiple Occurrence of Categories: Recursion in the Informant Role

	8 Modelling and Analyzing Product Lines
	8.1 Model Checking Product Lines

	9 Conclusion
	Acknowledgments
	References

	Variability Modelling and Analysis During 30 Years
	1 Variability Modelling as a Key Activity
	2 The FODA Report in 1990
	3 Automated Analysis of Variability Models
	4 Conclusions
	References

	Formal Verification
	A Systematic Approach to Programming and Verifying Attribute-Based Communication Systems
	1 Introduction
	2 Background
	2.1 AbC Process Calculus
	2.2 UMC Model Checker
	2.3 ABEL

	3 From AbC to UMC
	4 From AbC to ABEL
	5 Experiments
	6 Concluding Remarks and Future Work
	References

	On the Prediction of Smart Contracts' Behaviours
	1 Introduction
	2 The Calculus of Smart Contracts
	2.1 Semantics of scl programs

	3 The Open Semantics and the Analysis Model
	4 Observables and Strategies
	4.1 Automatic Analysis
	4.2 Quantifier Elimination
	4.3 Implementation

	5 Conclusions
	References

	Hunting Superfluous Locks with Model Checking
	1 Introduction
	2 OpenMP
	3 Parallelization Workflow
	3.1 Lockset Algorithm
	3.2 OpenMP to LNT
	3.3 Sequentiality Detection
	3.4 Inserting Locks

	4 Related Work
	5 Conclusion
	References

	Formal Verification of Railway Timetables - Using the UPPAAL Model Checker
	1 Introduction
	2 The UPPAAL Modelling Language
	3 Domain Description
	3.1 Basic Concepts and Terms
	3.2 Requirements

	4 UPPAAL Model
	4.1 Overview
	4.2 Railway Network Data
	4.3 Timetable Data
	4.4 Clocks
	4.5 Variables
	4.6 The Initialiser Template
	4.7 The Train Template
	4.8 System Declaration

	5 Verification
	5.1 Properties
	5.2 Verification Results

	6 Conclusion and Future Plans
	References

	An Axiomatization of Strong Distribution Bisimulation for a Language with a Parallel Operator and Probabilistic Choice
	1 Introduction
	2 Preliminaries
	3 A Process Language
	4 Strong Distribution Bisimulation
	5 A Complete Axiomatization
	6 Concluding Remarks
	References

	Applications
	Enabling Auditing of Smart Contracts Through Process Mining
	1 Introduction
	2 Background
	3 Enabling the Auditing of Blockchain Contract
	4 Process Mining in Blockchain: The RotoHive Case
	4.1 RotoHive Overview
	4.2 ABC Methodology in Practice
	4.3 Discussion

	5 Related Work
	6 Conclusions and Future Work
	References

	A Refined Framework for Model-Based Assessment of Energy Consumption in the Railway Sector
	1 Introduction
	2 Related Work
	3 System Under Analysis: Logical Architecture and Stochastic Process
	4 SAN Model
	5 Evaluation Results
	5.1 Scenario 1
	5.2 Scenario 2
	5.3 Scenario 3

	6 Conclusions and Future Work
	References

	Modelling of Railway Signalling System Requirements by Controlled Natural Languages: A Case Study
	1 Modern Railways Systems and Cyber-Security
	1.1 Railways and Tools for Security Requirement Engineering

	2 Controlled Natural Languages
	2.1 CNL4DSA
	2.2 CNL4DSA-Based Toolkit

	3 The PENS Classification Scheme
	3.1 Policy Enforcement

	4 Translating Railway Requirements in CNS4DSA
	4.1 ERTMS L3 Signalling System Security Requirements

	5 Evaluation
	6 Conclusions
	References

	Single-Step and Asymptotic Mutual Information in Bipartite Boolean Nets
	1 Introduction
	2 Bipartite Boolean Nets
	3 Mutual Information Between yP and yQ
	4 Experimental Results
	5 Asymptotic P-Q Mutual Information via Global Graph Attractors
	5.1 A Demonstration Tool

	6 Conclusions
	References

	Application of Model Checking to Fault Tolerance Analysis
	1 Introduction
	2 Related Work
	3 Fault Tolerance for Systems with Multiple Faults
	4 Untestability of Faults: SEUs in SRAM-Based FPGAs
	5 Conclusions
	References

	How Formal Methods Can Contribute to 5G Networks
	1 Introduction
	2 Background on 5G Networks
	2.1 Architecture of the Network
	2.2 Slices for Verticals

	3 Software Defined Networks
	3.1 The Technology
	3.2 Formal Models of SDN Systems for Reachability Analysis

	4 Network Function Virtualization
	4.1 The Technology
	4.2 Model Based Testing and Runtime Verification to Support Flexible Placement and Reconfiguration of VNFs
	4.3 Modeling the MANO

	5 Related Work
	6 Conclusions
	References

	Author Index

